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NOTES ON (f, U, V, u, v, 2)-STRUCTURES

By Hipeaki Suzuki

Sasaki and Hatakeyama [1] proved that, if a differentiable manifold M admits
an almost contact structure (g, &, ), then there is in the product space MXR, R
being a real line, an almost complex structure F° which is canonically constructed
from ¢, £ and 5. They defined an almost contact structure (¢, & 5) to be normal
when this almost complex structure F is integrable in MXR. The normality of
an almost contact structure (p, &, 5) is characterized by vanishing of a certain tensor
field constructed from ¢, &, and 5. Recently, Yano and Okumura [5] have defined
a new structure in an even-dimensional manifold called an (f, U, V, #, », A)-structure
as a set of a tensor field f of type (1, 1), two vector fields U, V, two 1-forms =, v
and a scalar field 2 satisfying certain algebraic conditions. They have showed that
there exists naturally an (f, U, V, #, v, 2)-structure in a submanifold of codimen-
sion 2 immersed in an almost complex manifold or in a hypersurface immersed in
an almost contact manifold [5]. One of the purposes of the present paper is to
show that, if an even-dimensional manifold admits an (f, U, V, #, v, 2)-structure,
then there is in the product space MXR? R? being a plane, an almost complex
structure F constructed from f, U, V,u,v and 2 and to obtain a necessary and
sufficient condition for the almost complex structure F' to be integrable. Another
purpose is to show that a hypersurface M immersed in a unit sphere S?"+!(1) is
isometric to the hypersurface S*(1/+/2)xS™(1/+/2) if M satisfies certain conditions.

In §1, we recall the definition of an (f, U, V, «, v, 2)-structure and that of an
(f, 9, u, v, A)-structure. In §2, we define an almost complex structure F in the
product space MXR?, when an (f, U, V, u, v, 2)-structure is given in M and, by
using local components of the Nijenhuis tensor of F, we define in M a tensor field
T of type (1,2), tensor fields P, and P, of type (0, 2), tensor fields @, and @, of
type (1, 1), a vector field S, 1-forms w;, w., ws, wy and functions k&, k.. We study
some properties of these tensor fields and obtain a necessary and sufficient condi-
tion for F to be integrable. In §3, we study the Riemannian connection of a
Riemannian metric G defined naturally in M X R? in terms of g, when an (f, g, %, v, 2)-
structure is given in M. In the last §4, we prove a proposition stating that a
hypersurface immersed in a unit sphere of odd dimension is isometric to the product
of two spheres of the same dimension and of the same radius.
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§1. Preliminaries.

Let M be an m-dimensional differentiable manifold of class C=.» If there exist
in M a (1, 1)-tensor field f, two vector fields U and V, 1-forms # and » and a
function 2 satisfying the following conditions (1.1)~(1.5), then we say that M has
an (f, U, V, u, v, 2)-structure (f, U, V, u, v, ).

1.1 fi=—I1+u@U+vQV,
I being the unit tensor field of type (1, 1),

1.2) uof =20, fU=-2V,
(1. 3) vof=—2u, fV=2aU,

where 1-forms #of and vof are respectively defined by (#of )(X)=u(fX) and (vof )(X)
=p(fX) for any vector field X, and

1. 4) w(U)=1-2, u(V)=0,
1.5) v(U)=0, v(V)=1-2%

It is well-known that a differentiable manifold with (f, U, V, u, v, 2)-structure is
necessarily of even dimension and that any submanifold of codimension 2 immersed
in an almost complex manifold and any hypersurface immersed in an almost contact
manifold admit an (f, U, V, u, v, 2)-structure [5]. If a manifold with (f, U, V, «, v, 2)-
structure (f, U, V, u, v, 2) has a positive definite Riemannian metric ¢ satisfying
the conditions:

(1. 6) 9(U, X)=u(X),
1.7 g(V, X)=v(X),
1.8 9(fX, fY)=9(X, ¥)—u(X)u(Y)—o(X)(Y)

for any vector fields X and Y, then we say that M has an (f, g, u, v, 2)-structure
(f, 9, #, v, ). Any submanifold of condimension 2 immersed in an almost Hermitian
manifold and any hypersurface immersed in an almost contact metric manifold
admit an (f, g, %, v, 2)-structure [5].

