AOGAI H. KÕDAI MATH. SEM. REP 25 (1973), 219–224

PICARD CONSTANT OF A FINITELY SHEETED COVERING SURFACE

By Hirokazu Aogai

§1. Introduction.

Let R be an open Riemann surface and M(R) the set of non-constant meromorphic functions on R. Let f be a member of M(R) and P(f) the number of lacunary values of f. Let P(R) be

$$\sup_{f\in M(R)} P(f).$$

This is called the Picard constant of R. It is known that $P(R) \ge 2$ and P(R) is conformally invariant. If R is an *n*-sheeted covering surface of $|z| < \infty$, then $2 \le P(R) \le 2n$ [4].

In this paper we shall consider the following problem:

PROBLEM. Determine the Picard constant of a finitely sheeted covering surface of $|z| < \infty$.

This problem is very difficult to solve, in general. We shall restrict ourvelves to an *n*-sheeted covering surface R which is called regularly branched, that is, a surface which has no branch point other than those of order n-1.

Ozawa [5] has proved the following result:

If *R* is a two-sheeted covering surface of $|z| < \infty$ and if P(R)=4, then *R* is essentially equivalent to the surface defined by an algebroid function *y* such that $y^2 = (e^H - \alpha)(e^H - \beta)$, where *H* is an entire function and α, β are constants satisfying $\alpha\beta(\alpha-\beta) \neq 0$.

Niino and Hiromi [1] have proved the following result:

If *R* is a three-sheeted regularly branched covering surface and if $P(R) \ge 5$, then P(R) = 6 and *R* is essentially equivalent to the surface defined by $y^3 = (e^H - \alpha) \times (e^H - \beta)^2$, where *H* is an entire function and α, β and non-zero constants satisfying $\alpha \ne \beta$.

In §2 we shall consider a preliminary result on P(f).

In §3 we shall prove a generalization of the above results.

Received May 24, 1972.

In §4 we shall prove a theorem concerning the Picard constant of a surface defined by $y^n = g(z)$.

2. Let f be an n-valued algebroid function. Assume that $P(f) \ge n+2$ and f is entire. Then the defining equation of f is of the form

(1)
$$F(f,z) \equiv f^n - S_1(z) f^{n-1} + S_2(z) f^{n-2} + \dots + (-1)^n S_n(z) = 0,$$

where $\{S_j(z)\}\$ are entire functions. Let $\{\alpha_j\}\$ be finite lacunary values of f. Then

(2)
$$F(\alpha_j, z) = e^{H_j}, \quad 1 \leq j \leq l, \ H_j \equiv \text{constant}, \quad l+1 \leq j \leq k, \ H_j \equiv \text{constant},$$

where α_j for $1 \leq j \leq l$ are exceptional values of the second kind and remaining α_j are those of the first kind. Here $k \geq n+1$ and $l \leq n$. (Remark: the inequality $l \leq n$ is due to Rémoundos [6])

Pick up n+1 members $\{\beta_1, \beta_2, \dots, \beta_{n+1}\}$ from $\{\alpha_j\}$, and let L_j be the function or constant H_j which corresponds to β_j .

Then, from (2).

(3)
$$\beta_1^n - S_1 \beta_1^{n-1} + S_2 \beta_1^{n-2} + \dots + (-1)^n S_n = e^{L_1},$$
$$\beta_2^n - S_1 \beta_2^{n-1} + S_2 \beta_2^{n-2} + \dots + (-1)^n S_n = e^{L_2},$$
$$\dots$$

$$\beta_{n+1}^n - S_1 \beta_{n+1}^{n-1} + S_2 \beta_{n+1}^{n-2} + \dots + (-1)^n S_n = e^{L_{n+1}}.$$

