NOTES ON ($f, U, V, u, v, \lambda)$-STRUCTURES

By Hideaki Suzuki

Sasaki and Hatakeyama [1] proved that, if a differentiable manifold M admits an almost contact structure (φ, ξ, η), then there is in the product space $M \times R, R$ being a real line, an almost complex structure F which is canonically constructed from φ, ξ and η. They defined an almost contact structure (φ, ξ, η) to be normal when this almost complex structure F is integrable in $M \times R$. The normality of an almost contact structure (φ, ξ, η) is characterized by vanishing of a certain tensor field constructed from φ, ξ, and η. Recently, Yano and Okumura [5] have defined a new structure in an even-dimensional manifold called an (f, U, V, u, v, λ)-structure as a set of a tensor field f of type (1,1), two vector fields U, V, two 1 -forms u, v and a scalar field λ satisfying certain algebraic conditions. They have showed that there exists naturally an (f, U, V, u, v, λ)-structure in a submanifold of codimension 2 immersed in an almost complex manifold or in a hypersurface immersed in an almost contact manifold [5]. One of the purposes of the present paper is to show that, if an even-dimensional manifold admits an (f, U, V, u, v, λ)-structure, then there is in the product space $M \times R^{2}, R^{2}$ being a plane, an almost complex structure F constructed from f, U, V, u, v and λ and to obtain a necessary and sufficient condition for the almost complex structure F to be integrable. Another purpose is to show that a hypersurface M immersed in a unit sphere $S^{2 n+1}(1)$ is isometric to the hypersurface $S^{n}(1 / \sqrt{2}) \times S^{n}(1 / \sqrt{2})$ if $M F$ satisfies certain conditions.

In $\S 1$, we recall the definition of an (f, U, V, u, v, λ)-structure and that of an (f, g, u, v, λ)-structure. In $\S 2$, we define an almost complex structure F in the product space $M \times R^{2}$, when an (f, U, V, u, v, λ)-structure is given in M and, by using local components of the Nijenhuis tensor of F, we define in M a tensor field T of type (1,2), tensor fields P_{1} and P_{2} of type (0,2), tensor fields Q_{1} and Q_{2} of type (1,1), a vector field S, 1 -forms $w_{1}, w_{2}, w_{3}, w_{4}$ and functions k_{1}, k_{2}. We study some properties of these tensor fields and obtain a necessary and sufficient condition for F to be integrable. In $\S 3$, we study the Riemannian connection of a Riemannian metric G defined naturally in $M \times R^{2}$ in terms of g, when an (f, g, u, v, λ)structure is given in M. In the last $\S 4$, we prove a proposition stating that a hypersurface immersed in a unit sphere of odd dimension is isometric to the product of two spheres of the same dimension and of the same radius.

Received April 28, 1972.

§ 1. Preliminaries.

Let M be an m-dimensional differentiable manifold of class $C^{\infty} .{ }^{1)}$ If there exist in M a (1,1)-tensor field f, two vector fields U and V, 1 -forms u and v and a function λ satisfying the following conditions (1.1) $\sim(1.5)$, then we say that M has an (f, U, V, u, v, λ)-structure (f, U, V, u, v, λ).

$$
\begin{equation*}
f^{2}=-I+u \otimes U+v \otimes V \tag{1.1}
\end{equation*}
$$

I being the unit tensor field of type $(1,1)$,

$$
\begin{array}{ll}
u \circ f=\lambda v, & f U=-\lambda V, \\
v \circ f=-\lambda u, & f V=\lambda U, \tag{1.3}
\end{array}
$$

where 1 -forms $u \circ f$ and $v \circ f$ are respectively defined by $(u \circ f)(X)=u(f X)$ and $(v \circ f)(X)$ $=v(f X)$ for any vector field X, and

$$
\begin{equation*}
u(U)=1-\lambda^{2}, \quad u(V)=0 \tag{1.4}
\end{equation*}
$$

It is well-known that a differentiable manifold with (f, U, V, u, v, λ)-structure is necessarily of even dimension and that any submanifold of codimension 2 immersed in an almost complex manifold and any hypersurface immersed in an almost contact manifold admit an (f, U, V, u, v, λ)-structure [5]. If a manifold with (f, U, V, u, v, λ)structure (f, U, V, u, v, λ) has a positive definite Riemannian metric g satisfying the conditions:

$$
\begin{equation*}
g(U, X)=u(X) \tag{1.6}
\end{equation*}
$$

$$
\begin{equation*}
g(f X, f Y)=g(X, Y)-u(X) u(Y)-v(X) v(Y) \tag{1.7}
\end{equation*}
$$

for any vector fields X and Y, then we say that M has an (f, g, u, v, λ)-structure (f, g, u, v, λ). Any submanifold of condimension 2 immersed in an almost Hermitian manifold and any hypersurface immersed in an almost contact metric manifold admit an (f, g, u, v, λ)-structure [5].

