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§ 1. Introduction.

Let R be an open Riemann surface and M(R) the set of non-constant mero-
morphic functions on R. Let / be a member of M(R) and P(f) the number of
lacunary values of /. Let P(R) be

sup P(f).
/€Λf(Λ)

This is called the Picard constant of R. It is known that P(R)^2 and P(R) is
conformally invariant. If R is an ^-sheeted covering surface of |^|<oo, then
2^P(R)^2n [4].

In this paper we shall consider the following problem:

PROBLEM. Determine the Picard constant of a finitely sheeted covering sur-
face of |z|<oo.

This problem is very difficult to solve, in general. We shall restrict ourvelves
to an ^-sheeted covering surface R which is called regularly branched, that is, a
surface which has no branch point other than those of order n—\.

Ozawa [5] has proved the following result:
If R is a two-sheeted covering surface of z|<oo and if P(j?)=4, then R is

essentially equivalent to the surface defined by an algebroid function y such that
yz = (eH — a)(eH — β), where H is an entire function and a, β are constants satisfying

Niino and Hiromi [1] have proved the following result:
If R is a three-sheeted regularly branched covering surface and if

then P(R) = 6 and R is essentially equivalent to the surface defined by y* = (eH — a)
x(eH — β)2, where H is an entire function and a, β and non-zero constants satisfy-
ing

In § 2 we shall consider a preliminary result on P(f).
In § 3 we shall prove a generalization of the above results.
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In § 4 we shall prove a theorem concerning the Picard constant of a surface
defined by yn — g(z).

2. Let / be an ^-valued algebroid function. Assume that P(f)^n + 2 and /
is entire. Then the defining equation of / is of the form

(1) F(/,e)=/»-Sι(z)/n-1 + SaW/w-a+- + (-l)nSn(z) = 0,

where (Sj(z)} are entire functions. Let {cr/} be finite lacunary values of /. Then

(2) F(ccj,z) = eHJ, l^y^/, #} 5- constant, l+l^j^k, Hj = constant,

where α3 for l^j^l are exceptional values of the second kind and remaining α3

are those of the first kind. Here k^n + l and l^n. (Remark: the inequality l^n
is due to Remoundos [6])

Pick up w + 1 members [βi, βz, ~,βn +ι} from {cr,-}, and let Lj be the function or
constant H3 which corresponds to β}.

Then, from (2),

(3)

Therefore,

(4)

This linear system has a non-trivial solution (1, —Si, S2, ••-, ( —l)nS»). Hence

(5) Det

on s>L,+i on-1 oτι-2
\ βn+l — e *', Pn-nt βn+l>

=0.

In this equation (5), the coefficient of eLJ is the determinant of Vandermonde,
and so it is not zero.

Without loss of generality, we may assume that the first m members
βι,βz, ~ ,βm are lacunary values of the second kind and remaining βj are those of
the first kind. Then, we have
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( 6 ) ao = aieLl + a2e
L2-\ ----- \-ameL™,

Hence, by the impossibility of BoreΓs identity (cf. [3]), we can divide the set
{Lj} into some classes Av, any one of which contains more than two members,
such that for any LJ9 Lk^Av, Lj—Lk = constant, and for any Lj£Av, LkζAμ (v^μ),
Lj —Lk^ constant.

Now, divide the set {Hj} into classes which have the same property of the
above partition of {Lj}.

By the assumption P(f)^n + 2, we have K=k — (n + l)^Q. If some class Av

contains fewer than K+2 members, then we can obtain the equation (3) which
contains only one member of this class Av. Then the above argument shows that
another member belongs to Av. This is a contradiction.

Hence, any one of these classes contains at least K+2 members.
This fact implies that, if 2(K+2)>1, the difference of any two of {Hj}J=ι,...,ι

is constant.
Therefore, if 2(K+2)>n^l (i.e. &>(3/2)»-l), the difference of any two of

{Hj}, which correspond to the lacunary values of the second kind, is constant.
Let / be an n-valued entire algebroid function satisfying P(f) > (3/2) w. From

the above fact, the equation (3) may be written in the following form:

(7)
orz-ι_ι_ C o«-2

~

where H is a non-constant entire function and Ί, ;-2, "ΊTn-,-ι are non-zero constants.
Then, we have

(8) ( — ϊ)JSj = ajeH + bj, a3,bj being constants, j = l,2,~ ,n.

Substituting (8) into (1),

( 9 ) F(f, ^ΞG

where

The algebraic equations Gι(z)=Q, G2(^)=0 have no common root, because of
the irreducibility of F(f,z\ And, the roots of Gι(z)=0 are lacunary values of
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the second kind of /, and the roots of G2(z) = ΰ are lacunary values of the first
kind of /. Moreover, / has no other finite lacunary value. In fact, a function
b + aeH (ab^Q) has at least one zero (Picard's small theorem).