§2. An almost complex structure in MX R*.

Suppose that a 2n-dimensional manifold M has an (f, U, V, u, v, 2)-structure
(f} U’ V; u) v’ X)'

1) Manifolds andzreometrlc objects we discuss are assumed to be differentiable and
of class C*.
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We define in Mx R? R* being a plane, a tensor field F of type (1, 1) with
local components F,* given by?®

fzh Uh v
2.1) (FH=| —us 0 -2
—0; 2 0

in {WXR? z*), {W; z"} being a coordinate neighborhood of M and z", #** being
cartesian coordinates in R?, where f;*, U*, V" u; and »; are respectively local
components of f, U, V, « and v in {W; z"}. Then, taking account of (1.1)~(1.5),
we can easily verify that F?=—1 holds in MX R?% Thus we have

ProposiTiON 1. If there is given an (f, U, V, u, v, A)-structure in M, then the
tensor field F defined by (2.1) is an almost complex structure in MX R>.

The Nijenhuis tensor N of F has local components
2.2) N A=FS0F = F,0.F = (0,F, —0,F, )}
in MxR* (cf. Yano [2]).® Thus, using (2. 1), we can write down N,,* as follows:
2.3), Nyt =N ji* + 00— 0au;) Ut + @0, —0:0;) V',

where N is the Nijenhuis tensor of f, and

(2.3), Ny = —f ™0t + L™ Omth s+ (0, ™ — 0: ;™) — A(0,0: — 0:07),
(2. 3)s Nji® = ~f;"0m0s + 11" 0m0  +0m(0, 1™ — 0: ;™) + A0 05— Dsta ),
(2. 3), Niut=(Lof)it+ Vi,

2. 3)s No=(Ly )" — U"di2,

(2. 3)s Niot'=—(Lyt)i—20i,

2. 3) N =—(Ly0)i—f"0nd,

(2. 3)s Nowt = —(Lyt)i+f,"0mds

(2. 3)s Now® = —(Ly0)i—20:2,

(2. 310 N =[U, V1",

(2. 3)us Niwt'=— Lok,

(2. 3)1s NiwZ'=— L2,

2) The indices a, 8, 7, s A4 v run over the range {1, ---, 2n+2} and @, b, ¢, -+, 1,7, k
the range {1, ---, 2n}. We denote n+1 and #+2 by 1* and 2* respectively. The Einstein’s
summation convention will be used with respect to these two systems of indices.

3) We denote d/dx? by d;.
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where [y and Ly denote the operators of Lie derivation with respect to U and
V, respectively.

We can casily verify that there are in M a tensor field T of type (1,2) with
components Ny, two tensor fields P, and P, of type (0, 2) with components Nj*
and N;* respectively, two tensor fields @, and Q. of type (1, 1) with components
Ny, and N,.,* respectively, a vector field S with components Ni.."*, four 1-forms
W, Wa, Ws, wy, With components Ny.', Nw,>, Now!” and N> respectively and two
functions &;=Npz!" and k;=Ny..?" (cf. Lemma 4). The Nijenhuis tensor N of an
almost complex structure F' satisfies identically the conditions

2. 4) N AF, 5+ N, *F =0
and
(2.5) NAFS = N A F,5=0

(cf. Yano [2]). Substituting (2. 1) into (2. 4), we have

(2. 6) Ny i+ Ny™ ful+ Ny U+ N2 V4 Nyt Naw 0, =0,
(2. 6), — Nt + Ny f = AN 32"+ Nwy s 4+ Naw, 0, =0,

