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MINIMAL SURFACES IN A RIEMANNIAN MANIFOLD OF
CONSTANT CURVATURE

By Taxenmro Iton

For surfaces in a 4-dimensional Riemannian manifold of constant curvature,
the author [3] proved the following

THEOREM. Let M be a 2-dimensional connected compact Riemannian manifold
which is minimally immersed in a unit spheve of dimension 4. If the normal
scalar curvature Ky is non-zevo constant, then M may be vegarded as a Veronese
surface.

In this paper, he generalizes the above theorem and proves the following

THEOREM. Let M be a 2-dimensional connected compact Riemannian manifold
which is minimally immersed in a (2+v)-dimensional unit sphere S**. If the
normal scalar curvature Ky is nom-zero comstant and the squarve of the second
curvature ks is less then Kyl|4, then M is a generalized Vevonese surface.

By a generalized Veronese surface we mean a surface defined by Otsuki [6].

§1. Preliminaries.

Let M be a (2 4+ v)-dimensional Riemannian manifold of constant curvature
¢ and M be a 2-dimensional Riemannian manifold immersed isometrically in
M by the immersion x: M — M. F(A7I ) and F(M) denote the orthonormal
frame bundles over M and M respectively. Let B be the set of all elements
b=(p, ey, ez, s, -+, €51,) such that (p, e, e;)e F(M) and (p, ey, es, €3, -+, €5.,)€F(M)
identifying peM with z(p) and e; with dx(e;), i=1,2. Then B is naturally con-
sidered as a smooth submanifold of F\(M). Let @4, ®ap=—wp4, A, B=1,2,3,---,24v,
be the basic and connection forms of M on F( M) which satisfy the structure
equations:

dw 4=}, @ 4p/\Dp,
B

1.1

dwap= ZC: @Dac/\Wep—CW4/\Dp.
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MINIMAL SURFACES IN A RIEMANNIAN MANIFOLD OF CONSTANT CURVATURE 203
In this paper, we use the following convention on the range of indices:
l_S__AyB’C)"' §2+V; 1§Zy]) _S_.Zy 3T<_ay;87 T;"'§2+y'

Deleting the bars of @4, @45 on B, as is well known, we have

(1.2) w.=0,

1.3) Wi = ; Awjoy, Ay =Aujir

1.4) dw;=wi; \w,, i¥xj,

(1.5) dwg,= ; o Nori—2i;,  2y= 5 kZ ikIOE A\ O,
(1.6) Rijru=2(0:x0 11— 0udx) + Z (AwixAaji— AcitAaji),
17 Awep = ; Oy ANOys—2apy  Lup= % IZ]] R.pijwi Nw,,
1.8 Ry = Z (AairAgjr— AieApir).

M is said to be minimal if its mean curvature vector (1/2) Y.., A.i¢. Vanishes
identically, i.e., if trace A,=0 for all a, A,=(A..;). We say the dimension of the
linear space of all second fundamental forms corresponding to normal vectors at
peM with vanishing trace the minimal index at p and denote it by m-index,M.
We have easily

1.9 m-index,M=2 at each point pell.

We denote the square of the norm of the system of all 2nd fundamental forms by

(1 10) = vy Z Aul]AuL]"‘ Z HA HZ

«,)

where for symmetric matrices A, B we define the inner product of A and B by
1
(A, BY= 5 trace AB.
We define the normal scalar curvature Ky of M in M as follows:

(1.11) Ky= 2 Raﬂz]RaﬂL} = 2 <ﬂ(§ (AwirAsie— AaiiAgi) -
1<y, @

1<, a<

Now, we assume that M is minimal in M and Ky is non-zero non M. Then
we have
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(1.12) m-index,M=2 at each point p on M.
Hence, as stated in [5], we can decompose the normal space N, at peM as follows:

NP:NI,J+Opy NI/I—LOP: Op:‘/’ljl(o):
(1.13)
dim Np=2,

where ¢, is a linear mapping from N, into the set of all symmetric matrices of
order 2 defined by ¢p(T e Vale)=Ya vaAs This decomposition does not depend on
the choice of a frame b over p and is smooth. Let B, be the set of all heB such
that es, e,e Nj. Then B, is a smooth submanifold of B. On B, we have

(1.14) 0i=0, le., Az=0 for p>4.
Therefore we have

(1.15) Ky=Ryuj= (Z (As1eAuk —A32kA41k)>2-
k

As a special case of [6], we can verify the following

LemmMma 1. On B,, for a fixed >4, we have wyy=wi=0 (mod w,, @) and
waﬂ=w4p:0 or else (1)3,9A(1)4,9#0.

