ON EXTREMAL PROBLEMS WHICH CORRESPOND TO ALGEBRAIC UNIVALENT FUNCTIONS

By Yoshinisa Kubota

1. Let S denote the class of functions $f(z)$ regular and univalent in $|z|<1$

$$
f(z)=z+\sum_{n=2}^{\infty} a_{n} z^{n} .
$$

Let V_{n} denote the n-th coefficient region for functions of this class [6, § 1.2]. Let $F=F\left(a_{2}, \bar{a}_{2}, \cdots, a_{n}, \bar{a}_{n}\right)$ be a real-valued function satisfying the conditions
a) F is defined in an open set O containing V_{n},
b) F and F_{ν} are continuous in O,
c) $|\operatorname{grad} F|=\left(\sum_{v=2}^{n}\left|F_{v}\right|^{2}\right)^{1 / 2}>0$ in O
where

$$
\begin{gathered}
F_{\nu}=\frac{1}{2}\left(\frac{\partial F}{\partial x_{\nu}}-i \frac{\partial F}{\partial y_{\nu}}\right), \\
x_{\nu}=\frac{1}{2}\left(a_{\nu}+\bar{a}_{\nu}\right), y_{\nu}=\frac{1}{2 i}\left(a_{\nu}-\bar{a}_{\nu}\right) .
\end{gathered}
$$

Then the following result was given by Schaeffer and Spencer [6, Lemma VII]:
Every function $f(z)$ of class S belonging to a point (a_{2}, \cdots, a_{n}) where F attains its maximum on V_{n} must satisfy the differential equation

$$
\begin{equation*}
\left(z \frac{f^{\prime}(z)}{f(z)}\right)^{2} \sum_{\nu=1}^{n-1} \frac{A_{\nu}}{f(z)^{\nu}}=\sum_{\nu=-n+1}^{n-1} \frac{B_{\nu}}{z^{\nu}} \tag{1}
\end{equation*}
$$

where

$$
A_{\nu}=\sum_{k=\nu+1}^{n} a_{k}^{(\nu+1)} F_{k}, B_{\nu}=\sum_{k=1}^{n-\nu} k a_{k} F_{k+\nu}, \nu=1,2, \cdots, n-1,
$$

$$
\begin{equation*}
B_{0}=\sum_{k=1}^{n}(k-1) a_{k} F_{k}, B_{-\nu}=\bar{B}_{\nu} \tag{2}
\end{equation*}
$$

and

$$
f(z)^{\nu}=\sum_{k=\nu}^{\infty} a_{k}{ }^{(\nu)} z^{k} .
$$

Received November 28, 1972.

The derivatives are taken at the point $\left(a_{2}, \cdots, a_{n}\right)$. Moreover this differential eqaution has the properties (i) $B_{0}>0$ and (ii) the right hand side of (1) is non-negative on $|z|=1$ with at least one zero there.

Further Schaeffer and Spencer showed that if a function $f(z)$ of class S satisfies more than one differential equation of the form (1) which has the properties (i) and (ii), then it is an algebraic function [6, Theorem V]. Moreover as in the proof of Lemma XXXI in [6] we have that if $f(z)$ is single-valued, then it is of the form

$$
f(z)=\frac{z}{\left(1-e^{2 \alpha} z\right)\left(1-e^{i \beta} z\right)} .
$$

Ozawa proposed the following problem to the author orally: Determine the algebraic functions of class S, not being single-valued, which are extremal functions for certain two extremal problems

$$
\max _{s} F\left(a_{2}, \bar{a}_{2}, \cdots, a_{m}, \bar{a}_{m}\right)
$$

and

$$
\max _{\mathcal{S}} \tilde{F}\left(a_{2}, \bar{a}_{2}, \cdots, a_{n}, \bar{a}_{n}\right)
$$

where $m<n$, and find corresponding functions F and \widetilde{F}.
In this paper we shall consider two-valued algebraic functions and the cases $m=3,5$. Here we remark that if an extremal function is two-valued, then m and n are odd.
2. In our study we use the following lemma which was proved by Ozawa. For the sake of completeness we shall prove it.

Lemma. If a two-valued algebraic function $w=f(z)$ of class S satisfies differential equations of the form

$$
\begin{equation*}
\left(\frac{z}{w} \frac{d w}{d z}\right)^{2 m-1} \sum_{\nu=1}^{2} \frac{A_{\nu}}{w^{\nu}}=\sum_{\nu=-m+1}^{m-1} \frac{B_{\nu}}{z^{v}}, \quad A_{m-1}=B_{m-1} \neq 0, \quad B_{-\nu}=\bar{B}_{\nu} \tag{3}
\end{equation*}
$$

and

$$
\begin{equation*}
\left(\frac{z}{w} \frac{d w}{d z}\right)^{2 n-1} \sum_{\nu=1} \frac{C_{\nu}}{w^{\nu}}=\sum_{\nu=-n+1}^{n-1} \frac{D_{\nu}}{z^{\nu}}, \quad C_{n-1}=D_{n-1} \neq 0, \quad D_{-\nu}=\bar{D}_{\nu} \tag{4}
\end{equation*}
$$

where $n>m$, then it satisfies an algebraic equation of the form

$$
P(z) w^{2}+\beta z^{2} w-z^{2}=0, \quad P(z)=1+\alpha_{1} z+\alpha_{2} z^{2}+\alpha_{3} z^{3}+\alpha_{4} z^{4}, \alpha_{4} \neq 0 .
$$

Proof. $w=f(z)$ satisfies an irreducible algebraic equation

$$
P(z) w^{2}+Q(z) w+R(z)=0
$$

where $P(z), Q(z)$ and $R(z)$ are polynomials of z. Dividing (3) by (4) we have

$$
w^{n-m} \frac{A_{1} w^{m-2}+\cdots+A_{m-1}}{C_{1} w^{n-2}+\cdots+C_{n-1}}=z^{n-m} \frac{\bar{B}_{m-1} z^{2 m-2}+\cdots+B_{m-1}}{\bar{D}_{n-1} z^{2 n-2}+\cdots+D_{n-1}} .
$$

Hence for the two branches w_{1}, w_{2} at $z=0$ we have

$$
\begin{aligned}
& w_{1}\left(1+\lambda_{1} w_{1}+\cdots\right)=z\left(1+\mu_{1} z+\cdots\right) \\
& w_{2}\left(1+\lambda_{1} w_{2}+\cdots\right)=-z\left(1+\mu_{1} z+\cdots\right) .
\end{aligned}
$$

Then

$$
\begin{aligned}
& w_{1}+w_{2}=-2 \lambda_{1} z^{2}+O\left(z^{3}\right), \\
& w_{1} w_{2}=-z^{2}+O\left(z^{3}\right) .
\end{aligned}
$$

Since to each value of w there correspond two values of z, P, Q, R have degree at most 4 and one has degree 4 . We may assume that $P(0)=1$. Comparing the coefficients Q, R with $w_{1}+w_{2}, w_{1} w_{2}$ we have that

$$
\begin{array}{ll}
Q(z)=\beta z^{2}+\beta^{\prime} z^{3}+\beta^{\prime \prime} z^{4}, & \beta=-2 \lambda_{1}, \\
R(z)=\gamma z^{2}+\gamma^{\prime} z^{3}+\gamma^{\prime \prime} z^{4}, & \gamma=-1 .
\end{array}
$$

Similar situation holds for $z=\infty, w=0$. Only differences appearing here are the conjugation for μ_{j} and the replacement of z by $t=z^{-1}$. Hence we have

$$
\beta^{\prime}=\beta^{\prime \prime}=\gamma^{\prime}=\gamma^{\prime \prime}=0 .
$$