(2. 6)s = Nji™m+ AN+ Npw® £, + Niy i+ N *v: =0,

(2. 6), Ny U™ — Nioy ™ — ANe o — Niw U — N2 V=0,
(2. 6)s Ny V™ + ANy — Npoy ™" — Naoy* U — Npu 2 V7 =0,
(2. 6) Niw i+ Nis™ o+ Nio* U+ Ny VP — Ny, =0,
(2. 6) Non ™+ Now ™+ Naw* U+ Nyw?* V4 Nipsgh24,=0,
(2. 6)q Ny U™ 4 Nioy™ -+ A3 — AN, =0,

(2. 6)s — Nio™m 4 Ny ™ — AN — Nyaga 0, =0,

(2. 6)10 Nym®* V™ — Nyoy™m + AN1y + AN3e, ¥ =0,

QOn = Nott Non i = 2Non + N0,

(2. 6)12 Niw*' U™+ 2Ny2** =0,

(2. 6)1s Nisn V™ — Nyugs ™ — ANugs 2 =0,

(2. 6)1s Nowm " U™+ Nyag™ty + N2 =0,

(2. 6)15 Nouw* V™ + AN =0,

(2. 6)16 Ny U™+ Nioy™ — A3, = AN, 2 =0,

2. 6)17 — N1 ™0+ AN} + Nisn 2™ — Nipo¥'0; =0,



(2. 6)5
(2. 6)19
(2. 6)20
(2. 6);
(2. 6)a2
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Nym® V™ + Npwy™0m + AN1,% — ANz ) =0,
Nien? U™+ ANpg? =0,
Nion V7 = Niogs™ 4 ANy =0,
Nown® U™+ Nyg™0 — ANy =0,
Now® V™4 AN 15,7 =0.

Substituting (2. 1) into (2. 5), we have

(2.7
2.7
(2. 7)s
(2. 7)s
2.7)s
(2. 7)s
2.7
(2. 7)s
(2.7)s
(2. Dio
2. N

Ny ™~ N ™+ Nuwy 4+ Niwi® -+ Now, 0+ Now™v, =0,
Nywfi™ = N Uf ™+ Nioy Pt + Niw P45+ Nowy 034 Nowy M0, =0,
Ny f ™ = NiZf ™ + Nuo 2 th+ Niw¥ 5+ Nowy 0+ Npot 20, =0,
Ny U™+ Ny f ;™ — ANge ) — Nisga0, =0,

Ny V7 + 2ANse )+ Nasm™ 7+ NisgeP24, =0,

Ny U™+ Ny ;™ — ANy — Nyg'0, =0,

Ny VP4 AN + NoonF ™+ Ny, =0,

Niw! V™ 4 Nopwr* U™ =0,

Ny Um 4 Ny ®f ;™ — ANgs ¥ — Npuau2'0, =0,

Ny V™ + AN + Now® f,™ + Niwge P20, =0,

Nun® V™ — N U™ =0.
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Now, we assume that the function 1—2%? is non-zero almost everywhere in A
Transvecting (2. 6); with U? and with V*, we get respectively

2. 8)
and

(2. 8),

st]h’z

Nf= 1= ! = (AN, V"= Nyf o Ut = Ny U U = Ny U V)

1-22

Transvecting (2. 6), with U* and with V? we have respectively

(2. 8)s
and

(2. 8

1

Nl‘ll‘ =73 (Njim Uzum +/2N]m1‘ ym +2Nji2‘ Uz)

1-22

Nyyt'= ‘—1_ (Nji™ Vit — AN " U™+ AN ;2 V).

1-22

-1 (zijh Um+Nﬁmfmh Vi-i-Nji" ViUh—I—NﬁZ' Vivh).
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Similarly, transvecting (2. 6), with U? and with V7 we have respectively

2. 8)s Nu= 1)2 (N U — AN U AN V')
and
(2. 8), Now = —— - 22 (N;™Vivm— 2N VE— AN > U™).

