PICARD CONSTANT OF A FINITELY SHEETED COVERING SURFACE

By Hirokazu Aogai

§ 1. Introduction.

Let R be an open Riemann surface and $M(R)$ the set of non-constant meromorphic functions on R. Let f be a member of $M(R)$ and $P(f)$ the number of lacunary values of f. Let $P(R)$ be

$$
\sup _{f \in M(R)} P(f)
$$

This is called the Picard constant of R. It is known that $P(R) \geqq 2$ and $P(R)$ is conformally invariant. If R is an n-sheeted covering surface of $|z|<\infty$, then $2 \leqq P(R) \leqq 2 n$ [4].

In this paper we shall consider the following problem:
Problem. Determine the Picard constant of a finitely sheeted covering surface of $|z|<\infty$.

This problem is very difficult to solve, in general. We shall restrict ourvelves to an n-sheeted covering surface R which is called regularly branched, that is, a surface which has no branch point other than those of order $n-1$.

Ozawa [5] has proved the following result:
If R is a two-sheeted covering surface of $|z|<\infty$ and if $P(R)=4$, then R is essentially equivalent to the surface defined by an algebroid function y such that $y^{2}=\left(e^{H}-\alpha\right)\left(e^{H}-\beta\right)$, where H is an entire function and α, β are constants satisfying $\alpha \beta(\alpha-\beta) \neq 0$.

Niino and Hiromi [1] have proved the following result:
If R is a three-sheeted regularly branched covering surface and if $P(R) \geqq 5$, then $P(R)=6$ and R is essentially equivalent to the surface defined by $y^{3}=\left(e^{H}-\alpha\right)$ $\times\left(e^{H}-\beta\right)^{2}$, where H is an entire function and α, β and non-zero constants satisfying $\alpha \neq \beta$.

In $\S 2$ we shall consider a preliminary result on $P(f)$.
In $\S 3$ we shall prove a generalization of the above results.

[^0]In § 4 we shall prove a theorem concerning the Picard constant of a surface defined by $y^{n}=g(z)$.
2. Let f be an n-valued algebroid function. Assume that $P(f) \geqq n+2$ and f is entire. Then the defining equation of f is of the form

$$
\begin{equation*}
F(f, z) \equiv f^{n}-S_{1}(z) f^{n-1}+S_{2}(z) f^{n-2}+\cdots+(-1)^{n} S_{n}(z)=0 \tag{1}
\end{equation*}
$$

where $\left\{S_{j}(z)\right\}$ are entire functions. Let $\left\{\alpha_{j}\right\}$ be finite lacunary values of f. Then
(2) $\quad F\left(\alpha_{j}, z\right)=e^{H_{j}}, \quad 1 \leqq j \leqq l, H_{j} \neq$ constant, $\quad l+1 \leqq j \leqq k, H_{j} \equiv$ constant,
where α, for $1 \leqq j \leqq l$ are exceptional values of the second kind and remaining α_{\jmath} are those of the first kind. Here $k \geqq n+1$ and $l \leqq n$. (Remark: the inequality $l \leqq n$ is due to Rémoundos [6])

Pick up $n+1$ members $\left\{\beta_{1}, \beta_{2}, \cdots, \beta_{n+1}\right\}$ from $\left\{\alpha_{j}\right\}$, and let L_{j} be the function or constant H_{3} which corresponds to β_{0}.

Then, from (2).

$$
\begin{align*}
& \beta_{1}^{n}-S_{1} \beta_{1}^{n-1}+S_{2} \beta_{1}^{n-2}+\cdots+(-1)^{n} S_{n}=e^{L_{1}} \\
& \beta_{2}^{n}-S_{1} \beta_{2}^{n-1}+S_{2} \beta_{2}^{n-2}+\cdots+(-1)^{n} S_{n}=e^{L_{2}} \tag{3}
\end{align*}
$$

$$
\beta_{n+1}^{n}-S_{1} \beta_{n+1}^{n-1}+S_{2} \beta_{n+1}^{n-2}+\cdots+(-1)^{n} S_{n}=e^{L_{n+1}} .
$$