Therefore,

$$\begin{split} &(\beta_1^n-e^{L_1})-S_1\beta_1^{n-1}+S_2\beta_1^{n-2}+\cdots+(-1)^nS_n\!=\!0,\\ &(\beta_2^n-e^{L_2})-S_1\beta_2^{n-1}+S_2\beta_2^{n-2}+\cdots+(-1)^nS_n\!=\!0, \end{split}$$

(4)

$$(\beta_{n+1}^n - e^{L_{n+1}}) - S_1 \beta_{n+1}^{n-1} + S_2 \beta_{n+1}^{n-2} + \dots + (-1)^n S_n = 0.$$

This linear system has a non-trivial solution $(1, -S_1, S_2, \dots, (-1)^n S_n)$. Hence

(5)
$$\operatorname{Det}\begin{pmatrix} \beta_{1}^{n} - e^{L_{1}}, & \beta_{1}^{n-1}, & \beta_{1}^{n-2}, & \cdots, & 1\\ \beta_{2}^{n} - e^{L_{2}}, & \beta_{2}^{n-1}, & \beta_{2}^{n-2}, & \cdots, & 1\\ & & & \\ & & & \\ \beta_{n+1}^{n} - e^{L_{n+1}}, & \beta_{n+1}^{n-1}, & \beta_{n+1}^{n-2}, & \cdots, & 1 \end{pmatrix} \equiv 0.$$

.....,

In this equation (5), the coefficient of e^{L_J} is the determinant of Vandermonde, and so it is not zero.

Without loss of generality, we may assume that the first *m* members $\beta_1, \beta_2, \dots, \beta_m$ are lacunary values of the second kind and remaining β_j are those of the first kind. Then, we have

220

$$(6) a_0 = a_1 e^{L_1} + a_2 e^{L_2} + \dots + a_m e^{L_m}, a_1 a_2 \cdots a_m \neq 0.$$

Hence, by the impossibility of Borel's identity (cf. [3]), we can divide the set $\{L_j\}$ into some classes A_{ν} , any one of which contains more than two members, such that for any L_j , $L_k \in A_{\nu}$, $L_j - L_k \equiv \text{constant}$, and for any $L_j \in A_{\nu}$, $L_k \in A_{\mu}$ ($\nu \neq \mu$), $L_j - L_k \equiv \text{constant}$.

Now, divide the set $\{H_j\}$ into classes which have the same property of the above partition of $\{L_j\}$.

By the assumption $P(f) \ge n+2$, we have $K=k-(n+1)\ge 0$. If some class A_{ν} contains fewer than K+2 members, then we can obtain the equation (3) which contains only one member of this class A_{ν} . Then the above argument shows that another member belongs to A_{ν} . This is a contradiction.

Hence, any one of these classes contains at least K+2 members.

This fact implies that, if 2(K+2) > l, the difference of any two of $\{H_j\}_{j=1,\dots,l}$ is constant.

Therefore, if $2(K+2) > n \ge l$ (i.e. k > (3/2)n-1), the difference of any two of $\{H_j\}$, which correspond to the lacunary values of the second kind, is constant.

Let f be an *n*-valued entire algebroid function satisfying P(f) > (3/2)n. From the above fact, the equation (3) may be written in the following form:

(7)
$$\beta_{1}^{n} - S_{1}\beta_{1}^{n-1} + S_{2}\beta_{1}^{n-2} + \dots + (-1)^{n}S_{n} = \tilde{\gamma}_{1}e^{H},$$
$$\dots,$$
$$\beta_{m}^{n} - S_{1}\beta_{m}^{n-1} + S_{2}\beta_{m}^{n-2} + \dots + (-1)^{n}S_{n} = \tilde{\gamma}_{m}e^{H},$$
$$\beta_{m+1}^{n} - S_{1}\beta_{m+1}^{n-1} + S_{2}\beta_{m+1}^{n-2} + \dots + (-1)^{n}S_{n} = \tilde{\gamma}_{m+1},$$
$$\dots,$$
$$\beta_{n+1}^{n} - S_{1}\beta_{n+1}^{n-1} + S_{2}\beta_{n+1}^{n-2} + \dots + (-1)^{n}S_{n} = \tilde{\gamma}_{n+1},$$

where H is a non-constant entire function and $\gamma_1, \gamma_2, \dots, \gamma_{n+1}$ are non-zero constants. Then, we have