Now, by virture of Lemma 1, we can define two linear mappings ¢;; and ¢y,
from M, into O, corresponding to the normal vector e; and e, as follows: for any
XeM,,

(1.16) (Pu(X) = g‘; I1As| "U3ﬁ(X)eﬁ’ @12(X) = p§ ||A4|| '(1)4ﬁ(X)€,3.

As stated in [5], these two linear mappings have the same image of the tangent
unit sphere Spy={XeM,: ||X||=1} and ¢ (X) and ¢,(X) are conjugate to each
other with respect to the image when it is an ellipse. We define the second
curvature k,(p) of M at p by

1.17) kz(p):ma)l( ||§011(X)||:ma)1( [12(XII-

X Xe
ESP GSp

It is clear that k,(p) is continuous on M.

§2. Minimal surfaces with non-zero constant Ky.

In this section we assume that M is conmected, compact and minimal n M,
Ky is non-zero constant and 4k:< Ky at each pownt of M.

LEMMA 2. We have identically

2.1 S?=Ky on M.
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Proof. From (1.10), (1.14) and (1.15), we have
(2.2) S?— Ky ={(As11— Aui2)? +(Asia+ A1) H(As11 + Adr)®* + (Asie — Aan)? =0.

Hence, if it is not identically S?= Ky, the function S? — Ky takes its positive
maximum at some point poeM, because M is compact. Let U be a neighborhood
of p, in which we can choose beB, such that

2 0 0 o
2.3) Az= , A= , AR >0,
0 =2 @ 0
where 2 and p are differentiable functions on U. Then we have
Ky=42p2,  S=214p5
From (1.1) and (2.3) we have
d/?/\(l)l +(22w12—pw34)/\w2=0,
(2.4)
dx/\wz — (220)12 — /1(034) Nwy= 0;
ApN\oy+2pwia—Awss) Aw, =0,
(2.5)
dpN\wy— 2pwiz—Aws) Aw, =0.
Since Ky=42%* is constant, from (2.4) and (2.5) we have
Qpw1 =22+ Py,
and hence
(2. 6) KN(()m:/zﬂSQ)“-
Differentiating both sides of (2.6), we get
2.7 Kydw,=2ApdS A ws+2pSdwss

=l/zdS/\(u34—222/125w1Aw2—2ySpZ w3p/\(1)4,3.
>4

On the other hand, since wi;=0 (8>4), 1=1,2, we have
dwig=wi/N\wy+ o N\ws=0,
which reduce to
Awsg AN w1+ pwsg N\ =0,
Awsp N\ ws— prwgs N1 =0.

By Cartan’s Lemma, we may put
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Awsp=f w1+ gsw2,
1 3= g 501 — f w3,
and define two normal vectors Fi=3 .. fsle and Gi= Y 4ca guta. Then we have

2.9 A T @3\ Os= —(IEP+HIGi o1 Aw,.

By means of Cartan’s Lemma, from (2.4) and (2.5) we have
22013 — pwsy = A0 — A1ws,
20015 — AW 34 = praw1 — (1102,
putting di=Aw,+4w. and dp=pmo,+pe.. Thus we get
(2= pP)wsa=(Qopr— Ap2) oy — (At — Ap1) w2,

Since ip=constant and hence Ap;+2:;x=0, we have

(12(!)1 _11(1)2)

W3g= fo/lz
and
2udS=2p(2*— p®)dA=2u(2*— p*) (X101 + A2w2).
Hence we have
2.9 AndS N\ wss= —4p2| V2] Po1 A\ ws,
where P2 is the gradient vector of 2. From (2.7), (2.8) and (2.9), we have

KxS
(2.10) KKy =472+ —g—» —SUIFP+11G4]1®),

where K is the Gaussian curvature of M. Since Ky>4ki=0, 2k:=||F\|[>+|Gil}%
and S>0, we have

1
KKy=4p2P2)°+ EKNS——ZSk§>O,

so that we get
(2.11) K>0 on U
From (2.4) and (2.5), we have
A=) N1 +4(32 — 1) dw, =0,

A2 — ) Nws +4(22— p)dw, =0,
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which imply that there exists a neighborhood V of p, where we have isothermal
coordinates (u,v) such that

ds*=FE{du*+dv?}, o= v Edu, wy= v Edb, VR PE=1,
where E=FE(u,v) is a positive function on V. With respect to these isothermal

coordinates, K is given by K=—(1/2E) 4log E. Since ¥ 22— 2E=1 and (22— p??
=S5%— Ky, we obtain

@.12) K= *_28_ Jlog (S*—Kx),

which, together with (2.11), implies
4dlog (S*—Kn)>0 on V.