§2. An almost complex structure in $M \times \boldsymbol{R}^{2}$.

Suppose that a $2 n$-dimensional manifold M has an (f, U, V, u, v, λ)-structure (f, U, V, u, v, λ).

1) Manifolds and geometric objects we discuss are assumed to be differentiable and of class C^{∞}.

We define in $M \times R^{2}, R^{2}$ being a plane, a tensor field F of type $(1,1)$ with local components $F_{\mu}{ }^{2}$ given by ${ }^{2)}$

$$
\left(F_{\mu^{2}}\right)=\left(\begin{array}{ccc}
f_{2}{ }^{h} & U^{h} & V^{h} \tag{2.1}\\
-u_{i} & 0 & -\lambda \\
-v_{i} & \lambda & 0
\end{array}\right)
$$

in $\left\{W \times R^{2} ; x^{\lambda}\right\},\left\{W ; x^{h}\right\}$ being a coordinate neighborhood of M and $x^{1^{*}}, x^{2^{*}}$ being cartesian coordinates in R^{2}, where $f_{i}{ }^{h}, U^{h}, V^{h}, u_{i}$ and v_{i} are respectively local components of f, U, V, u and v in $\left\{W ; x^{h}\right\}$. Then, taking account of (1.1)~(1.5), we can easily verify that $F^{2}=-I$ holds in $M \times R^{2}$. Thus we have

Proposition 1. If there is given an (f, U, V, u, v, λ)-structure in M, then the tensor field F defined by (2.1) is an almost complex structure in $M \times R^{2}$.

The Nijenhuis tensor N of F has local components

$$
\begin{equation*}
N_{\nu \mu}{ }^{\alpha}=F_{\nu}{ }^{\alpha} \partial_{\alpha} F_{\mu}{ }^{\alpha}-F_{\mu}{ }^{\alpha} \partial_{\alpha} F_{\nu}{ }^{2}-\left(\partial_{\nu} F_{\mu}{ }^{\alpha}-\partial_{\mu} F_{\nu}{ }^{\alpha}\right) F_{\alpha}{ }^{\alpha} \tag{2.2}
\end{equation*}
$$

in $M \times R^{2}$ (cf. Yano [2]). ${ }^{3)}$ Thus, using (2.1), we can write down $N_{\nu \mu}{ }^{2}$ as follows:

$$
\begin{equation*}
N_{j i}{ }^{h}=\bar{N}_{j i}{ }^{h}+\left(\partial_{j} u_{i}-\partial_{i} u_{j}\right) U^{h}+\left(\partial_{j} v_{i}-\partial_{i} v_{j}\right) V^{h} \tag{2.3}
\end{equation*}
$$

where \bar{N} is the Nijenhuis tensor of f, and

$$
\begin{equation*}
N_{j i} i^{*}=-f_{j}^{m} \partial_{m} u_{i}+f_{2}{ }^{m} \partial_{m} u_{j}+u_{m}\left(\partial_{j} f_{i}^{m}-\partial_{i} f_{j}^{m}\right)-\lambda\left(\partial_{j} v_{i}-\partial_{i} v_{j}\right), \tag{2.3}
\end{equation*}
$$