Thus we have the desired result.
3. In this section we prove the following

ThEOREM 1. Let $F\left(a_{2}, \bar{a}_{2}, a_{3}, \bar{a}_{3}\right)$ and $\tilde{F}\left(a_{2}, \bar{a}_{2}, \cdots, a_{n}, \bar{a}_{n}\right)(n>3)$ be real-valued functions satisfying the conditions a), b), c) and d) $F_{3} \neq 0, \widetilde{F}_{n} \neq 0$. If $f(z)$ is an extremal function for the extremal problems

$$
\max _{S} F\left(a_{2}, \bar{a}_{2}, a_{3}, \bar{a}_{3}\right)
$$

and

$$
\max _{s} \tilde{F}\left(a_{2}, \bar{a}_{2}, \cdots, a_{n}, \bar{a}_{n}\right),
$$

then $f(z)$ is of the form

$$
f(z)=\frac{z}{\left(1-e^{i \alpha} z\right)\left(1-e^{i \beta} z\right)} .
$$

Proof. By the result of Schaeffer and Spencer, $w=f(z)$ satisfies differential equations of the form

$$
\begin{equation*}
\left(\frac{z}{w} \frac{d w}{d z}\right)^{2} \sum_{\nu=1}^{2} \frac{A_{\nu}}{w^{\nu}}=\sum_{\nu=-2}^{2} \frac{B_{\nu}}{z^{\nu}}, \quad A_{2}=B_{2} \neq 0, B_{-\nu}=\bar{B}_{\nu} \tag{5}
\end{equation*}
$$

and

$$
\left(\frac{z}{w} \frac{d w}{d z}\right)^{2} \sum_{\nu=1}^{n-1} \frac{C_{\nu}}{w^{\nu}}=\sum_{\nu=-n+1}^{n-1} \frac{D_{\nu}}{z^{\nu}}, \quad C_{n-1}=D_{n-1} \neq 0, D_{-\nu}=\bar{D}_{\nu}
$$

which have the properties (i) and (ii). Then as in the proof of Lemma XXXI in [6] we have that $f(z)$ is either a two-valued algebraic function or of the form

$$
f(z)=\frac{z}{\left(1-e^{2 \alpha} z\right)\left(1-e^{i \beta} z\right)} .
$$

We assume that $f(z)$ is a two-valued algebraic function. By Lemma, $w=f(z)$ satisfies an algebraic equation of the form

$$
\begin{equation*}
P(z) w^{2}+\beta z^{2} w-z^{2}=0, \quad P(z)=1+\alpha_{1} z+\alpha_{2} z^{2}+\alpha_{3} z^{3}+\alpha_{4} z^{4}, \alpha_{4} \neq 0 . \tag{6}
\end{equation*}
$$

Putting $\zeta=w^{-1}$ we can write this as

$$
\begin{equation*}
\zeta^{2}-\beta \zeta-z^{-2} P=0, \tag{7}
\end{equation*}
$$

and differentiating we have

$$
\frac{d \zeta}{d z}=\frac{P^{\prime} z-2 P}{z^{3}(2 \zeta-\beta)}
$$

Inserting this in (5) we have

$$
\frac{A_{1}+A_{2} \zeta}{\zeta(2 \zeta-\beta)^{2}}=\frac{z^{2} S}{\left(P^{\prime} z-2 P\right)^{2}}
$$

where $S=B_{2}+B_{1} z+B_{0} z^{2}+\bar{B}_{1} z^{3}+\bar{B}_{2} z^{4}$. Using (7) this reduces to the form

$$
\frac{A_{1}+A_{2} \zeta}{\left(\beta^{2} z^{2}+4 P\right) \zeta}=\frac{S}{\left(P^{\prime} z-2 P\right)^{2}} .
$$

Since $f(z)$ is not single-valued, we have

$$
\frac{A_{2}}{\beta^{2} z^{2}+4 P}=\frac{S}{\left(P^{\prime} z-2 P\right)^{2}} .
$$

Putting $T=\beta^{2} z^{2}+4 P$ we have

$$
A_{2}\left(T^{\prime} z-2 T\right)^{2}=16 S T
$$

This implies that all zeros of $\beta^{2} z^{2}+4 P$ are multiple, and hence that

$$
\beta^{2} z^{2}+4 P=4 \alpha_{4}(z-a)^{2}(z-b)^{2} .
$$

Hence we can write (6) as

$$
4 \alpha_{4}(z-a)^{2}(z-b)^{2} w^{2}=z^{2}(\beta w-2)^{2} .
$$

This contradicts that $f(z)$ is two-valued. Thus we have the desired result.
4. In the sequel we are concerned with the case $m=5$. Firstly we determine the two-valued algebraic functions of class S which are extremal functions for certain two extremal problems

$$
\max _{s} F\left(a_{2}, \bar{a}_{2}, \cdots, a_{5}, \bar{a}_{5}\right)
$$

and

$$
\max _{s} \widetilde{F}\left(a_{2}, \bar{a}_{2}, \cdots, a_{n}, \bar{a}_{n}\right) \quad(n>5)
$$

ThEOREM 2. Let $F\left(a_{2}, \bar{a}_{2}, \cdots, a_{5}, \bar{a}_{5}\right)$ and $\tilde{F}\left(a_{2}, \bar{a}_{2}, \cdots, a_{n}, \bar{a}_{n}\right)(n>5)$, be real-valued functions satisfying the conditions a), b), c) and d) $F_{5} \neq 0, \widetilde{F}_{n} \neq 0$. If $f(z)$ is a twovalued algebraic function which is an extremal function for the extremal problems

$$
\max _{s} F\left(a_{2}, \bar{a}_{2}, \cdots, a_{5}, \bar{a}_{5}\right)
$$

and

$$
\max _{s} \tilde{F}\left(a_{2}, \bar{a}_{2}, \cdots, a_{n}, \bar{a}_{n}\right),
$$

then it satisfies an algebraic equation of the form

$$
\begin{gather*}
\left\{1+e^{-i \theta} \alpha z+\left(a_{2}^{2}-2 a_{3}-e^{-i \theta} a_{2} \alpha\right) z^{2}-\bar{\alpha} z^{3}-e^{-i \theta} z^{4}\right\} w^{2}-\left(e^{-i \theta} \alpha+2 a_{2}\right) z^{2} w-z^{2}=0, \tag{8}\\
w=f(z)
\end{gather*}
$$

where a_{ν} is the ν-th coefficient of $f(z), \theta$ is a real number and α is a complex number.

Proof. By the result of Schaeffer and Spencer, $w=f(z)$ satisfies differential equations of the form

$$
\begin{equation*}
\left(\frac{z}{w}-\frac{d w}{d z}\right)^{2} \sum_{\nu=1}^{4} \frac{A_{\nu}}{w^{\nu}}=\sum_{\nu=-4}^{4} \frac{B_{\nu}}{z^{\nu}}, \quad A_{4}=B_{4} \neq 0, B_{-\nu}=\bar{B}_{\nu} \tag{9}
\end{equation*}
$$

and

$$
\left(\frac{z}{w} \frac{d w}{d z}\right)^{2} \sum_{\nu=1}^{n-1} \frac{C_{\nu}}{w^{\nu}}=\sum_{\nu=-n+1}^{n-1} \frac{D_{\nu}}{z^{\nu}}, \quad C_{n-1}=D_{n-1} \neq 0, D_{-\nu}=\bar{D}_{\nu}
$$

which have the properties (i) and (ii). Hence by Lemma $w=f(z)$ satisfies an algebraic equation of the form

$$
\begin{equation*}
\zeta^{2}-\beta \zeta-z^{-2} P=0, \quad P=1+\alpha_{1} z+\alpha_{2} z^{2}+\alpha_{3} z^{3}+\alpha_{4} z^{4}, \alpha_{4} \neq 0, \zeta=w^{-1} . \tag{10}
\end{equation*}
$$

Differentiating we have

$$
\begin{equation*}
\frac{d \zeta}{d z}=\frac{P^{\prime} z-2 P}{z^{3}(2 \zeta-\beta)} \tag{11}
\end{equation*}
$$