Thus log (S2—Ky) is a subharmonic function on ¥ and takes its maximum at p,
by our assumption, so that log (S?—Ky) must be constant. Then, (2.12) implies
K=0, which contradicts K >0. Q.E.D.

By Lemma 2, for a frame be B, we have ||As| =44 and <{As A, =0.
Therefore, on a neighborhood U(p) of p of M we can choose a frame field beB,
such that

kl 0 0 kl
2.13) As= , o A= ,
0 -k ki 0

where %, is non-zero constant on M. It follows from (2.13) that
(2.14) 033=212
and we may put
krwss =101+ gpwe,
kiwig=gso1—fpma, 4P,
as in the proof of Lemma 2. Then, (2.14) implies
FA [P +1Ga [P = 2K (Rt — KO,

where Fi= 3,552 and Gi=72 <5 gses-
Since ||F|]2+]|GilP=2ki< Ky/2=2k} and K=¢—S=c—2Fk}, we see

(2.15) K=positive constant on M.
Then, we have the following

LeMMA 3. The wmage of Sy under ¢, (or ¢12) is a circle with constant radius
ko=k N =K, wheve the circle is a point if k=0 on M.
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Proof. Putting
lz=Mirl1 Ilsﬂxl(X)fl:Mi{l les=(XI,

X X
GSp GS])

we can see
(B—=L=(IFP=IGil»?+4{F, G )*=0,

so (k:—[%)? is a differentiable function on M, because {p, Fi, G.} obey an analogous
rule to the rotation of the 2-frame {p,es, e,}. Hence, if k,=/, does not hold iden-
tically on M, then (ki—/%? takes its positive maximum at some point p, on M.
Let U, be a neighborhood of p, on which k,>/, and we can choose isothermal
coordinate (#,v) and a frame beB, satisfying (2.13) and

(2.16) dst=FE{du*+dvt), .=V Edu, w,= v Edb,

where E=F(u,v) is a positive function on U,. Since ||Fi|2+||Gi||2>0 on U, we
may assume F;%0 on a small neighborhood V,; of p, in U,. Then we can choose
a frame field beB, satisfying (2.13), (2.16) and

Fi=fes, G= 41? Julas

where f is a non-zero differentiable function and ¢, are differentiable functions
on V,. Then we have

kiwss=fw;+gs0,, k103 =502,
Riwys=gs01—fws, kiwyp=gp01, 58
Using these equations and ws,=2w,:, from the structure equations we obtain
df N, +dgs Aoz +3fdw, +3gsdo, :(')2/\(5§ﬁgﬂ“’ﬂ5)y
dgs Nw1—df Aws+3gsdw, —3fdws= w1 N\ (5% 05Ws5)s
dgs N w2+ 3gsdws= —fw1/\ wgs — g5z N\ @ss +wa /\ (Zr 0:@,8),s
dgs N\ w1 +3gsdw1= ~gsw1 A\ wgs +Fws Nwgs + o1 /\ (§ 9,0,8),
which imply that the complex valued function E*(||Gi||*—||F1]|®) + 2E*{ F\, G1) s
holomorphic in z=#+iv, so that
(2.17) —64 log E=4log {(||F\[P—[|G4|[*)* +4{Fy, G1)Y
=/ log (k:—1%)* on V.

Since K is given by K=—(1/2E)4log E and is positive from (2.15), (2.17) implies
that log(ki—1I%)? is a subharmonic function on V,. Since (ki—/%)? takes its positive
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maximum at p; in V;, log(ki—/%)? must be constant so that (2.7) implies K=0,
which contradicts K>0. Thus, k,=/, holds at every point on M. Furthermore,
we have ||Fi||=]|G:|] and {F, G,>=0 for any frame beB, satisfying (2.13). Since

28, = ||F\||* + ||G4||> = 2k¥(k:— K) is constant on M, k, =1l =k V E—K is constant
on M. Q.E.D.