(2. 3) ${ }_{3} \quad N_{j i}{ }^{2 *}=-f_{j}{ }^{m} \partial_{m} v_{i}+f_{i}{ }^{m} \partial_{m} v_{j}+v_{m}\left(\partial_{j} f_{2}{ }^{m}-\partial_{i} f_{j}{ }^{m}\right)+\lambda\left(\partial_{j} u_{i}-\partial_{i} u_{j}\right)$,
(2. 3) $)_{4} \quad N_{1 * 2}{ }^{h}=\left(\mathcal{L}_{U} f\right)_{i}{ }^{h}+V^{h} \partial_{i} \lambda$,
(2.3) $)_{5} \quad N_{2 n^{h}}=\left(\mathcal{L}_{V} f\right)_{i}^{h}-U^{h} \partial_{i} \lambda$,
(2.3) $)_{6} \quad N_{1+2}{ }^{1 *}=-\left(\mathcal{L}_{U} u\right)_{i}-\lambda \partial_{i} \lambda$,
$(2.3)_{7} \quad N_{1 * 2}{ }^{2 *}=-\left(\mathcal{L}_{U} v\right)_{i}-f_{2}{ }^{m} \partial_{m} \lambda$,
$(2.3)_{8} \quad N_{2+r^{*}}=-\left(\mathcal{L}_{V} u\right)_{i}+f_{2}{ }^{m} \partial_{m} \lambda$,
(2.3) ${ }_{9} \quad N_{2{ }^{2}}{ }^{2 *}=-\left(\mathcal{L}_{V} v\right)_{i}-\lambda \partial_{i} \lambda$,
(2.3) ${ }_{10} \quad N_{1+2}{ }^{h}=[U, V]^{h}$,
(2. 3) $)_{11} \quad N_{1+22^{*}}{ }^{*}=-\mathcal{L}_{U} \lambda$,
(2.3) $)_{12} \quad N_{1+22^{*}}=-\mathcal{L}_{V} \lambda$,
2) The indices $\alpha, \beta, \gamma, \cdots, \lambda, \mu, \nu$ run over the range $\{1, \cdots, 2 n+2\}$ and $a, b, c, \cdots, \imath, \jmath, k$ the range $\{1, \cdots, 2 n\}$. We denote $n+1$ and $n+2$ by 1^{*} and 2^{*} respectıvely. The Einstem's summation convention will be used with respect to these two systems of indices.
3) We denote $\partial / \partial x^{\lambda}$ by ∂_{λ}.
where \mathcal{L}_{U} and \mathcal{L}_{V} denote the operators of Lie derivation with respect to U and V, respectively.

We can casily verify that there are in M a tensor field T of type (1,2) with components $N_{j i}{ }^{h}$, two tensor fields P_{1} and P_{2} of type (0,2) with components $N_{j i}{ }^{1{ }^{1}}$ and $N_{j i}{ }^{2 *}$ respectively, two tensor fields Q_{1} and Q_{2} of type (1,1) with components $N_{1+2}{ }^{h}$ and $N_{22^{+}}{ }^{h}$ respectively, a vector field S with components $N_{1+22^{*}}$, four 1 -forms
 functions $k_{1}=N_{1 * 22^{*}}{ }^{*}$ and $k_{2}=N_{1 * 22^{*}}$ (cf. Lemma 4). The Nijenhuis tensor N of an almost complex structure F satisfies identically the conditions

$$
\begin{equation*}
N_{\nu \alpha}{ }^{\lambda} F_{\mu}^{\alpha}+N_{\nu \mu}{ }^{\alpha} F_{\alpha}{ }^{\alpha}=0 \tag{2.4}
\end{equation*}
$$

and

$$
\begin{equation*}
N_{\nu \alpha}{ }^{2} F_{\mu}{ }^{\alpha}-N_{\alpha \mu}{ }^{2} F_{\nu}^{\alpha}=0 \tag{2.5}
\end{equation*}
$$

(cf. Yano [2]). Substituting (2.1) into (2.4), we have

$$
\begin{equation*}
N_{j m}{ }^{h} f_{2}{ }^{m}+N_{j i}{ }^{m} f_{m}{ }^{h}+N_{j i} i^{1{ }^{1}} U^{h}+N_{j i} i^{2 *} V^{h}+N_{1 * j^{h}} u_{i}+N_{2 * j^{*}}{ }^{h} v_{i}=0, \tag{2.6}
\end{equation*}
$$

$$
\begin{equation*}
-N_{j i}{ }^{m} u_{m}+N_{j m}{ }^{1 *} f_{i}{ }^{m}-\lambda N_{j i}{ }^{2^{*}}+N_{1^{*}+{ }^{1 *}} u_{i}+N_{2 *}{ }^{1}{ }^{{ }^{*}} v_{i}=0, \tag{2.6}
\end{equation*}
$$