Inserting (11) in (9) we have

$$
\frac{A_{4} \zeta^{3}+A_{3} \zeta^{2}+A_{2} \zeta+A_{1}}{\zeta(2 \zeta-\beta)^{2}}=\frac{S}{\left(P^{\prime} z-2 P\right)^{2}}
$$

where $S=B_{4}+B_{3} z+B_{2} z^{2}+B_{1} z^{3}+B_{0} z^{4}+\bar{B}_{1} z^{5}+\bar{B}_{2} z^{6}+\bar{B}_{3} z^{7}+\bar{B}_{4} z^{8}$. Using (10) this reduces to the form

$$
\frac{L_{1} \zeta+L_{0}}{M_{1} \zeta}=\frac{S}{\left(P^{\prime} z-2 P\right)^{2}}
$$

where

$$
\begin{aligned}
& L_{1}=A_{2}+\beta A_{3}+\beta^{2} A_{4}+X A_{4}, \\
& L_{0}=A_{1}+X\left(A_{3}+\beta A_{4}\right), \\
& M_{1}=\beta^{2}+4 X, \\
& X=z^{-2} P(z) .
\end{aligned}
$$

Since $f(z)$ is not single-valued, we have

$$
\begin{equation*}
L_{0}=0 \tag{12}
\end{equation*}
$$

and

$$
\begin{equation*}
\frac{L_{1}}{M_{1}}=\frac{S}{\left(P^{\prime} z-2 P\right)^{2}} \tag{13}
\end{equation*}
$$

Since $P(z)$ is a polynomial of degree 4, (12) implies that $A_{1}=0$ and $\beta=-A_{3} A_{4}^{-1}$. Hence we can write (13) as

$$
\begin{equation*}
\frac{A_{4}^{3} P+A_{2} A_{4}^{2} z^{2}}{4 A_{4}^{2} P+A_{3}^{2} z^{2}}=\frac{S}{\left(P^{\prime} z-2 P\right)^{2}} . \tag{14}
\end{equation*}
$$

Suppose that there is no common zero of $A_{4}^{3} P+A_{2} A_{4}^{2} z^{2}$ and $4 A_{4}^{2} P+A_{3}^{2} z^{2}$. Then (14) reduces to the form

$$
\left(P^{\prime} z-2 P\right)^{2}=S^{*}\left(4 A_{4}^{2} P+A_{3}^{2} z^{2}\right)
$$

where S^{*} is a polynomial of degree 4. Putting $T=4 A_{4}^{2} P+A_{3}^{2} z^{2}$ we have

$$
\left(T^{\prime} z-2 T\right)^{2}=16 A_{4}^{4} S^{*} T
$$

This implies that all zeros of $4 A_{4}^{2} P+A_{3}^{2} z^{2}$ are multiple, whence we have

$$
4 A_{4}^{2} P+A_{3}^{2} z^{2}=4 A_{4}^{2} \alpha_{4}(z-a)^{2}(z-b)^{2} .
$$

Hence we can write (10) as

$$
4 \alpha_{4}(z-a)^{2}(z-b)^{2} w^{2}=z^{2}(\beta w-2)^{2}
$$

This contradicts that $f(z)$ is two-valued.
Let z_{0} be a common zero of $A_{4}^{3} P+A_{2} A_{4}^{2} z^{2}$ and $4 A_{4}^{2} P+A_{3}^{2} z^{2}$. Then we have

$$
\left(4 A_{2} A_{4}-A_{3}^{2}\right) z_{0}^{2}=0
$$

Since $P(0) \neq 0$, we have the relation

$$
\begin{equation*}
4 A_{2} A_{4}=A_{3}^{2} \tag{15}
\end{equation*}
$$

Hence (14) reduces to the form

$$
4 S=A_{4}\left(P^{\prime} z-2 P\right)^{2}
$$

We may assume that $A_{4}=B_{4}=e^{i \theta}$. By this equation we have the relation

$$
\begin{align*}
& B_{3}=\bar{B}_{1} e^{i \theta}, \\
& 4 B_{2}=B_{3}^{2} e^{-i \theta} \tag{16}\\
& 2 B_{0}=\left|B_{3}\right|^{2}+4
\end{align*}
$$

Using the relations (15) and (16) we can write (9) as

$$
\left(\frac{z}{w} \frac{d w}{d z}\right)^{2}\left(\frac{1}{w^{2}}+\frac{e^{-i \theta} A_{3}}{2 w}\right)^{2}=\left(\frac{1}{z^{2}}+\frac{e^{-i \theta} B_{3}}{2 z}+\frac{\bar{B}_{3}}{2} z+e^{-i \theta} z^{2}\right)^{2} .
$$

We integrate and find

$$
\left\{1+e^{-i \theta} B_{3} z+\left(3 a_{2}^{2}-2 a_{3}-e^{-i \theta} a_{2} A_{3}\right) z^{2}-\bar{B}_{3} z^{3}-e^{-i \theta} z^{4}\right\} w^{2}-e^{-i \theta} A_{3} z^{2} w-z^{2}=0
$$

where a_{ν} is the ν-th coefficient of $f(z)$. Since $A_{3}=B_{3}+2 e^{i \theta} a_{2}$, we have the desired result by putting $B_{3}=\alpha$.

Remark. Suppose that the polynomial

$$
P(w, z)=\left\{1+e^{-i \theta} \alpha z+\left(a_{2}^{2}-2 a_{3}-e^{-i \theta} a_{2} \alpha\right) z^{2}-\bar{\alpha} z^{3}-e^{-i \theta} z^{4}\right\} w^{2}-\left(e^{-i \theta} \alpha+2 a_{2}\right) z^{2} w-z^{2}
$$

is reducible. We may assume that $P(w, z)$ has the factorization

$$
P(w, z)=\{p(z) w+z\}\left\{\left(p(z)-\left(e^{-i \theta} \alpha+2 a_{2}\right) z\right) w-z\right\}, p(z)=\lambda z^{2}+\mu z+\nu .
$$

Then we have the relations

$$
\begin{aligned}
& \lambda^{2}=-e^{-i \theta}, \quad \nu^{2}=1, \\
& 2 \lambda \mu-\lambda\left(e^{-i \theta} \alpha+2 a_{2}\right)=-\bar{\alpha}, \\
& 2 \mu \nu-\nu\left(e^{-i \theta} \alpha+2 a_{2}\right)=e^{-i \theta} \alpha, \\
& \mu^{2}+2 \lambda \nu-\mu\left(e^{-i \theta} \alpha+2 a_{2}\right)=a_{2}^{2}-2 a_{3}-e^{-i \theta} a_{2} \alpha .
\end{aligned}
$$

Hence there are two cases
i) $\alpha=i e^{i 33 / 2} \bar{\alpha}$,

$$
P(w, z)=\left\{\left(1-a_{2} z+i e^{-i \theta / 2} z^{2}\right) w-z\right\}\left\{\left(1+\left(e^{-i \theta} \alpha+a_{2}\right) z+i e^{-i \theta / 2} z^{2}\right) w+z\right\},
$$

ii) $\alpha=-i e^{i 33 / 2} \bar{\alpha}$,

$$
P(w, z)=\left\{\left(1-a_{2} z-i e^{-i \theta / 2} z^{2}\right) w-z\right\}\left\{\left(1+\left(e^{-i \theta} \alpha+a_{2}\right) z-i e^{-i \theta / 2} z^{2}\right) w+z\right\} .
$$

However in these cases there are two-valued algebraic functions of S satisfying (8). For instance in the case $\alpha=0, e^{-i \theta}=-1$ the two-valued algebraic function $w=z\left\{1-(\varepsilon+\tilde{\varepsilon}) z^{2}+z^{4}\right\}^{-1 / 2},|\varepsilon|=1$, satisfies (8).
5. Next we construct an extremal problem concerning the first four coefficients a_{2}, \cdots, a_{5} for which the algebraic functions of class S satisfying (8) are extremal.