(8)
$$(-1)^{j}S_{j} = a_{j}e^{H} + b_{j}, \quad a_{j}, b_{j} \text{ being constants,} \quad j = 1, 2, \dots, n.$$

Substituting (8) into (1),

(9)
$$F(f, z) \equiv G_1(f) + G_2(f)e^{II} = 0,$$

where

$$G_1(f) = f^n + b_1 f^{n-1} + b_2 f^{n-2} + \dots + b_n,$$

$$G_2(f) = a_1 f^{n-1} + a_2 f^{n-2} + \dots + a_n.$$

The algebraic equations $G_1(z)=0$, $G_2(z)=0$ have no common root, because of the irreducibility of F(f, z). And, the roots of $G_1(z)=0$ are lacunary values of

HIROKAZU AOGAI

the second kind of f, and the roots of $G_2(z)=0$ are lacunary values of the first kind of f. Moreover, f has no other finite lacunary value. In fact, a function $b+ae^H (ab \neq 0)$ has at least one zero (Picard's small theorem).

Summing up these facts, we have the following theorem:

THEOREM 1. Let f be an n-valued entire algebroid function satisfying P(f) > (3/2)n. Then there exist an entire function H and constants $a_1, a_2, \dots, a_n; b_1, b_2, \dots, b_n$, such that the defining equation of f is $F(f, z) \equiv G_1(f) + G_2(f)e^H = 0$, where $G_1(f) = f^n + b_1 f^{n-1} + b_2 f^{n-2} + \dots + b_n$ and $G_2(f) = a_1 f^{n-1} + a_2 f^{n-2} + \dots + a_n$. Furthermore, the roots of the algebraic equation $G_2(z) = 0$ are lacunary values of the first kind, and the roots of $G_1(z) = 0$ are those of the second kind, and f has no other lacunary value. Moreover, these two algebraic equations have no common root.

§ 3. We shall prove the following theorem:

THEOREM 2. Let R be an n-sheeted regularly branched covering surface of $|z| < \infty$, and if P(R) > (3/2)n, then P(R) = 2n and R can be represented by an algebroid function y such that $y^n = (e^H - \alpha)(e^H - \beta)^{n-1}$, where H is a non-constant entire function and α , β are constants satisfying $\alpha\beta(\alpha - \beta) \neq 0$.

Proof. By the assumption, there exists an algebroid function f on R such that P(f) > (3/2)n. We may assume that f is entire. Then, f may be regarded as a function defined by the equation of type (9). By the way, (9) is irreducible, and therefore the existence domain of f is equivalent to R.

We shall define an algebraic function f_0 , which is associated to f, by the equation:

(10)
$$F(f_0, z) \equiv G_1(f_0) + zG_2(f_0) = 0.$$

In this case, we can see easily

$$(11) f=f_0 \circ e^H.$$

A simple application of Nevanlinna's ramification relation shows that

(12) for any $a \in \{0 < |z| < \infty\}$, the equation $a = e^{H(z)}$ has at least one simple root z_0 .

REMARK. More precisely, Hiromi and Ozawa [2] have proved that $N_1(r, a-e^H) \sim m(r, e^H)$ as $r \to \infty$, where $N_1(r, a-e^H)$ is the counting function of simple zeros of the function $a-e^H$.

From the assumption of regularly branched property of R, f has no algebraic singularity other than those of order n-1. Considering this fact together with (11) and (12), we can conclude that f_0 has no singularity other than algebraic singularities of order n-1 over $0 < |z| < \infty$.