By Lemma 3, if £,=0 on M, then the geodesic codimension of M in M is 2,
so that M is a Veronese surface (see [3]). If %k,%0 on JM, then by Lemma 2 and
3, on a neighborhood U(p) of a p of M we can choose a frame field beB, satisfy-
ing (2.13) and

k10)35=k2w1=k1w46
(2.18)
klwss —_—kzwz: —k10145, 0)3ﬁ=0)4,s:0, 6<[3,
where %, is non-zero constant on M. Then, from (2.14) and (2.18) we obtain
(2- 19) (056:3(1)12
and we may put
kawsp= 15014 g502

kza)sﬂ =(pw1 _,fﬁa)Zy 6< /9;

where f; and ¢, are differentiable functions on U(p). We consider two linear
mappings ¢.; and ¢, from M, into N, as follows

(X)) = Z,s: kawss(X)es=01(X) Fo+ wy(X)Gs,
@22(X) = § kza)sp(X)es—: (l)](X)Gz —(Uz(X)Fz,

where X is a tangent vector to M and Fio=Y.pfp¢p and Gs= Y. gses are normal
vector fields on U(p). Using (2.19) and the structure equations, we obtain
2k2

HFZHZ+HGZHZ=kg<—F —31() —constant on M.
1

In the same manner as the proof of Lemma 3, we can prove the following

LEMMA 4. If k.=constant=0 on M, the image of Sp under ¢z (07 ¢23) IS @

civcle with constant radius k, ¥ RiJEE—3K]2, where the circle is a point if 2R:=3kK
on M.

If 2k2=3k:K on M, then the geodesic codimension of M is 4, because w;;=0
4<p), ws;;=wsy, =0 (6<71) and os;,=we,,=0 (8<y,). Henceforth, we may consider
the case 2k:x3k:K on M. Then, by Lemmas 2, 3 and 4, on a neighborhood of a
point p on M we can choose a frame field beB, satisfying (2.13), (2.18) and the
following conditions:
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kowst= kw1 = kawss,
kowss=Rsws = — kawgr, 05, =we; =0, 8<y,
where k; is a non-zero constant on M. From the above equations we get
(2. 20) wrs=4w1s.
We use the following convention about indices:
Li=1{1,2}, L={2t+1,2t+2}, t=1,2,---,m,

and if we write aj, as€l;, then a;<as.
Now we shall prove the following

Tueorem 1. Let M be a 2-dimensional connected compact Riemanman mani-
fold which is isometrically and minimally immersed in « Riemannian manifold M
of constant curvature ¢. If the normal scalar curvature Ky is non-zevo constant
on M and the square of the second curvature k, is less than Ky/4, then the
geodesic codimension of M in M is even 2m (m is a positive integer), and we can
choose a frame beB, such that

k;_la)al,gl:kL(Lh:kt;w)aZﬂZ, (Ualr:O’

ktflwalﬁzzkcah: _kb—l(’)nzﬁly wnzr—'—O,
@.21)

as, aZGIt—ly ,Bly ,826[1,, 2t+2<7’,

lL:ly 2; ey M,

where ky=1 and k, (2=t=m) are non-zero constant on M. Furthermore, we obtain

(2.22) maluzz(t+1)m121 ay, az€1; (t=1,2,-,m),
2 2
(2.23) t+DHK= lzk-t—— 212;1 (t=1, .-, m—1),
-1 7
2k2,
(2.24) (m+1HK= .

Proof. By induction with respect to #, we shall prove the theorem. For =1,
2 and 3, we proved our assertions by Lemmas 2, 3 and 4 respectively. Hence, we
suppose that our (2.21), (2.22) and (2.23) hold for all ¢=¢,. In this case, we
shall prove that our assertion holds for #,4+1. Then, since wa,,=wa,, =0, a1, as€l; 1,
2t,+2<y, we have

Reywsyy Ao+ Rrywpy, N w2 =0,
Riywp N w2 — R wsy A 01=0, B, Ba€ 1,

which, together with Cartan’s lemma, imply that we may put
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ktowﬁlr =fra)1 +9,02,
k;o(ﬂﬁz, =g, ——f,wz, 2to+2<7’,

and define two normal vector fields F,,=3,f,e, and G, =%,¢,e,, We consider
two linear mappings ¢, and ¢;, from M, into N, as follows:

ﬂDtol(X) = Z ktowﬁlr(X)er ::wl(X)Fto + wZ(X)Gtoy
T

gﬂgoz(X) = Z k;owﬂz,(X)e, = (Ol(X)Gco — (Oz(X)FgO,
7

where X is a tangent vector to M. Putting

kyy+1=Max [|gy1(X)||[=Max |lg,e(X)] and L1 =Min ||e,:(X)]| =Min [Jge2(X)Il,
Xes;J Xesll, Xes;, Xes;

we can see
(ktg i — 1ty D = (| Feol P = [|Gito |2 + 4 gy Gy *,

s0 (B2 —143)? is a differentiable function on M, because {p, F, G,} obey an
analogous rule to the rotation of the 2-frame {p, ¢;,, ¢5,). Hence, similarly to the
proof of Lemma 3, we can see that ky.;=[,.1 holds everywhere on M. On the
other hand, since wg;s,=(t+1)wi:, We get