Therefore,

$$
\begin{align*}
& \left(\beta_{1}^{n}-e^{L_{1}}\right)-S_{1} \beta_{1}^{n-1}+S_{2} \beta_{1}^{n-2}+\cdots+(-1)^{n} S_{n}=0, \\
& \left(\beta_{2}^{n}-e^{L_{2}}\right)-S_{1} \beta_{2}^{n-1}+S_{2} \beta_{2}^{n-2}+\cdots+(-1)^{n} S_{n}=0, \tag{4}
\end{align*}
$$

$$
\left(\beta_{n+1}^{n}-e^{L_{n+1}}\right)-S_{1} \beta_{n+1}^{n-1}+S_{2} \beta_{n+1}^{n-2}+\cdots+(-1)^{n} S_{n}=0 .
$$

This linear system has a non-trivial solution $\left(1,-S_{1}, S_{2}, \cdots,(-1)^{n} S_{n}\right)$. Hence

$$
\operatorname{Det}\left(\begin{array}{cc}
\beta_{1}^{n}-e^{L_{1}}, & \beta_{1}^{n-1}, \beta_{1}^{n-2}, \cdots, 1 \tag{5}\\
\beta_{2}^{n}-e^{L_{2}}, & \beta_{2}^{n-1}, \beta_{2}^{n-2}, \cdots, 1 \\
\cdots \cdots \cdots \cdots \cdots \\
\beta_{n+1}^{n}-e^{L_{n+1}}, & \beta_{n+1}^{n-1}, \beta_{n+1}^{n-2}, \cdots, 1
\end{array}\right) \equiv 0 .
$$

In this equation (5), the coefficient of $e^{L_{J}}$ is the determinant of Vandermonde, and so it is not zero.

Without loss of generality, we may assume that the first m members $\beta_{1}, \beta_{2}, \cdots, \beta_{m}$ are lacunary values of the second kind and remaining $\beta_{\text {s }}$ are those of the first kind. Then, we have

$$
\begin{equation*}
a_{0}=a_{1} e^{L_{1}}+a_{2} e^{L_{2}}+\cdots+a_{m} e^{L_{m}}, \quad a_{1} a_{2} \cdots a_{m} \neq 0 \tag{6}
\end{equation*}
$$

Hence, by the impossibility of Borel's identity (cf. [3]), we can divide the set $\left\{L_{j}\right\}$ into some classes A_{ν}, any one of which contains more than two members, such that for any $L_{j}, L_{k} \in A_{\nu}, L_{j}-L_{k} \equiv$ constant, and for any $L_{j} \in A_{\nu}, L_{k} \in A_{\mu}(\nu \neq \mu)$, $L_{j}-L_{k} \neq$ constant.

Now, divide the set $\left\{H_{j}\right\}$ into classes which have the same property of the above partition of $\left\{L_{j}\right\}$.

By the assumption $P(f) \geqq n+2$, we have $K=k-(n+1) \geqq 0$. If some class A_{v} contains fewer than $K+2$ members, then we can obtain the equation (3) which contains only one member of this class A_{ν}. Then the above argument shows that another member belongs to A_{ν}. This is a contradiction.

Hence, any one of these classes contains at least $K+2$ members.
This fact implies that, if $2(K+2)>l$, the difference of any two of $\left\{H_{j}\right\}_{j=1, \ldots, l}$ is constant.

Therefore, if $2(K+2)>n \geqq l$ (i.e. $k>(3 / 2) n-1)$, the difference of any two of $\left\{H_{j}\right\}$, which correspond to the lacunary values of the second kind, is constant.

Let f be an n-valued entire algebroid function satisfying $P(f)>(3 / 2) n$. From. the above fact, the equation (3) may be written in the following form:

$$
\begin{align*}
& \beta_{1}^{n}-S_{1} \beta_{1}^{n-1}+S_{2} \beta_{1}^{n-2}+\cdots+(-1)^{n} S_{n}=\gamma_{1} e^{I}, \\
& \cdots \cdots \cdots \cdots \cdots \cdots, \\
& \beta_{m}^{n}-S_{1} \beta_{m}^{n-1}+S_{2} \beta_{m}^{n-2}+\cdots+(-1)^{n} S_{n}=\gamma_{m} e^{H}, \tag{7}\\
& \beta_{m+1}^{n}-S_{1} \beta_{m+1}^{n-1}+S_{2} \beta_{m+1}^{n-2}+\cdots+(-1)^{n} S_{n}=\gamma_{m+1}, \\
& \cdots \cdots \cdots \cdots \cdots, \\
& \beta_{n+1}^{n}-S_{1} \beta_{n+1}^{n-1}+S_{2} \beta_{n+1}^{n-2}+\cdots+(-1)^{n} S_{n}=\gamma_{n+1},
\end{align*}
$$

where H is a non-constant entire function and $\gamma_{1}, \gamma_{2}, \cdots, \gamma_{n, 1}$ are non-zero constants.
Then, we have

$$
\begin{equation*}
(-1)^{j} S_{j}=a_{j} e^{H}+b_{j}, \quad a_{j}, b_{j} \quad \text { being constants, } \quad \jmath=1,2, \cdots, n . \tag{8}
\end{equation*}
$$