$$
\begin{equation*}
-N_{j i}{ }^{m} v_{m}+\lambda N_{j i}{ }^{1 *}+N_{j m}{ }^{2^{*}} f_{i}^{m}+N_{1 * v^{*}}{ }^{2 *} u_{i}+N_{2 * j^{*}} v_{i}=0, \tag{2.6}
\end{equation*}
$$

$$
\begin{equation*}
N_{j m}{ }^{h} U^{m}-N_{1 * j}{ }^{m} f_{m}{ }^{h}-\lambda N_{2}{ }^{h}{ }^{h}-N_{1 * j^{*}}{ }^{*} U^{h}-N_{1 * j}{ }^{*} V^{h}=0, \tag{2.6}
\end{equation*}
$$

$$
\begin{equation*}
N_{j m}{ }^{h} V^{m}+\lambda N_{1 * \rho}{ }^{h}-N_{2 * j}{ }^{m} f_{m}{ }^{h}-N_{2 * j}{ }^{1 *} U^{h}-N_{2 *{ }^{*}}{ }^{2 *} V^{h}=0, \tag{2.6}
\end{equation*}
$$

$$
\begin{equation*}
N_{1 * m}{ }^{h} f_{2}^{m}+N_{1 * i}{ }^{m} f_{m}{ }^{h}+N_{1 *{ }_{2}}{ }^{1 *} U^{h}+N_{1 *{ }^{*}}{ }^{2 *} V^{h}-N_{1 * *^{*}}{ }^{h} v_{i}=0, \tag{2.6}
\end{equation*}
$$

$$
\begin{equation*}
N_{2^{*} m}{ }^{h} f_{2}^{m}+N_{2 v^{2}}{ }^{m} f_{m}^{h}+N_{2 r^{*}}{ }^{1} U^{h}+N_{2 n_{2}}{ }^{2 *} V^{h}+N_{1 * 2^{*}}{ }^{h} u_{i}=0, \tag{2.6}
\end{equation*}
$$

$$
\begin{equation*}
N_{\rho m}{ }^{1 *} U^{m}+N_{1 *}{ }^{m} u_{m}+\lambda N_{1^{*},{ }^{2 *}}-\lambda N_{2^{*},{ }^{1 *}}=0, \tag{2.6}
\end{equation*}
$$

$$
\begin{equation*}
-N_{1 * 2}{ }^{m} u_{m}+N_{1 * m}{ }^{1 *} f_{2}^{m}-\lambda N_{1+\imath^{* *}}-N_{1 * 22^{*}}{ }^{1 *} v_{i}=0, \tag{2.6}
\end{equation*}
$$

$$
\begin{equation*}
N_{j m}{ }^{1 *} V^{m}-N_{2 * \jmath^{m}} u_{m}+\lambda N_{1 * \jmath^{*}}{ }^{1 *}+\lambda N_{2 * \jmath^{2 *}}=0, \tag{2.6}
\end{equation*}
$$

$$
\begin{equation*}
-N_{2{ }^{m}}{ }^{m} u_{m}+N_{2 * m}{ }^{1 *} f_{2}^{m}-\lambda N_{2+2^{2 *}}+N_{1+2^{*}}{ }^{1 *} u_{i}=0, \tag{2.6}
\end{equation*}
$$

$$
\begin{equation*}
N_{1 * m}{ }^{1 *} U^{m}+\lambda N_{1 * 22^{*}}=0, \tag{2.6}
\end{equation*}
$$

$$
\begin{equation*}
N_{1^{*} m}{ }^{1^{*}} V^{m}-N_{1 * 2 *}{ }^{m} u_{m}-\lambda N_{1 * 2^{*}}=0, \tag{2.6}
\end{equation*}
$$

$$
\begin{equation*}
N_{2^{*} m}{ }^{1^{*}} U^{m}+N_{1 * 2 *^{*}} u_{m}+\lambda N_{1 * 2^{*}}=0 \tag{2.6}
\end{equation*}
$$

$$
\begin{equation*}
N_{2 \cdot m}{ }^{{ }^{1 *}} V^{m}+\lambda N_{1 * 2^{*}}{ }^{1^{*}}=0, \tag{2.6}
\end{equation*}
$$

$$
\begin{equation*}
N_{j m}{ }^{2 *} U^{m}+N_{1 *}{ }^{m} v_{m}-\lambda N_{1 * \jmath^{1 *}}-\lambda N_{2 * \jmath^{2 *}}=0, \tag{2.6}
\end{equation*}
$$

$$
\begin{equation*}
-N_{1 * 2}{ }^{m} v_{m}+\lambda N_{1{ }^{1}}{ }^{1^{*}}+N_{1 * m}{ }^{2 *} f_{i}^{m}-N_{1 * 2^{*}}{ }^{2^{*}} v_{i}=0, \tag{2.6}
\end{equation*}
$$