Summing up these facts, we have the following theorem:

THEOREM 1. Let f be an n-valued entire algebroid function satisfying P(f)
>(3/2)^. Then there exist an entire function H and constants aίt a2, ••-, an', b\, b2, •••> bnj

such that the defining equation of f is F ( f , z ) = G1(f) + G2(f)eH = Q, where Gι(/)
=fn + b1f

n-1 + b2f
n-2+ +bn and G2(f) = a1f

n-1 + a2f
n-2+- +an. Furthermore, the

roots of the algebraic equation G2(z) = Q are lacunary values of the first kind, and
the roots of Gι(z) = 0 are those of the second kind, and f has no other lacunary
value. Moreover, these two algebraic equations have no common root.

§ 3. We shall prove the following theorem:

THEOREM 2. Let R be an n-sheeted regularly branched covering surface of
\z\ < oo, and if P(7?)>(3/2)«, then P(R) = 2n and R can be represented by an alge-
broid function y such that yn = (eH — a)(eH — β)n~1, where H is a non-constant entire
function and a, β are constants satisfying aβ(a —

Proof. By the assumption, there exists an algebroid function f on R such
that P(f)>(3/2)n. We may assume that / is entire. Then, / may be regarded
as a function defined by the equation of type (9). By the way, (9) is irreducible,
and therefore the existence domain of / is equivalent to R.

We shall define an algebraic function /0, which is associated to /, by the
equation:

(10)

In this case, we can see easily

(H) f=f0°e*.

A simple application of Nevanlinna's ramification relation shows that

(12) for any 0€{0<|z|<oo}, the equation a=eH^ has at least one simple root z0.

REMARK. More precisely, Hiromi and Ozawa [2] have proved that Nι(r, a — eH)
—m(r,eH) as r-»cxD, where Nι(r,a — eH) is the counting function of simple zeros of
the function a — eH.

From the assumption of regularly branched property of R, f has no algebraic
singularity other than those of order n-l. Considering this fact together with
(11) and (12), we can conclude that /0 has no singularity other than algebraic
singularities of order n — l over 0<|z|<oo.

By the way, (10) may be written in the following form:

(13) 2= — ( .. .
G2(jo)
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Therefore, /0 is an algebraic function of genus zero. From these properties of /0

and Hurwitz's formula for a covering surface, essentially, /0 must be an algebraic
function y such that yn — (z — a)(z—β)n~\ where aβ(a — /3)=^0. Hence, / is essentially
equal to y such that yn = (eH-a)(eH-β)n~\

Thus we have proved that, if R is regularly branched and if P(R)>(3/2)n,
R is equivalent to the surface defined by an algebroid function y such that
yn — (eH__a^eH_βγ-ι^ where H is an entire function and a, β are constants satisfy-
ing aβ(a-β)*Q.

On the other hand, on the surface defined by yn = (e11 — a)(eH — β)n~λ, there
exists an algebroid function ^/(e^I — a)(elί — ~β)n~1/(eH — β)) which omits 2n values
(i.e. the n-th roots of 1 and those of a/β^l). Then P(R) = 2n. Q. E. D.

§4. By an analogous argument, we shall prove the following theorem:

THEOREM 3. Let R be an n-sheeted covering surface of |^|<oo defined by an
algebroid function y such that yn — g(z), where g(z) is a meromorphic function. If
P(R) — 2n, and if n is odd, then R can be represented by an algebroid function
f such that fn — (eH — a)(eH — β)n~1, where H is a non-constant entire function and
α, β are constants satisfying aβ(a

Proof. There exists a function f on R such that P(f) = 2n. We may assume
that / is defined by the equation of type (9). Let /0 be an algebraic function
defined by (11) from this function /. The function / represents R.

Investigating branch points of the surface yn = g(z), we can see that the total
order of algebraic singularlities of /, which exist over one point, is equal to
P(n\P—V), where P is a divisor of n.

Therefore, /0 has also the same property (by (11) and (12)) and /<> has no
singularity over 0 and oo (by theorem 1).

Hence

(14)

and by Hurwitz's formula

(15) 2 (order of ramification of ramified points) = 2n — 2.

Therefore, /0 is ramified over at most three points. But, if there are three
such points, n must be even. In fact, in such a case, there must exist three
divisors p, q and r of n such that

(16) p + q + r=n + 2 (by (14) and (15)).

If n is odd, then p,q,r^nβ. But, under this condition, (16) cannot be
satisfied. Thus, /0 has two algebraic singularlities of order n — 1. This fact
completes the proof (cf. the proof of theorem 2). Q. E. D.
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