Let $w=f(z)$ be an algebraic function of class S satisfying (8). Then it satisfies the differential equation

$$
\begin{aligned}
& \left(\frac{z}{w} \frac{d w}{d z}\right)^{2}\left\{\frac{e^{i \theta}}{w^{4}}+\frac{\alpha+2 e^{i \theta} a_{2}}{w^{3}}+\frac{e^{-i \theta}\left(\alpha+2 e^{i \theta} a_{2}\right)^{2}}{4 w^{2}}\right\} \\
= & \frac{e^{i \theta}}{z^{4}}+\frac{\alpha}{z^{3}}+\frac{e^{-i \theta} \alpha^{2}}{4 z^{2}}+\frac{e^{i \theta} \bar{\alpha}}{z}+\frac{|\alpha|^{2}}{2}+2+e^{-i \theta} \alpha z+\frac{e^{i \theta} \bar{\alpha}^{2}}{4} z^{2} \\
& +\bar{\alpha} z^{3}+e^{-i \theta} z^{4} .
\end{aligned}
$$

Now we put in the relation (2)

$$
A_{1}=0, A_{2}=4^{-1} e^{-i \theta} \alpha^{2}+a_{2} \alpha+e^{i \theta} a_{2}^{2}, A_{3}=\alpha+2 e^{i \theta} a_{2}, A_{4}=e^{i \theta} .
$$

Then we have by eliminating $F_{\nu}(\nu=2,3,4,5)$

$$
\begin{aligned}
B_{0}= & e^{i \theta}\left(4 a_{5}-8 a_{2} a_{4}+16 a_{2}^{2} a_{3}-6 a_{2}^{4}-6 a_{3}^{2}\right)+\left(3 a_{4}-6 a_{2} a_{3}+3 a_{2}^{3}\right) \alpha \\
& +e^{-i \theta}\left(\frac{1}{2} a_{3}-\frac{1}{2} a_{2}^{2}\right) \alpha^{2} .
\end{aligned}
$$

We shall show that

$$
\begin{aligned}
& \max _{S} F \\
& F=\Re\left\{e^{i \theta}\left(4 a_{5}-8 a_{2} a_{4}+16 a_{2}^{2} a_{3}-6 a_{2}^{4}-6 a_{3}^{2}\right)+\frac{4}{3}\left(3 a_{4}-6 a_{2} a_{3}+3 a_{2}^{3}\right) \alpha\right. \\
&+2 e^{-i \theta}\left(\frac{1}{2} a_{3}-\frac{1}{2} a_{2}^{2}\right) \alpha^{2}
\end{aligned}
$$

is a desired extremal problem.
Theorem 3. In S

$$
\begin{aligned}
& \Re\left\{e^{i \theta}\left(a_{5}-2 a_{2} a_{4}+4 a_{2}^{2} a_{3}-\frac{3}{2} a_{2}^{4}-\frac{3}{2} a_{3}^{2}\right)+\left(a_{4}-2 a_{2} a_{3}+a_{2}^{3}\right) \alpha+e^{-i \theta}\left(\frac{1}{4} a_{3}-\frac{1}{4} a_{2}^{2}\right) \alpha^{2}\right\} \\
\leqq & \frac{1}{2}+\frac{1}{4}|\alpha|^{2} .
\end{aligned}
$$

Equality occurs only for the algebraic functions of class S satisfying

$$
\left\{1+e^{-i \theta} \alpha z+\left(a_{2}^{2}-2 a_{3}-e^{-i \theta} a_{2} \alpha\right) z^{2}-\bar{\alpha} z^{3}-e^{-i \theta} z^{4}\right\} w^{2}-\left(e^{-i \theta} \alpha+2 a_{2}\right) z^{2} w-z^{2}=0 .
$$

Proof. By the result of Schaeffer and Spencer, every extremal function $w=f(z)$ satisfies the differential equation

$$
\begin{equation*}
\left(\frac{z}{w} \frac{d w}{d z}\right)^{2} \sum_{\nu=1}^{4} \frac{A_{\nu}}{w^{\nu}}=\sum_{\nu=-4}^{4} \frac{B_{\nu}}{z^{\nu}}, \tag{17}
\end{equation*}
$$

where

$$
\begin{aligned}
& A_{1}=0, A_{2}=4^{-1} e^{-i \theta} \alpha^{2}+a_{2} \alpha+e^{i \theta} a_{2}^{2}, A_{3}=\alpha+2 e^{i \theta} a_{2}, A_{4}=e^{i \theta}, \\
& B_{1}=e^{i \theta}\left(2 a_{4}-4 a_{2} a_{3}+2 a_{2}^{3}\right)+\left(a_{3}-a_{2}^{2}\right) \alpha, B_{2}=4^{-1} e^{-i \theta} \alpha^{2}, B_{3}=\alpha, B_{4}=e^{i \theta}, \\
& B_{0}=e^{i \theta}\left(4 a_{5}-8 a_{2} a_{4}+16 a_{2}^{2} a_{3}-6 a_{2}^{4}-6 a_{3}^{2}\right)+\left(3 a_{4}-6 a_{2} a_{3}+3 a_{2}^{3}\right) \alpha+\frac{1}{2} e^{-i \theta}\left(a_{3}-a_{2}^{2}\right) \alpha^{2} .
\end{aligned}
$$

Since $4 A_{2} A_{4}=A_{3}^{2}$, we can write (17) as

$$
\left(\frac{z}{w} \frac{d w}{d z}\right)^{2}\left\{\frac{1}{w^{2}}+\frac{e^{-i \theta}\left(\alpha+2 e^{i \theta} a_{2}\right)}{2 w}\right\}^{2}=\left(\frac{1}{z^{2}}+\frac{e^{-i \theta} \alpha}{2 z}+\frac{\bar{\alpha}}{2} z+e^{-i \theta} z^{2}\right)^{2} .
$$

We integrate and find

$$
\left\{1+e^{-i \theta} \alpha z+\left(a_{2}^{2}-2 a_{3}-e^{-i \theta} a_{2} \alpha\right) z^{2}-\bar{\alpha} z^{3}-e^{-i \theta} z^{4}\right\} w^{2}-\left(e^{-i \theta} \alpha+2 a_{2}\right) z^{2} w-z^{2}=0
$$

Hence the coefficients of $f(z)$ satisfy the relations

$$
2 a_{4}-4 a_{2} a_{3}+2 a_{2}^{3}-e^{-i \theta}\left(a_{2}^{2}-a_{3}\right) \alpha-\bar{\alpha}=0
$$

and

$$
2 a_{5}-4 a_{2} a_{4}+8 a_{2}^{2} a_{3}-3 a_{2}^{4}-3 a_{3}^{2}-e^{-i \theta}+e^{-i \theta}\left(a_{2}^{3}-2 a_{2} a_{3}+a_{4}\right) \alpha=0 .
$$

Therefore we have

$$
\begin{aligned}
& \mathfrak{R}\left\{e^{i \theta}\left(a_{5}-2 a_{2} a_{4}+4 a_{2}^{2} a_{3}-\frac{3}{2} a_{2}^{4}-\frac{3}{2} a_{3}^{2}\right)+\left(a_{4}-2 a_{2} a_{3}+a_{2}^{3}\right) \alpha+e^{-i \theta}\left(\frac{1}{4} a_{3}-\frac{1}{4} a_{2}^{2}\right) \alpha^{2}\right\} \\
= & \frac{1}{2}+\frac{1}{4}|\alpha|^{2} .
\end{aligned}
$$

Thus we have the desired result.
6. Now we show that for some $n(n>5)$ there is an extremal problem concerning the first $n-1$ coefficients a_{2}, \cdots, a_{n} for which the algebraic functions of class S satisfying (8) are extremal.