(2. 6) $)_{18} \quad N_{\rho m}{ }^{2 *} V^{m}+N_{2^{*} \jmath^{m}}{ }^{m} v_{m}+\lambda N_{1+j^{*}}-\lambda N_{2 * j^{*}}=0$,
(2. 6) 19 $_{19} \quad N_{1 *}{ }^{2}{ }^{2 *} U^{m}+\lambda N_{1+2^{*}} 2^{*}=0$,
$(2.6)_{20} \quad N_{1 * m}{ }^{2 *} V^{m}-N_{1 * 2^{*}} v_{m}+\lambda N_{1 * 2^{*}}{ }^{{ }^{*}}=0$,
(2. 6) $)_{21} \quad N_{2 * m}{ }^{2 *} U^{m}+N_{1 * 22^{*}} v_{m}-\lambda N_{1+22^{*}} 1^{*}=0$,
(2. 6) $)_{22} \quad N_{22^{2}}{ }^{2 *} V^{m}+\lambda N_{12_{2} *^{*}}=0$.

Substituting (2.1) into (2.5), we have

$$
\begin{equation*}
N_{j m}{ }^{h} f_{2}{ }^{m}-N_{m \imath}{ }^{h} f_{j}^{m}+N_{1 *}{ }^{h} u_{i}+N_{1 *}{ }^{h} u_{j}+N_{2 * j}{ }^{h} v_{i}+N_{2 *}{ }^{h} v_{j}=0, \tag{2.7}
\end{equation*}
$$

$$
\begin{equation*}
N_{j m}{ }^{1 *} f_{2}{ }^{m}-N_{m}{ }^{1 *} f_{j}^{m}+N_{1 *{ }^{*}}{ }^{1 *} u_{i}+N_{1 * 2}{ }^{1 *} u_{j}+N_{2 * *^{*}} v_{i}+N_{2 *{ }^{*}}{ }^{1 *} v_{j}=0, \tag{2.7}
\end{equation*}
$$

$$
\begin{equation*}
N_{j m}{ }^{2 *} \dot{f}_{2}^{m}-N_{m}{ }_{2}{ }^{2 *} f_{j}^{m}+N_{1 *{ }^{*}}{ }^{2 *} u_{i}+N_{1{ }^{2}}{ }^{2 *} u_{j}+N_{2 * \xi^{*}} v_{i}+N_{2^{*}{ }^{2 *}} v_{j}=0, \tag{2.7}
\end{equation*}
$$

$$
\begin{equation*}
N_{j m}{ }^{h} U^{m}+N_{1 * m}{ }^{h} f_{J}{ }^{m}-\lambda N_{2 *}{ }^{h}-N_{1 * 2}{ }^{h} v_{J}=0, \tag{2.7}
\end{equation*}
$$

$N_{j m}{ }^{h} V^{m}+\lambda N_{1 *}{ }^{h}+N_{2 * m}{ }^{h} f_{j}^{m}+N_{1 * 2}{ }^{h} u_{j}=0$,

$$
\begin{equation*}
N_{j m}{ }^{1^{*}} U^{m}+N_{1^{*} m^{*}}{ }^{1 *} f_{j}^{m}-\lambda N_{2 *}{ }^{1^{*}}-N_{1+2 *^{*}}{ }^{1 *} v_{j}=0, \tag{2.7}
\end{equation*}
$$

$N_{j m}{ }^{1^{*}} V^{m}+\lambda N_{1 * j^{*}}{ }^{*}+N_{2 *}{ }^{*}{ }^{1 *} f j^{m}+N_{1 * *^{*}} u_{j}=0$,
(2. 7) ${ }_{8}$

$$
\begin{equation*}
N_{1^{*} m}{ }^{1^{*}} V^{m}+N_{2^{*} m}{ }^{1 *} U^{m}=0, \tag{2.7}
\end{equation*}
$$

$$
\begin{equation*}
N_{j m}{ }^{2 *} U^{m}+N_{1^{*} m^{2 *}}{ }^{2 *} f_{j}^{m}-\lambda N_{2^{*}{ }^{*}}{ }^{2 *}-N_{1{ }^{*} 2^{*}} v_{j}=0, \tag{2.7}
\end{equation*}
$$