By the same devices as above, we have from (2. 6),

1

2. 8): Nial=———

(Npmh Um + 1'7,7” szmh ! sz]‘U’l’ Vi_f_Nl.lZ‘ VL Vh)

Transvecting (2. 6), with V% we obtain

1
1—22

(2. 8)3 N]tg = m Vi%m—" XNpm]’Um—/ZNpLZ‘ VZ)

Transvecting (2. 7), with V7, we have

2. 8), N = —— (Ny? VIU™+ ANy U™ — A Nae,* V).

1— )2
By means of (2. 8), we have

LEMMA 2. If the function 1—2% is non-zero almost every-where in M, then the
nine sets of components of the Nijenhuis tensor Ni.,*, Na.,”, Nio,*', Nowit, Nio)®, Noo,®,
Nugs?, Nugt™ and Ny are expressed as linear combinations of the other three sets

of components N;;"*, N and N;;* almost everywherve in M.
J J J

On the other hand, transvecting (2. 6); with #, and with »,, we have respectively

. 1
2.9 Njil = 1 2 (N]mhfzmuh +2N]zmvm+ Nl*; uhuz‘l‘Nz*] Unvs)
and
" 1
(2 9).’, N"iz = (ijhf‘bmvh - XNjimum + Nl*/hl)hui + NZ‘J/I/l,/I.vi)!
/ -z

which show that Nj;;** and N;;* can be expressed as linear combinations of Ny",
Nu.,» and N,.,*. Thus, taking account of (2.9), and (2. 9),, we have from Lemma 2.

LeMmMAa 3. If the function 1—2* s non-zevo almost everywhere mn M, then lhe
nine sets of components of the Nijenhwms tensor Ny“', Ny, Ni,", Ni.,", Ni.,”,
N7, Nio, Nuo and Ny arve expressed as linear combinations of the other
three Nj*, Nu,* and N,,* almost everywhere in M.
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If a symmetric affine connection F is given in M, then we can easily see that
the components N;*, N;'" and N;* can be written as follows:

Njih =f]m‘7‘mf'ah _flm /mfjh _fmh(VJfLm . sz]m)

(2. 10),

~+ U"(Vjui — Vl%]) + V'L(Vjvi_ Vﬂ)j):
(2. 10)2 sz’l* = _f]meui +f1,mrmuj + um(VJflm - th]m> - 2(Vﬂ)i - Vivj):
(2. 10), Ny = — [ Vovi + £V j 4 0m(V, £ = Vo f ™) A+ 2V 0, — Vi),

that is, we find that all the partial differentiations 4; volved in N;* N and
N;;* can be replaced by the covariant differentiations F,. Thus we have

Lemma 4. If M s a diffeventiable mamifold with (f, U, V, u, v, 2)-structure,
then the sets of components Ny" Ni'', NjiZ, Niy, Nao®, Niwy®, Nat, Niwy®, No?,
Ny, Nuot™ and Nio? of the Nijenhuis tensor of the almost complex structuve F
in MXR?* define twelve tensor fields in the mawmfold M, which ave determuned by
the given (f, U, V, u, v, A)-structure.

We can get directly from Lemmas 1 and 2.
ProprosiTION 5. The complex structurve F in MXR? 1s wtegrable of and only if
the three tenmsors Ny, Ni*' and Nyi* vanish identically mm M, or, if and only if the

three tensors Ny, Nu,® and Ny.," vamsh identically in M.

We see from Proposition 5 that if the almost complex structure F is integrable
in MxR? then (f, U, V, u, v, 2)-structure is normal in the sense of [5].

§3. A Riemannian metric in M x R?.