Let Σ denote the class of functions $g(z)$ univalent in $|z|>1$, regular apart from a simple pole at the point at infinity and having expansion at that point

$$
g(z)=z+b_{0}+\sum_{n=1}^{\infty} \frac{b_{n}}{z^{n}}
$$

Let $G_{\mu}(w)$ be the μ-th Faber polynomial which is defined by

$$
G_{\mu}(g(z))=z^{\mu}+\sum_{\nu=1}^{\infty} \frac{\beta_{\mu \nu}}{z^{\nu}} .
$$

Then Grunsky's inequality [1] has the form

$$
\left|\sum_{\mu \nu \nu=1}^{N} \nu \beta_{\mu \nu} x_{\mu} x_{\nu}\right| \leqq \sum_{\nu=1}^{N} \nu\left|x_{\nu}\right|^{2} .
$$

Let $f(z)$ be a function of class S and put

$$
f\left(z^{-1}\right)^{-1}=z+b_{0}+\sum_{n=1}^{\infty} \frac{b_{n}}{z^{n}} \quad(|z|>1)
$$

Applying Grunsky's inequality with $N=8, x_{1}=x_{3}=x_{6}=x_{7}=0$ to the function $g(z)$ $=f\left(z^{-2}\right)^{-1 / 2}$, we have

$$
\left|G\left(x_{2}, x_{4}, x_{6}, x_{8} ; b_{1}, b_{2}, \cdots, b_{7}\right)\right| \leqq\left|x_{2}\right|^{2}+2\left|x_{4}\right|^{2}+3\left|x_{6}\right|^{2}+4\left|x_{8}\right|^{2}
$$

where

$$
\begin{aligned}
& G\left(x_{2}, x_{4}, x_{6}, x_{8} ; b_{1}, b_{2}, \cdots, b_{7}\right) \\
= & x_{2}^{2} b_{1}+4 x_{2} x_{4} b_{2}+6 x_{2} x_{6} b_{3}+8 x_{2} x_{8} b_{4} \\
& +2 x_{4}^{2}\left(2 b_{3}+b_{1}^{2}\right)+12 x_{4} x_{6}\left(b_{4}+b_{1} b_{2}\right)+8 x_{4} x_{8}\left(2 b_{5}+2 b_{1} b_{3}+b_{2}^{2}\right) \\
& +3 x_{6}^{2}\left(3 b_{5}+3 b_{1} b_{3}+3 b_{2}^{2}+b_{1}^{3}\right)+24 x_{6} x_{8}\left(b_{6}+b_{1} b_{4}+2 b_{2} b_{3}+b_{1}^{2} b_{2}\right) \\
& +4 x_{8}^{2}\left(4 b_{7}+4 b_{1} b_{5}+8 b_{2} b_{4}+6 b_{3}^{2}+4 b_{1}^{2} b_{3}+8 b_{1} b_{2}^{2}+b_{1}^{4}\right) .
\end{aligned}
$$

We seek for the values $x_{2}, x_{4}, x_{6}, x_{8}$ such that $G\left(x_{2}, x_{4}, x_{6}, x_{8} ; b_{1}, b_{2}, \cdots, b_{7}\right)$ attains the value $\left|x_{2}\right|^{2}+2\left|x_{4}\right|^{2}+3\left|x_{6}\right|^{2}+4\left|x_{8}\right|^{2}$ at the algebraic functions satisfying (8). The coefficients of the algebraic functions satisfying (8) satisfy the relations

$$
\begin{align*}
& 2 b_{2}+e^{-i \theta} b_{1} \alpha+\bar{\alpha}=0, \\
& 2 b_{3}+b_{1}^{2}+e^{-i \theta} b_{2} \alpha+e^{-i \theta}=0, \\
& 2 b_{4}+2 b_{1} b_{2}+e^{-i \theta} b_{3} \alpha=0, \tag{18}\\
& 2 b_{5}+2 b_{1} b_{3}+b_{2}^{2}+e^{-i \theta} b_{4} \alpha=0, \\
& 2 b_{6}+2 b_{1} b_{4}+2 b_{2} b_{8}+e^{-i \theta} b_{5} \alpha=0
\end{align*}
$$

and

$$
2 b_{7}+2 b_{1} b_{5}+2 b_{2} b_{4}+b_{3}^{2}+e^{-i \theta} b_{6} \alpha=0
$$

Using these relations, we can find that $x_{2}=-2 e^{i \theta} \bar{\alpha}, x_{4}=e^{-i \theta} \alpha^{2}, x_{6}=2 \alpha$ and $x_{8}=e^{i \theta}$ are desired numbers, namely

$$
\begin{aligned}
& G\left(-2 e^{i \theta} \bar{\alpha}, e^{-i \theta} \alpha^{2}, 2 \alpha, e^{i \theta} ; b_{1}, b_{2}, \cdots, b_{7}\right) \\
= & \left|-2 e^{i \theta} \bar{\alpha}\right|^{2}+2\left|e^{-i \theta} \alpha^{2}\right|^{2}+3|2 \alpha|^{2}+4\left|e^{i \theta}\right|^{2}
\end{aligned}
$$

at the algebraic functions satisfying (8). Thus we have the inequality

$$
\begin{aligned}
& \Re\left\{e^{i 2 \theta}\left(16 b_{7}+16 b_{1} b_{5}+32 b_{2} b_{4}+24 b_{3}^{2}+16 b_{1}^{2} b_{3}+32 b_{1} b_{2}^{2}+4 b_{1}^{4}\right)\right. \\
& \quad+e^{i \theta}\left(48 b_{6}+48 b_{1} b_{4}+96 b_{2} b_{3}+48 b_{1}^{2} b_{2}\right) \alpha \\
& \quad+\left(52 b_{5}+52 b_{1} b_{3}+44 b_{2}^{2}+12 b_{1}^{3}\right) \alpha^{2}+e^{-i \theta}\left(24 b_{4}+24 b_{1} b_{2}\right) \alpha^{3} \\
& \left.\quad+e^{-i 2 \theta}\left(4 b_{3}+2 b_{1}^{2}\right) \alpha^{4}-16 e^{i 2 \theta} b_{4} \bar{\alpha}+4 e^{i 2 \theta} b_{1} \bar{\alpha}^{2}-24 e^{i \theta} b_{3}|\alpha|^{2}-8 b_{2} \alpha|\alpha|^{2}\right\} \\
& \leqq 4+16|\alpha|^{2}+2|\alpha|^{4}
\end{aligned}
$$

in S. Equality occurs for the algebraic functions satisfying (8). Rewriting with the coefficients of $f(z)$ we have the following

Theorem 4. In S

$$
\begin{aligned}
\mathfrak{R}\left\{e^{i 2 \theta}(\right. & -a_{9}+2 a_{2} a_{8}-4 a_{2}^{2} a_{7}+8 a_{2}^{3} a_{6}-16 a_{2}^{4} a_{5}+30 a_{2}^{5} a_{4}-50 a_{2}^{5} a_{3}+\frac{35}{4} a_{2}^{8} \\
& \quad-12 a_{2} a_{3} a_{6}-16 a_{2} a_{4} a_{5}+48 a_{2} a_{3}^{2} a_{4}+36 a_{2}^{2} a_{3} a_{5}+21 a_{2}^{2} a_{4}^{2} \\
& \quad-52 a_{2}^{2} a_{3}^{3}-88 a_{2}^{3} a_{3} a_{4}+87 a_{2}^{4} a_{3}^{2}-10 a_{8} a_{4}^{2}+3 a_{3} a_{7}-9 a_{3}^{2} a_{5} \\
& \left.+\frac{19}{4} a_{3}^{4}+4 a_{4} a_{6}+\frac{5}{2} a_{5}^{2}\right) \\
+ & e^{i \theta \theta}\left(-3 a_{8}+6 a_{2} a_{7}-12 a_{2}^{2} a_{6}+24 a_{2}^{3} a_{5}-45 a_{2}^{4} a_{4}+75 a_{2}^{5} a_{3}-15 a_{2}^{7}-36 a_{2} a_{3} a_{5}\right. \\
& \left.\quad-21 a_{2} a_{4}^{2}+39 a_{2} a_{3}^{3}+99 a_{2}^{2} a_{3} a_{4}-108 a_{2}^{3} a_{3}^{2}+9 a_{3} a_{6}-24 a_{3}^{2} a_{4}+12 a_{4} a_{5}\right) \alpha \\
+ & \left(-\frac{13}{4} a_{7}+\frac{13}{2} a_{2} a_{6}-13 a_{2}^{2} a_{5}+25 a_{2}^{3} a_{4}-\frac{85}{2} a_{2}^{4} a_{3}+10 a_{2}^{6}-37 a_{2} a_{3} a_{4}\right. \\
& \left.+\frac{183}{4} a_{2}^{2} a_{3}^{2}+\frac{39}{4} a_{3} a_{5}-\frac{29}{4} a_{3}^{3}+6 a_{4}^{2}\right) \alpha^{2} \\
+ & e^{-i 2 \theta}\left(-\frac{3}{2} a_{6}+3 a_{2} a_{5}-6 a_{2}^{2} a_{4}+\frac{21}{2} a_{2}^{3} a_{3}-3 a_{2}^{5}-\frac{15}{2} a_{2} a_{3}^{2}+\frac{9}{2} a_{3} a_{4}-a_{2}^{2} a_{3}+\frac{3}{8} a_{2}^{4}+\frac{3}{8} a_{3}^{2}\right) \alpha^{4} \\
+ & e^{i 2 \theta}\left(a_{6}-2 a_{2} a_{5}+3 a_{2}^{2} a_{4}-4 a_{2}^{3} a_{3}+a_{2}^{5}-2 a_{3} a_{4}+3 a_{2} a_{3}^{2}\right) \bar{\alpha} \\
+ & e^{i 2 \theta}\left(-\frac{1}{4} a_{3}+\frac{1}{4} a_{2}^{2}\right) \bar{\alpha}^{2}
\end{aligned}
$$