$N_{j m}{ }^{2^{*}} V^{m}+\lambda N_{1 *}{ }^{2 *}+N_{2 * m}{ }^{2 *} f_{j}^{m}+N_{1 * 2^{*}}{ }^{2^{*}} u_{j}=0$,
(2. 7) ${ }_{11}$

$$
\begin{equation*}
N_{1^{*} * m}{ }^{2^{*}} V^{m}-N_{m 2^{*}}{ }^{2^{*}} U^{m}=0 \tag{2.7}
\end{equation*}
$$

Now, we assume that the function $1-\lambda^{2}$ is non-zero almost everywhere in M. Transvecting (2.6) with U^{i} and with V^{i}, we get respectively

$$
\begin{equation*}
N_{1^{*} j^{h}}=\frac{1}{1-\lambda^{2}}\left(\lambda N_{j m}{ }^{h} V^{m}-N_{j i}{ }^{m} f_{m}^{h} U^{i}-N_{j i}{ }^{1 *} U^{i} U^{h}-N_{j i}{ }^{2^{*}} U^{i} V^{h}\right) \tag{2.8}
\end{equation*}
$$

and
(2. 8) $2_{2} \quad N_{22^{*}}{ }^{h}=\frac{-1}{1-\lambda^{2}}\left(\lambda N_{j m}{ }^{h} U^{m}+N_{j i}{ }^{m} f_{m}{ }^{h} V^{i}+N_{j i} i^{*} V^{i} U^{h}+N_{j i^{2}} V^{i} V^{h}\right)$.

Transvecting (2.6) $)_{2}$ with U^{i} and with V^{i}, we have respectively
(2. 8) ${ }_{3}$

$$
N_{1^{*} \jmath^{1 *}}=\frac{1}{1-\lambda^{2}}\left(N_{j i}{ }^{m} U^{i} u_{m}+\lambda N_{j m}{ }^{{ }^{*}} V^{m}+\lambda N_{j i}{ }^{2 *} U^{i}\right)
$$

and
$(2.8)_{4}$

$$
N_{2 *}{ }^{1^{*}}=\frac{1}{1-\lambda^{2}}\left(N_{j i}{ }^{m} V^{i} u_{m}-\lambda N_{j m}{ }^{{ }^{*}} U^{m}+\lambda N_{j i^{*}} V^{i}\right) .
$$

Similarly, transvecting (2.6) ${ }_{3}$ with U^{i} and with V^{i}, we have respectively

$$
\begin{equation*}
N_{1 *}{ }^{2 *}=\frac{1}{1-\lambda^{2}}\left(N_{j i}{ }^{m} U^{i} v_{m}-\lambda N_{j i i^{1 *}} U^{i}+\lambda N_{j m}{ }^{2^{*}} V^{m}\right) \tag{2.8}
\end{equation*}
$$

and
(2. 8) ${ }_{6}$

$$
N_{2^{*} \eta^{2 *}}=\frac{1}{1-\lambda^{2}}\left(N_{j i}{ }^{m} V^{i} v_{m}-\lambda N_{j i^{*}} V^{*} V^{i}-\lambda N_{j m}{ }^{2 *} U^{m}\right)
$$

By the same devices as above, we have from (2.6) $)_{6}$

$$
\begin{equation*}
N_{1 * 2 *^{h}}=\frac{1}{1-\lambda^{2}}\left(N_{1^{*} m^{h}}{ }^{h} U^{m}+N_{1 * 2}{ }^{m} V^{i} f_{m}^{h}+N_{1 * 2}{ }^{1 *} U^{h} V^{i}+N_{1 * 2^{2}} V^{i} V^{h}\right) . \tag{2.8}
\end{equation*}
$$

Transvecting (2.6), with V^{i}, we obtain

$$
\begin{equation*}
N_{1 * \varepsilon^{*}} 1^{*}=\frac{1}{1-\lambda^{2}}\left(-N_{1^{*} \imath^{m}} V^{i} u_{m}+\lambda N_{1^{*} m^{*}} U^{m}-\lambda N_{1^{*}{ }^{2 *}} V^{i}\right) \tag{2.8}
\end{equation*}
$$