Let M be a differentiable manifold with (f, ¢, %, v, 2)-structure. If we consider
a Riemannian metric G in M x R?* with components

gji 0 0
(G,ul) = 0 1 0 ;
0 0 1

gj being the components of the Riemannian metric ¢ in A, then we sce easily
that (G, F') defines an almost Hermitian structure in MXR? F being the almost
complex structure defined by (2. 1), that is,

8.1 Fi' FiG =G



160 HIDEAKI SUZUKI

where F,* are components of /. We denote the Christoffel symbols formed with

~

G and those formed with ¢ respectively by {,*,} and by {,”;}. Then we find easily

@/}z{jhil’
HE SRR AN
[T

We denote by 7. and F, the covariant differentiation with respect {,*,} and with

respect to {,*;}, respectively. Then the covariant derivative of F with respect to

~v
2
v

{:7:,} is given by

N N~
@3.3) IZF/:&F,,%{ A }F—{ @ }F
£ a £ p
that is, given by
3.4 ViFy=Vif
(3. 4), PuF = T,
3. 4) PF=—Tw,
(3. 4)4 7]{;F]nl = Vku‘b,
3. 4)s Voot =P,
(3. 4)6 ﬁpF]"’= Vchjz = ﬁpFch’ = 71*F2:1‘ = ﬁszl»z‘ = Vzantl‘ =0,
(3. 4)7 7)5F2:l‘= —7ka2‘: -sz-

Hence we have

PRrROPOSITION 6. Suppose that M has an (f, g, u, v, 2)-structuve. Then a neces-
sary and sufficient condition for the product Riemannian manifold MXR* to be a
Kahlerian space with (G, F) is that all of f,u,v and 2 ave covariantly constant
in M.

§4. Hypersurfaces in a unit sphere.

Let M be a hypersurface immersed in a unit sphere S**!(1) with canonical
almost contact structure. Then there is an (f, g, %, v, A)-structure (f, g, #, v, 2)
induced in M, which has the following properties:
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4.1) V,fut = —g ™+, — ko™ + ks,
4. 2) Vii =1 15—k,

4.3) Vivi= —Rjnfi™+29 i,

4. 4) Viai=kut—v,,

where kj; is the second fundamental tensor of the hypersurface M relative to
S#+1(1) [3]. We now assume that the induced (f, g, #, v, A)-structure (f, g, %, v, )
of M satisfies the condition that the tensor fields P, and w, defined in §2 vanish
identically, i.e., that

4.9 N;*=0, Nu,t'=

hold identically. Substituting (4. 1)~(4. 4) into (4. 5), we have

(4 6) u,,,k/"vi — umki’"vj =0
and
4.7 — U™t — bV 6™ — AV ;2=0.

Transvecting (4. 6) with »*, we obtain

(4. 8) umk/m'_‘av]y
where
4.9) a=(unk™H|/(1-22).

Substituting (4. 8) into (4. 4), we find
4. 10) Vid=(a—1)p,.

Substituting #.,V;u™= —2V;4, which is a direct consequence of u,u™=1—2% (cf. (1. 4)),
into (4. 7), we have

(4.11) u™Vu,=0.
Transvecting (4. 2) with #’ and using (4. 8), we find
u'l U= f. i’ -k b’

= —fifuj—lkﬂu,
4.12)
= —Av;—Aav;

='—2(1+0()Z)1,
Thus, from (4. 11) and (4. 12), we have a=—1. Therefore, (4. 10) reduces to
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(4. 13) Via=—2v,.
On the other hand, Yano [4] has recently proved

THEOREM. Suppose that a complete and :rientable 2n-dimensional Riemannian
manifold M is immersed in S (1) as a hypersurface. If the (f, g, u, v, 2)-structure
(f, 9, , v, 2) wmduced on this hypersurface is such that (1—2%) is non-zero almost
everywhere in M, and, if it satisfies Vid=—2v;, then M?®™ is isometric to S™(1// 2)
XS™1// 2).

If we now take account of this theorem and of (4.13), we have

ProrosiTION 7. Let M be a complete 2n-dimensional hypersurface immersed in
a unit spherve S*™ (1) with natural almost contact structuve. Denote by (f, g, u, v, 2)
the induced (f, g, u, v, 2)-structure of M. If (1—2%) s non-zero almost everywhere
in M, and, if the tensor field P, with components N;** and the covector field w,
with components Nyw' vamsh identically in M, then M is isometric to S™(1/~/ 2)

xS™(1/+/ 2).
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