$$
\begin{aligned}
& +e^{i \theta}\left(\frac{3}{2} a_{5}-3 a_{2} a_{4}+\frac{9}{2} a_{2}^{2} a_{3}-\frac{3}{2} a_{2}^{4}-\frac{3}{2} a_{3}^{2}\right)|\alpha|^{2} \\
& \left.+\left(\frac{1}{2} a_{4}-a_{2} a_{3}+\frac{1}{2} a_{2}^{3}\right) \alpha|\alpha|^{2}\right\} \\
& \leqq
\end{aligned}
$$

Equality occurs for the algebraic functions satisfying

$$
\left\{1+e^{-i \theta} \alpha z+\left(a_{2}^{2}-2 a_{3}-e^{-i \theta} a_{2} \alpha\right) z^{2}-\bar{\alpha} z^{3}-e^{-i \theta} z^{4}\right\} w^{2}-\left(e^{-i \theta} \alpha+2 a_{2}\right) z^{2} w-z^{2}=0 .
$$

7. Finally we consider the case $m=5, n=7$. Let $w=f(z)$ be a two-valued algebraic function of class S satisfying an algebraic equation of the form

$$
\begin{align*}
& \quad P(z) w^{2}+\beta z^{2} w-z^{2}=0, \\
& P(z)=1+e^{-i \theta} \alpha z+\left(a_{2}^{2}-2 a_{3}-e^{-i \theta} a_{2} \alpha\right) z^{2}-\bar{\alpha} z^{3}-e^{-i \theta} z^{4}, \tag{19}\\
& \beta=-e^{-i \theta} \alpha-2 a_{2} .
\end{align*}
$$

Further let $w=f(z)$ satisfy a differential equation of the form

$$
\begin{equation*}
\left(\frac{z}{w} \frac{d w}{d z}\right)^{2} \sum_{\nu=1}^{6} \frac{C_{\nu}}{z^{\nu}}=\sum_{\nu=-6}^{6} \frac{D_{\nu}}{z^{\nu}}, \quad C_{6}=D_{6} \neq 0, D_{-\nu}=\bar{D}_{\nu} \tag{20}
\end{equation*}
$$

which has the properties (i) and (ii). Then as in the proof of Theorem 2 we have

$$
\frac{L_{1} \zeta+L_{0}}{M_{1} \zeta}=\frac{S}{z^{2}\left(P^{\prime} z-2 P\right)^{2}}, \quad \zeta^{-1}=f(z)
$$

where

$$
\begin{aligned}
& L_{1}=C_{2}+\beta C_{3}+\beta^{2} C_{4}+\beta^{3} C_{5}+\beta^{4} C_{6}+\left(C_{4}+2 \beta C_{5}+3 \beta^{2} C_{6}\right) X+C_{6} X^{2}, \\
& L_{0}=C_{1}+\left(C_{3}+\beta C_{4}+\beta^{2} C_{5}+\beta^{3} C_{6}\right) X+\left(C_{5}+2 \beta C_{6}\right) X^{2}, \\
& M_{1}=\beta^{2}+4 X, \\
& X=z^{-2} P(z), \\
& S=D_{6}+D_{5} z+\cdots+D_{0} z^{6}+\cdots+\bar{D}_{5} z^{11}+\bar{D}_{6} z^{12} .
\end{aligned}
$$

Since $f(z)$ is two-valued, we have

$$
\begin{equation*}
L_{0}=0 \tag{21}
\end{equation*}
$$

and

$$
\begin{equation*}
\frac{L_{1}}{M_{1}}=\frac{S}{z^{2}\left(P^{\prime} z-2 P\right)^{2}} \tag{22}
\end{equation*}
$$

By (21) we have

$$
\begin{align*}
& C_{5}+2 \beta C_{6}=0, \\
& C_{3}+\beta C_{4}+\beta^{2} C_{5}+\beta^{3} C_{6}=0, \tag{23}\\
& C_{1}=0,
\end{align*}
$$

whence we can write (22) as

$$
\begin{equation*}
\frac{4 C_{6}^{3} P^{2}+\left(4 C_{4} C_{6}^{2}-C_{5}^{2} C_{6}\right) z^{2} P+4 C_{2} C_{6}^{2} z^{4}}{16 C_{6}^{2} P+C_{5}^{2} z^{2}}=\frac{S}{\left(P^{\prime} z-2 P\right)^{2}} \tag{24}
\end{equation*}
$$

Suppose that the numerator and the denominator of the left hand side of (24) have no common zero. Then (24) reduces to the form

$$
\left(P^{\prime} z-2 P\right)^{2}=S^{*}\left(16 C_{6}^{2} P+C_{5}^{2} z^{2}\right)
$$

where S^{*} is a polynomial of degree 4. Putting $T=16 C_{6}^{2} P+C_{5}^{2} z^{2}$ we have

$$
\left(T^{\prime} z-2 T\right)^{2}=256 C_{6}^{4} S^{*} T
$$

This implies that all zeros of $16 C_{6}^{2} P+C_{5}^{2} z^{2}$ are multiple. Hence we can write (19) as

$$
-4 e^{-i \theta}(z-a)^{2}(z-b)^{2} w^{2}=z^{2}(\beta w-2)^{2} .
$$

This is a contradiction. Let z_{0} be a common zero of the numerator and the denominator of the left hand side of (24). Then we have

$$
\left(256 C_{2} C_{6}^{3}-16 C_{4} C_{5}^{2} C_{6}+5 C_{5}^{4}\right) z_{0}^{2}=0 .
$$

Since $P(0) \neq 0$, we have $z_{0} \neq 0$, whence

$$
\begin{equation*}
256 C_{2} C_{6}^{3}-16 C_{4} C_{5}^{2} C_{6}+5 C_{5}^{4}=0 \tag{25}
\end{equation*}
$$

Hence (24) reduces to the form

$$
64 C_{6} S=\left\{16 C_{6}^{2} P+\left(16 C_{4} C_{6}-5 C_{5}^{2}\right) z^{2}\right\}\left(P^{\prime} z-2 P\right)^{2}
$$