2k,

— — (t+ 1K ) =constant on M.
kto—l

Oty 3= 1P|+ 11GeIP= (

If 2k} =(+1)k,, 2K on M, we can see that the geodesic codimension of M is 2f,
and (2.24) holds. Therefore, we consider the case 2k} =(f,+1)k} 1K on M. Then,
by the above argument, we can choose a frame field beB, satisfying (2.21) for
all £=¢, and

Reop1r; = Rtg 11017 Rey®py, @5, =0,
kiyp, = kigi102= — Ry, wp,, =0,
71, 72€ 0511, 2t +4 <y,

where k.1 is non-zero constant on M, which imply that (2.21), (2.22) and (2.23)
hold for #,+1. Thus, it is clear that the geodesic codimension of M in M is even
2m. Then, since we have wimi1 emiz=+1w1 and wem:1 ,=wom ,=0 Cm+2<y),
we obtain (2.24). Q.E.D.

§3. The proof of the main theorem.

By an analogous computation to the one in §4 in [7], from Theorem 1 we
obtain the following
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THEOREM 2. Let M be a 2-dimensional connected compact Riemannian mant-
fold which is isometrically and minimally immersed in a Riemannian manifold M
of constant curvature ¢. If the normal scalar curvature Ky is non-zevo constant
on M and if the squave of the second curvatuve ko 1s less than Kn|4, then the
geodesic codimension is even 2m and the Gaussian curvatuve K is positive constant,
and supposing K=1, there exist m constants by=m—t+1)(m+t+2)/4 1=t=m, and
m complex normal vector fields €., -+, &n Such that

55'53___55'5_8:07 t¥s,

(1) B
5:'&"—‘0, 55'51,:2, ZL:Z, 3,"',7’}2
and
1 _

dr = z(é-odz—l'fodz), So=e+1e,,

Dg, = }ll 0 (2dz—2dZ) + =~ ZVbl &dz, h=1+zz,
(1) De&, = —ﬂﬁgod + = E(zdz zal.z)Jriv be &,dZ,

De, = —*2«'/ be &dz + —— t+1 E(Zdz—zdzZ)+ Z—Xﬁ”{“ Wz,

Dgy = — Zﬂzbm Em-1dz + —— m+1 Em(2dz—2d32),

where z is an isothermal complex coordinate of M and D denotes the covarant
diffeventiation of M.

In Theorem 2 we may consider M?+*m=}]=S**n(R), where S?'*™(R) denotes
the (2+2m)-sphere of radius R:
1 (m+1)(m+2)

BT 2

We regard as S*"*™(R)c E?**™ and put

3.1 *% =E€3.42m.
By (3.1) we have
1 -
(3.2) dx=Re;. osm= 0 (6odz+£0d2).

From (II) in Theorem 2 and the above relation, we have easily
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1 _ 2
dé = éoedz—2dd) + PP ear 2oy s,
dé, = 2‘/ biedzt 2 Sl(zdz 2dz) + 2V 2‘/”2 b ¢,
(3.3) e ,
dé = — ﬂbi& 1dz + ——&(Zdz—zdZ)+ £ 2V by, b‘“ Hlg, 1dz,
dém = — ﬁ/bm Em—1dz 2 Sm(zdz zdZ),

where d denotes the ordinary differential operator in £***. Since equations (3.3)
are the same ones as (II) in Theorem 2 in Otsuki [7] when we put formally
P=—(1/R)es.2m in the case M""*m=FE"**" J is congruent to the surface given by

vVml

(3.4) z=

X & o g o (T (2 e aanoay

(- 1)mz( 1)8( )(zz) Amﬂ],

where A,, Ai, -+, An.1 are constant complex vectors in C™+% such that
At'At=0) t=0y 17 e, m, Am+1=/—1m+17

(3.5) A A=A A,=0,  txs,  t,5=0,1, -, m+1,

2m+2>’ /

. =1,2,--,m+1.

A0~Ao=2, At'A¢=2(

Thus we have proved that M may be regarded as a generalized Veronese surface
of index m defined by Otsuki [7].
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