Substituting (8) into (1),

$$
\begin{equation*}
F(f, z) \equiv G_{1}(f)+G_{2}(f) e^{I I}=0, \tag{9}
\end{equation*}
$$

where

$$
\begin{aligned}
& G_{1}(f)=f^{n}+b_{1} f^{n-1}+b_{2} f^{n-2}+\cdots+b_{n} \\
& G_{2}(f)=a_{1} f^{n-1}+a_{2} f^{n-2}+\cdots+a_{n} .
\end{aligned}
$$

The algebraic equations $G_{1}(z)=0, G_{2}(z)=0$ have no common root, because of the irreducibility of $F(f, z)$. And, the roots of $G_{1}(z)=0$ are lacunary values of
the second kind of f, and the roots of $G_{2}(z)=0$ are lacunary values of the first kind of f. Moreover, f has no other finite lacunary value. In fact, a function $b+a e^{H}(a b \neq 0)$ has at least one zero (Picard's small theorem).

Summing up these facts, we have the following theorem:
Theorem 1. Let f be an n-valued entire algebrovd function satisfying $P(f)$ $>(3 / 2) n$. Then there exist an entire function H and constants $a_{1}, a_{2}, \cdots, a_{n} ; b_{1}, b_{2}, \cdots, b_{n}$, such that the defining equation of f is $F(f, z) \equiv G_{1}(f)+G_{2}(f) e^{H}=0$, where $G_{1}(f)$ $=f^{n}+b_{1} f^{n-1}+b_{2} f^{n-2}+\cdots+b_{n}$ and $G_{2}(f)=a_{1} f^{n-1}+a_{2} f^{n-2}+\cdots+a_{n}$. Furthermore, the roots of the algebraic equation $G_{2}(z)=0$ are lacunary values of the first kind, and the roots of $G_{1}(z)=0$ are those of the second kind, and f has no other lacunary value. Moreover, these two algebraic equations have no common root.

§3. We shall prove the following theorem:

Theorem 2. Let R be an n-sheeted regularly branched covering surface of $|z|<\infty$, and if $P(R)>(3 / 2) n$, then $P(R)=2 n$ and R can be represented by an algebroid function y such that $y^{n}=\left(e^{H}-\alpha\right)\left(e^{H}-\beta\right)^{n-1}$, where H is a non-constant entire function and α, β are constants satisfying $\alpha \beta(\alpha-\beta) \neq 0$.

Proof. By the assumption, there exists an algebroid function f on R such that $P(f)>(3 / 2) n$. We may assume that f is entire. Then, f may be regarded as a function defined by the equation of type (9). By the way, (9) is irreducible, and therefore the existence domain of f is equivalent to R.

We shall define an algebraic function f_{0}, which is associated to f, by the equation:

$$
\begin{equation*}
F\left(f_{0}, z\right) \equiv G_{1}\left(f_{0}\right)+z G_{2}\left(f_{0}\right)=0 \tag{10}
\end{equation*}
$$

In this case, we can see easily

$$
\begin{equation*}
f=f_{0} \circ e^{H} . \tag{11}
\end{equation*}
$$

A simple application of Nevanlinna's ramification relation shows that
(12) for any $a \in\{0<|z|<\infty\}$, the equation $a=e^{H(z)}$ has at least one simple root z_{0}.

Remark. More precisely, Hiromi and Ozawa [2] have proved that $N_{1}\left(r, a-e^{H}\right)$ $\sim m\left(r, e^{H}\right)$ as $r \rightarrow \infty$, where $N_{1}\left(r, a-e^{H}\right)$ is the counting function of simple zeros of the function $a-e^{H}$.

From the assumption of regularly branched property of R, f has no algebraic singularity other than those of order $n-1$. Considering this fact together with (11) and (12), we can conclude that f_{0} has no singularity other than algebraic singularities of order $n-1$ over $0<|z|<\infty$.