By the way, (10) may be written in the following form:

(13)
$$z = -\frac{G_1(f_0)}{G_2(f_0)}$$

222

Therefore, f_0 is an algebraic function of genus zero. From these properties of f_0 and Hurwitz's formula for a covering surface, essentially, f_0 must be an algebraic function y such that $y^n = (z-\alpha)(z-\beta)^{n-1}$, where $\alpha\beta(\alpha-\beta) \neq 0$. Hence, f is essentially equal to y such that $y^n = (e^H - \alpha)(e^H - \beta)^{n-1}$.

Thus we have proved that, if *R* is regularly branched and if P(R) > (3/2)n, *R* is equivalent to the surface defined by an algebroid function *y* such that $y^n = (e^H - \alpha)(e^H - \beta)^{n-1}$, where *H* is an entire function and α , β are constants satisfying $\alpha\beta(\alpha-\beta) \neq 0$.

On the other hand, on the surface defined by $y^n = (e^H - \alpha)(e^H - \beta)^{n-1}$, there exists an algebroid function $\sqrt[n]{(e^H - \alpha)(e^H - \beta)^{n-1}}/(e^H - \beta)$, which omits 2n values (i.e. the *n*-th roots of 1 and those of $\alpha/\beta \neq 1$). Then P(R)=2n. Q.E.D.

§4. By an analogous argument, we shall prove the following theorem:

THEOREM 3. Let R be an n-sheeted covering surface of $|z| < \infty$ defined by an algebroid function y such that $y^n = g(z)$, where g(z) is a meromorphic function. If P(R)=2n, and if n is odd, then R can be represented by an algebroid function f such that $f^n = (e^H - \alpha)(e^H - \beta)^{n-1}$, where H is a non-constant entire function and α , β are constants satisfying $\alpha\beta(\alpha-\beta) \neq 0$.

Proof. There exists a function f on R such that P(f)=2n. We may assume that f is defined by the equation of type (9). Let f_0 be an algebraic function defined by (11) from this function f. The function f represents R.

Investigating branch points of the surface $y^n = g(z)$, we can see that the total order of algebraic singularlities of f, which exist over one point, is equal to P(n/P-1), where P is a divisor of n.

Therefore, f_0 has also the same property (by (11) and (12)) and f_0 has no singularly over 0 and ∞ (by theorem 1).

Hence

(14)
$$P\left(\frac{n}{P}-1\right) = n - P \ge \frac{n}{2}$$

and by Hurwitz's formula

(15) \sum (order of ramification of ramified points)=2n-2.

Therefore, f_0 is ramified over at most three points. But, if there are three such points, *n* must be even. In fact, in such a case, there must exist three divisors p, q and r of n such that

(16)
$$p+q+r=n+2$$
 (by (14) and (15)).

If *n* is odd, then $p, q, r \leq n/3$. But, under this condition, (16) cannot be satisfied. Thus, f_0 has two algebraic singularlities of order n-1. This fact completes the proof (cf. the proof of theorem 2). Q. E. D.

HIROKAZU AOGAI

References

- HIROMI, G., AND K. NIINO, On a characterization of regularly branched threesheeted covering Riemann surfaces. Ködai Math. Sem. Rep. 17 (1965), 250–260.
- [2] HIROMI, G., AND M. OZAWA, On the existence of analytic mappings between two ultrahyperelliptic surfaces. Kōdai Math. Sem. Rep. 17 (1965), 281–306.
- [3] NEVANLINNA, R., Le théorème de Picard-Borel et la théorie des fonctions méromorphes. Paris (1929).
- [4] OZAWA, M., On complex analytic mappings. Ködai Math. Sem. Rep. 17 (1965), 93-102.
- [5] Ozawa, M., On ultrahyperelliptic surfaces. Ködai Math. Sem. Rep. 17 (1965), 103–108.
- [6] RÉMOUNDOS, G., Extention aux fonctions algébroïdes multiformes du théorème de M. Picard et ses généralisation. Mém. Sci. Math. Paris (1927).

Department of Mathematics, Tokyo Institute of Technology