By this equation and the relations (23), (25) we obtain the following relations by putting $C_{6}=e^{i \varphi}$ and $D_{4}=\gamma$

$$
\begin{aligned}
& C_{6}= e^{i \varphi}, C_{5}=4 e^{i \varphi} a_{2}+2 e^{i(\varphi-\theta)} \alpha, C_{4}=e^{i \varphi}\left(4 a_{2}^{2}+2 a_{3}\right)+6 e^{i(\varphi-\theta)} a_{2} \alpha+\gamma, \\
& C_{3}= 4 e^{i \varphi} a_{2} a_{3}+e^{i(\varphi-\theta)}\left(4 a_{2}^{2}+2 a_{3}\right) \alpha-e^{i(\varphi-3 \theta)} \alpha^{3}+2 a_{2 \gamma}+e^{-i \theta} \alpha \gamma, \\
& C_{2}= e^{i \varphi}\left(2 a_{2}^{2} a_{3}-a_{2}^{4}\right)+2 e^{i(\varphi-\theta)} a_{2} a_{3} \alpha+e^{i(\varphi-2 \theta)}\left(\frac{1}{2} a_{3}-\frac{1}{2} a_{2}^{2}\right) \alpha^{2} \\
&-e^{i(\varphi-3 \theta)} a_{2} \alpha^{3}-\frac{5}{16} e^{i(\varphi-4 \theta)} \alpha^{4}+a_{2 \gamma}^{2}+e^{-i \theta} a_{2} \alpha \gamma+\frac{1}{4} e^{-i 2 \theta} \alpha^{2} \gamma, \\
& C_{1}=0
\end{aligned}
$$

and

$$
\begin{align*}
& D_{6}=e^{i \varphi}, D_{5}=2 e^{i(\varphi-\theta)} \alpha, D_{4}=\gamma, D_{3}=e^{-i \varphi} \alpha^{3}+e^{-i \theta} \alpha \gamma, \\
& D_{2}=e^{i(\varphi-\theta)}+\frac{1}{2} e^{i(\varphi-\theta)}|\alpha|^{2}+\frac{5}{16} e^{-i(\varphi+\theta)} \alpha^{4}+\frac{1}{4} e^{-i 2 \theta} \alpha^{2} \gamma, \tag{26}\\
& D_{1}=-2 e^{-i(\varphi-\theta)} \alpha+e^{-i(\varphi-\theta)} \alpha|\alpha|^{2}+\bar{\alpha} \gamma, \\
& D_{0}=\left(\frac{1}{2}|\alpha|^{2}+2\right)\left(e^{-i \theta} \gamma+\frac{5}{4} e^{-i \varphi} \alpha^{2}\right)-\frac{3}{4}\left(e^{-i \varphi} \alpha^{2}+e^{i \varphi} \bar{\alpha}^{2}\right), \\
& e^{i\left(2^{\varphi}-3 \theta\right)}=-1 .
\end{align*}
$$

Since the differential equation (20) has the properties (i) and (ii), γ must satisfy the conditions
(I) $D_{0}>0$,
(II) $\quad D_{0}+2 \sum_{\nu=1}^{6}\left|D_{\nu}\right| \cos \left(\nu t-\Phi_{\nu}\right) \geqq 0 \quad(0 \leqq t \leqq 2 \pi), \quad D_{\nu}=\left|D_{\nu}\right| e^{i \iota_{\nu}}$.

On the other hand as in $\S 5$ we can construct an extremal problem whose every extremal function satisfies a differential equation of the form

$$
\left(\frac{z}{w} \frac{d w}{d z}\right)^{2} \sum_{\nu=1}^{6} \frac{\tilde{A}_{\nu}}{w^{\nu}}=\sum_{\nu=-6}^{6} \frac{\tilde{B}_{\nu}}{z^{\nu}},
$$

where

$$
\tilde{A}_{\nu}=C_{\nu}, \tilde{B}_{-\nu}=\overline{\widetilde{B}}_{\nu}, \quad \nu=1,2, \cdots, 6 .
$$

In fact we put $A_{\nu}=C_{\nu}(\nu=1,2, \cdots, 6)$ in the relation (2). Then we have by eliminating $F_{\nu}(\nu=2, \cdots, 7)$

$$
\begin{aligned}
B_{0}= & e^{i \varphi} X_{0}+e^{i(\varphi-\theta)} X_{1} \alpha+e^{i(\varphi-2 \theta)} X_{2} \alpha^{2}+e^{i(\varphi-3 \theta)} X_{3} \alpha^{3}+e^{i(\varphi-4 \theta)} X_{4} \alpha^{4} \\
& +X_{5} \gamma+e^{-i \theta} X_{6} \alpha \gamma+e^{-i 2 \theta} X_{7} \alpha^{2} \gamma, \\
X_{0}= & 6 a_{7}-12 a_{2} a_{6}+24 a_{2}^{2} a_{5}-48 a_{2}^{3} a_{4}+78 a_{2}^{4} a_{3}-18 a_{2}^{6}-84 a_{2}^{2} a_{3}^{2}+72 a_{2} a_{3} a_{4} \\
& -18 a_{3} a_{5}-12 a_{4}^{2}+12 a_{3}^{3}, \\
X_{1}= & 10 a_{6}-20 a_{2} a_{5}+40 a_{2}^{2} a_{4}-70 a_{2}^{3} a_{3}+20 a_{2}^{5}+50 a_{2} a_{3}^{2}-30 a_{3} a_{4}, \\
X_{2}= & a_{3}^{2}-2 a_{2}^{2} a_{3}+a_{2}^{4}, \quad X_{3}=-3 a_{4}+6 a_{2} a_{3}-3 a_{2}^{3}, \quad X_{4}=\frac{5}{8} a_{2}^{2}-\frac{5}{8} a_{3}, \\
X_{5}= & 4 a_{5}-8 a_{2} a_{4}+16 a_{2}^{2} a_{3}-6 a_{2}^{4}-6 a_{3}^{2}, \quad X_{6}=3 a_{4}-6 a_{2} a_{3}+3 a_{2}^{3}, \\
X_{7}= & \frac{1}{2} a_{3}-\frac{1}{2} a_{2}^{2} .
\end{aligned}
$$

We put

$$
\begin{aligned}
& \mathscr{F}= \mathfrak{R} \\
& \frac{1}{3}\left\{e^{i \varphi} X_{0}+\frac{6}{5} e^{i(\varphi-\theta)} X_{1} \alpha+\frac{3}{2} e^{i(\varphi-2 \theta)} X_{2} \alpha^{2}+2 e^{i(\varphi-3 \theta)} X_{3} \alpha^{3}\right. \\
&\left.+3 e^{i(\varphi-4 \theta)} X_{4} \alpha^{4}+\frac{3}{2} X_{5} \gamma+2 e^{-i \theta} X_{6} \alpha \gamma+3 e^{-i 2 \theta} X_{7} \alpha^{2} \gamma\right\}
\end{aligned}
$$

Then we can verify that max \mathscr{F} is a desired extremal problem. We can not decide whether the algebraic functions of class S satisfying (8) are extremal for this problem in S or not. However by using the general coefficient theorem [4] we can prove that the algebraic functions of class S satisfying (8) are extremal for this problem in a certain subclass of S.

In the sequel we denote by

$$
f^{*}(z)=z+\sum_{n=2}^{\infty} a_{n}^{*} z^{n}
$$

the functions of class S satisfying (8) and denote by

$$
g^{*}(z)=z+b_{0}^{*}+\sum_{n=1}^{\infty} \frac{b_{n}^{*}}{z^{n}}
$$

the functions of class Σ satisfying

$$
\begin{equation*}
z^{2} w^{2}+\left(e^{-i \theta} \alpha-2 b_{0}^{*}\right) z^{2} w+\left\{e^{-i \theta}+\bar{\alpha} z-\left(2 b_{1}^{*}-b_{0}^{* 2}+e^{-i \theta} b_{0}^{*} \alpha\right) z^{2}-e^{-i \theta} \alpha z^{3}-z^{4}\right\}=0 . \tag{27}
\end{equation*}
$$