Transvecting (2.7), with V^{j}, we have

$$
\begin{equation*}
N_{1 * 22^{*}}{ }^{2^{*}}=\frac{1}{1-\lambda^{2}}\left(N_{j m}{ }^{2 *} V^{j} U^{m}+\lambda N_{1 * m} 2^{2 *} U^{m}-\lambda N_{2^{*} j^{*}} V^{j}\right) . \tag{2.8}
\end{equation*}
$$

By means of (2.8), we have
Lemma 2. If the function $1-\lambda^{2}$ is non-zero almost every-where in M, then the
 $N_{1+22^{*}}, N_{1+24^{*}}$ and $N_{1+22^{*}}$ are expressed as linear combinations of the other three sets of components $N_{j i}{ }^{h}, N_{j i}{ }^{1^{*}}$ and $N_{j i} i^{2^{*}}$ almost everywhere in M.

On the other hand, transvectıng (2.6) with u_{h} and with v_{h}, we have respectively

$$
\begin{equation*}
N_{j i^{1}}{ }^{1^{*}}=-\frac{1}{1-\lambda^{2}}\left(N_{j m}{ }^{h} f_{2}{ }^{m} u_{h}+\lambda N_{j i}{ }^{m} v_{m}+N_{1 *}{ }^{h} u_{h} u_{i}+N_{2^{*},}{ }^{h} u_{h} v_{i}\right) \tag{2.9}
\end{equation*}
$$

and

$$
\begin{equation*}
N_{j i}{ }^{2^{*}}=-\frac{1}{1-\lambda^{2}}\left(N_{j m}{ }^{h} f_{2}{ }^{m} v_{l}-\lambda N_{j i i^{m}} u_{m}+N_{1 *}{ }^{h} v_{h} u_{i}+N_{2^{*},}{ }^{h} v_{h} v_{i}\right), \tag{2.9}
\end{equation*}
$$

which show that $N_{j i} 1^{*}$ and $N_{j i^{*}}$ can be expressed as linear combinations of $N_{j i}{ }^{h}$, $N_{1 *}{ }^{h}$ and $N_{2 *}{ }^{h}$. Thus, taking account of (2.9) and (2.9) $)_{2}$, we have from Lemma 2.

Lemma 3. If the function $1-\lambda^{2}$ is non-zero almost everywhere in M, then the nine sets of components of the Nijenhurs tensor $N_{j i}{ }^{1^{*}}, N_{j i}{ }^{2^{*}}, N_{1 * 0^{1 *}}, N_{2 * 0^{1 *}}, N_{1 * 0^{2 *}}$, $N_{2}^{*} \jmath^{2 *}, N_{1^{*} 2^{*^{n}}}, N_{12^{2} 2^{*}} 1^{*}$ and $N_{1^{*} 2^{2^{*}}}$ are expressed as linear combinations of the other three $N_{j i}{ }^{h}, N_{1^{*}{ }_{j}}{ }^{h}$ and $N_{N^{*}, j}{ }^{h}$ almost everywhere in M.

If a symmetric affine connection V is given in M, then we can easily see that the components $N_{j i}{ }^{h}, N_{j i}{ }^{1{ }^{*}}$ and $N_{j i} i^{*}$ can be written as follows:

$$
N_{j i}{ }^{h}=f_{j}^{m} \nabla_{m} f_{2}^{h}-f_{2}{ }^{m} \nabla_{m} f_{j}{ }^{h}-f_{m}{ }^{h}\left(\nabla_{j} f_{2}^{m}-\nabla_{v} f_{j}{ }^{m}\right)
$$

$(2.10)_{1}$

$$
+U^{h}\left(\nabla_{j} u_{i}-\nabla_{i} u_{j}\right)+V^{h}\left(\nabla_{j} v_{i}-\nabla_{i} v_{j}\right),
$$

$$
\begin{equation*}
N_{j i^{1}}{ }^{*}=-f_{j}{ }^{m} \nabla_{m} u_{i}+f_{2}{ }^{m} \nabla_{m} u_{j}+u_{m}\left(\nabla_{j} f_{2}{ }^{m}-\nabla_{\imath} f_{j}{ }^{m}\right)-\lambda\left(\nabla_{j} v_{i}-\nabla_{i} v_{j}\right), \tag{2.10}
\end{equation*}
$$