By the way, (10) may be written in the following form:

$$
\begin{equation*}
z=-\frac{G_{1}\left(f_{0}\right)}{G_{2}\left(f_{0}\right)} . \tag{13}
\end{equation*}
$$

Therefore, f_{0} is an algebraic function of genus zero. From these properties of f_{0} and Hurwitz's formula for a covering surface, essentially, f_{0} must be an algebraic function y such that $y^{n}=(z-\alpha)(z-\beta)^{n-1}$, where $\alpha \beta(\alpha-\beta) \neq 0$. Hence, f is essentially equal to y such that $y^{n}=\left(e^{H}-\alpha\right)\left(e^{H}-\beta\right)^{n-1}$.

Thus we have proved that, if R is regularly branched and if $P(R)>(3 / 2) n$, R is equivalent to the surface defined by an algebroid function y such that $y^{n}=\left(e^{H}-\alpha\right)\left(e^{H}-\beta\right)^{n-1}$, where H is an entire function and α, β are constants satisfying $\alpha \beta(\alpha-\beta) \neq 0$.

On the other hand, on the surface defined by $y^{n}=\left(e^{H}-\alpha\right)\left(e^{H}-\beta\right)^{n-1}$, there exists an algebroid function $\sqrt[n]{\left(e^{H}-\alpha\right)\left(e^{H}-\beta\right)^{n-1}} /\left(e^{H}-\beta\right)$, which omits $2 n$ values (i.e. the n-th roots of 1 and those of $\alpha / \beta \neq 1$). Then $P(R)=2 n$. Q.E.D.
§4. By an analogous argument, we shall prove the following theorem:
Theorem 3. Let R be an n-sheeted covering surface of $|z|<\infty$ defined by an algebroid function y such that $y^{n}=g(z)$, where $g(z)$ is a meromorphic function. If $P(R)=2 n$, and if n is odd, then R can be represented by an algebroid function f such that $f^{n}=\left(e^{H}-\alpha\right)\left(e^{H}-\beta\right)^{n-1}$, where H is a non-constant entire function and α, β are constants satisfying $\alpha \beta(\alpha-\beta) \neq 0$.

Proof. There exists a function f on R such that $P(f)=2 n$. We may assume that f is defined by the equation of type (9). Let f_{0} be an algebraic function defined by (11) from this function f. The function f represents R.

Investigating branch points of the surface $y^{n}=g(z)$, we can see that the total order of algebraic singularlities of f, which exist over one point, is equal to $P(n \mid P-1)$, where P is a divisor of n.

Therefore, f_{0} has also the same property (by (11) and (12)) and f_{0} has no singularlity over 0 and ∞ (by theorem 1).

Hence

$$
\begin{equation*}
P\left(\frac{n}{P}-1\right)=n-P \geqq \frac{n}{2} \tag{14}
\end{equation*}
$$

and by Hurwitz's formula

$$
\begin{equation*}
\Sigma(\text { order of ramification of ramified points })=2 n-2 . \tag{15}
\end{equation*}
$$

Therefore, f_{0} is ramified over at most three points. But, if there are three such points, n must be even. In fact, in such a case, there must exist three divisors p, q and r of n such that

$$
\begin{equation*}
p+q+r=n+2 \quad \text { (by (14) and (15)). } \tag{16}
\end{equation*}
$$

If n is odd, then $p, q, r \leqq n / 3$. But, under this condition, (16) cannot be satisfied. Thus, f_{0} has two algebraic singularlities of order $n-1$. This fact completes the proof (cf. the proof of theorem 2). Q.E.D.

References

[1] Hiromi, G., and K. Nino, On a characterization of regularly branched threesheeted coverıng Riemann surfaces. Kōdaı Math. Sem. Rep. 17 (1965), 250-260.
[2] Hiromi, G., and M. Ozawa, On the existence of analytic mappings between two ultrahyperelliptıc surfaces. Kōdaı Math. Sem. Rep. 17 (1965), 281-306.
[3] Nevanlinna, R., Le théorème de Picard-Borel et la théorie des fonctions méromorphes. Paris (1929).
[4] Ozawa, M., On complex analytıc mappıngs. Kōdaı Math. Sem. Rep. 17 (1965), 93-102.
[5] Ozawa, M., On ultrahyperelliptıc surfaces. Kōdaı Math. Sem. Rep. 17 (1965), 103-108.
[6] Rémoundos, G., Extentıon aux fonctıons algébroïdes multıformes du théorème de M. Picard et ses généralisatıon. Mém. Scı. Math. Parıs (1927).

Department of Mathematics,
Tokyo Institute of Technology

[^0]: Received May 24, 1972.