Let $S(\alpha, \theta)$ denote the class of functions $f(z) \in S$ with expansion at the origin

$$
f(z)=z+\sum_{n=2}^{\infty} a_{n} z^{n}
$$

where $a_{3}-a_{2}^{2}=a_{3}^{*}-a_{2}^{* 2}$ for a certain $f^{*}(z)$. Let $\Sigma(\alpha, \theta)$ denote the class of functions $g(z) \in \Sigma$ with expansion at the point at infinity

$$
g(z)=z+b_{0}+\sum_{n=1}^{\infty} \frac{b_{n}}{z^{n}}
$$

where $b_{1}=b_{1}^{*}$ for a certain $g^{*}(z)$.
Theorem 5. If γ satisfies the conditions (I), (II), then in $\Sigma(\alpha, \theta)$

$$
\begin{gathered}
\Re\left\{-e^{i \varphi}\left(b_{5}+b_{1} b_{3}+b_{2}^{2}\right)-e^{i(\varphi-\theta)}\left(2 b_{4}+2 b_{1} b_{2}\right) \alpha+\frac{1}{4} e^{i(\varphi-2 \theta)} b_{1}^{2} \alpha^{2}\right. \\
+e^{i(\varphi-3 \theta)} b_{2} \alpha^{3}+\frac{5}{16} e^{i(\varphi-4 \theta)} b_{1} \alpha^{4}-\left(b_{3}+\frac{1}{2} b_{1}^{2}\right) \gamma-e^{-i \theta} b_{2} \alpha \gamma
\end{gathered}
$$

$$
\begin{gather*}
\left.-\frac{1}{4} e^{-i 2 \theta} b_{1} \alpha^{2} \gamma\right\} \tag{28}\\
\leqq\left(\frac{1}{4}|\alpha|^{2}+\frac{1}{2}\right)\left(e^{-i \theta} \gamma+\frac{5}{4} e^{-i \varphi} \alpha^{2}\right)-\frac{1}{8} \Re\left\{2 e^{-i \varphi} \alpha^{2}+e^{i \varphi} \bar{\alpha}^{2}\right\}
\end{gather*}
$$

where $e^{i(2 \varphi-3 \theta)}=-1$. Equality occurs for the functions of class Σ satisfying (27). Further in $S(\alpha, \theta)$

$$
\begin{equation*}
\mathscr{F} \leqq\left(\frac{1}{2}|\alpha|^{2}+1\right)\left(e^{-i \theta} \gamma+\frac{5}{4} e^{-i \varphi} \alpha^{2}\right)-\frac{1}{4} \Re\left\{2 e^{-i \varphi} \alpha^{2}+e^{i \varphi} \bar{\alpha}^{2}\right\} \tag{29}
\end{equation*}
$$

where $e^{i(2 \varphi-3 \theta)}=-1$. Equality occurs for the functions of class S satisfying (8).
Proof. Let

$$
g(z)=z+b_{0}+\sum_{n=1}^{\infty} \frac{b_{n}}{z^{n}}
$$

be a function of class $\Sigma(\alpha, \theta)$ and let

$$
g^{*}(z)=z+b_{0}^{*}+\sum_{n=1}^{\infty} \frac{b_{n}^{*}}{z^{n}}
$$

be a function of class Σ satisfying (27) such that $b_{1}=b_{1}^{*}$. We may assume that $b_{0}=b_{0}^{*}=0 . w=g^{*}(z)$ satisfies the differential equation

$$
\begin{equation*}
\left(\frac{z}{w} \frac{d w}{d z}\right)^{2} \sum_{\nu=2}^{6} C_{\nu} w^{\nu}=\sum_{\nu=-6}^{6} D_{\nu} z^{\nu}, \quad D_{-\nu}=\bar{D}_{\nu} \tag{30}
\end{equation*}
$$

where

$$
\begin{aligned}
& e^{i(2 \varphi-3 \theta)}=-1, \\
& C_{6}=e^{i \varphi}, \quad C_{5}=2 e^{i(\varphi-\theta)} \alpha, \quad C_{4}=\gamma-2 e^{i \varphi} b_{1}^{*}, \\
& C_{3}=-2 e^{i(\varphi-\theta)} b_{1}^{*} \alpha-e^{i(\varphi-8 \theta)} \alpha^{3}+e^{-i \theta} \alpha \gamma, \\
& C_{2}=-\frac{1}{2} e^{i(\varphi-2 \theta)} b_{1}^{*} \alpha^{2}-\frac{5}{16} e^{i(\varphi-4 \theta)} \alpha^{4}+\frac{1}{4} e^{-i 2 \theta} \alpha^{2} \gamma
\end{aligned}
$$

and $D_{0}, D_{1}, \cdots, D_{6}$ are the same as in (26). The right hand side of (30) is nonnegative on $|z|=1$. Hence the image of $|z|>1$ under $w=g^{*}(z)$ is an admissible domain with respect to the quadratic differential

$$
-\left(\sum_{n=2}^{6} C_{n} w^{n-2}\right) d w^{2}
$$

Then by the general coeffieient theorem [4] we have

$$
\Re\left\{-\left(C_{6} C_{5}+C_{5} c_{4}+C_{4} c_{3}+C_{3} c_{2}+C_{6} C_{2}^{2}\right)\right\} \leqq 0
$$

where

$$
g \circ g^{*-1}(w)=w+\sum_{n=2}^{\infty} \frac{c_{n}}{w^{n}} .
$$

Rewriting with the coefficients of $g^{*}(z)$ and $g(z)$ we have

$$
\begin{aligned}
& \Re\left\{-e^{i \varphi}\left(b_{5}-b_{5}^{*}+b_{1}^{*} b_{3}-b_{1}^{*} b_{3}^{*}+b_{2}^{2}-b_{2}^{* 2}\right)-e^{i(\varphi-\theta)}\left(2 b_{4}-2 b_{4}^{*}+2 b_{1}^{*} b_{2}-2 b_{1}^{*} b_{2}^{*}\right) \alpha\right. \\
& \left.\quad+e^{i(\varphi-3 \theta)}\left(b_{2}-b_{2}^{*}\right) \alpha^{3}-\left(b_{3}-b_{3}^{*}\right) \gamma-e^{-i \theta}\left(b_{2}-b_{2}^{*}\right) \alpha \gamma\right\} \leqq .
\end{aligned}
$$

Since $b_{1}=b_{1}^{*}$, we obtain the inequality (28) by using the relation (18).
Next let $f(z)$ be a function of class $S(\alpha, \theta)$. Then $f\left(z^{-1}\right)^{-1}$ belongs to $\Sigma(\alpha, \theta)$. Hence we obtain the inequality (29) by rewriting (28) with the coefficients of $f(z)$.

Corollary 1. Let $\lambda \geqq 2$ and let

$$
g(z)=z+b_{0}+\sum_{n=1}^{\infty} \frac{b_{n}}{z^{n}}
$$

be a function of class Σ whose coefficient b_{1} is real. Then

$$
\begin{equation*}
\mathfrak{R}\left\{ \pm\left(b_{5}+b_{1} b_{3}+b_{2}^{2}\right)+\lambda\left(b_{3}+\frac{1}{2} b_{1}^{2}\right)\right\} \leqq \frac{1}{2} \lambda . \tag{31}
\end{equation*}
$$

Equality occurs for the functions of class Σ satisfying

$$
\begin{equation*}
z^{2} w^{2}-2 b_{0}^{*} z^{2} w-\left\{z^{4}+\left(2 b_{1}^{*}-b_{0}^{* 2}\right) z^{2}+1\right\}=0 \tag{32}
\end{equation*}
$$

Proof. Put $\alpha=0$ and $\theta=\pi$. Then $e^{i \varphi}= \pm 1$ and the conditions (I), (II) reduce to the condition that $\gamma \leqq-2$. Hence we have the inequality (31) in $\Sigma(0, \pi)$ by putting $\lambda=-\gamma$. On the other hand the function

$$
\begin{aligned}
g_{\epsilon}(z) & =z\left(1+\frac{2 \varepsilon}{z^{2}}+\frac{1}{z^{4}}\right)^{1 / 2} \\
& =z+\frac{\varepsilon}{z}+\cdots \quad(-1 \leqq \varepsilon \leqq 1)
\end{aligned}
$$

satisfies (32). Hence $g(z)$ belongs to $\Sigma(0, \pi)$. Thus we obtain the desired result.

References

[1] Grunsky, H., Koeffizientenbedingungen für schlicht abbildende meromorphe Funktionen. Math. Zeits. 4 (1939), 29-61.
[2] Jenkins, J. A., Unıvalent functions and conformal mapping. Berlin-GöttıngenHeidelberg, Springer-Verlag. (1958).
[3] - An extension of the general coefficient theorem. Trans. Amer. Math. Soc. 95 (1960), 387-407.
[4] , An addendum to the general coefficient theorem. Trans. Amer. Math. Soc. 107 (1963), 125-128.
[5] Ozawa, M., oral communication.
[6] Schaeffer, A.C., and D.C. Spencer, Coefficient regıon for schlicht functions. Amer. Math. Soc. Colloquium Publications vol. 35, New York (1950).

Tokyo Gakugei University.