$$
\begin{equation*}
N_{j i^{2}}=-f_{j}{ }^{m} \nabla_{m} v_{i}+f_{2}{ }^{m} \nabla_{m} v_{j}+v_{m}\left(\nabla_{j} f_{2}^{m}-\nabla_{\imath} f_{j}{ }^{m}\right)+\lambda\left(\nabla_{j} u_{i}-\nabla_{i} u_{j}\right), \tag{2.10}
\end{equation*}
$$

that is, we find that all the partial differentiations ∂_{i} involved in $N_{j i}{ }^{h}, N_{j i}{ }^{1^{*}}$ and $N_{j i^{2+}}$ can be replaced by the covariant differentations Γ_{\imath}. Thus we have

Lemma 4. If M is a differentiable manfold with (f, U, V, u, v, λ)-structure,
 $N_{1+22^{*}}, N_{1+22^{+^{*}}}$ and $N_{1+22^{*}}$ of the Nijenhuis tensor of the almost complex structure F in $M \times R^{2}$ define twelve tensor fields in the manifold M, which are determined by the given (f, U, V, u, v, λ)-structure.

We can get directly from Lemmas 1 and 2 .
Proposition 5. The complex structure F in $M \times R^{2}$ is integrable if and only if the three tensors $N_{j i}{ }^{h}, N_{j i}{ }^{1{ }^{*}}$ and $N_{j i} i^{2 *}$ vanish identically in M, or, if and only if the three tensors $N_{j i}{ }^{h}, N_{1 * 0^{h}}{ }^{h}$ and $N_{2 * 0^{h}}{ }^{h}$ vanish identically in M.

We see from Proposition 5 that if the almost complex structure F is integrable in $M \times R^{2}$, then (f, U, V, u, v, λ)-structure is normal in the sense of [5].

§3. A Riemannian metric in $M \times \boldsymbol{R}^{2}$.

Let M be a differentiable manifold with (f, g, u, v, λ)-structure. If we consider a Riemannian metric G in $M \times R^{2}$ with components

$$
\left(G_{\mu \nu}\right)=\left(\begin{array}{ccc}
g_{j i} & 0 & 0 \\
0 & 1 & 0 \\
0 & 0 & 1
\end{array}\right)
$$

$g_{j i}$ being the components of the Riemannian metric g in M, then we see easily that (G, F) defines an almost Hermitian structure in $M \times R^{2}, F$ being the almost complex structure defined by (2.1), that is,

$$
\begin{equation*}
F_{\beta}{ }^{\mu} F_{\alpha}{ }^{\lambda} G_{\mu \lambda}=G_{\beta \alpha \alpha}, \tag{3.1}
\end{equation*}
$$

where $F_{\mu^{2}}$ are components of F. We denote the Christoffel symbols formed with G and those formed with g respectively by $\left\{{ }_{\nu \nu}{ }_{\mu}^{\mu}\right\}$ and by $\left\{{ }_{j}{ }^{h}\right\}$. Then we find easily

We denote by \tilde{V}_{k} and ∇_{k} the covariant differentiation with respect $\widetilde{\left\{_{\nu}{ }_{\mu}\right\}}{ }^{\widetilde{2}}$ and with respect to $\left\{{ }_{0}{ }^{h}{ }_{i}\right\}$, respectively. Then the covariant derivative of F with respect to $\widetilde{\left.v_{\nu}{ }_{\mu}\right\}}$ is given by

$$
\tilde{V}_{\kappa} F_{\mu}{ }^{\lambda}=\partial_{\kappa} F_{\mu}{ }^{2}+\left\{\begin{array}{c}
\lambda \tag{3.3}\\
\kappa \alpha
\end{array}\right\} F_{\mu}{ }^{\alpha}-\left\{\begin{array}{c}
\alpha \\
\kappa \mu
\end{array}\right\} F_{\alpha}{ }^{2},
$$

that is, given by

$$
\begin{equation*}
\tilde{V}_{k} F_{j}{ }^{2}=\nabla_{k} f_{j}{ }^{2}, \tag{3.4}
\end{equation*}
$$

$$
\begin{equation*}
\tilde{\nabla}_{k} F_{j}{ }^{1^{*}}=-\nabla_{k} u_{j}, \tag{3.4}
\end{equation*}
$$

$$
\begin{equation*}
\tilde{V}_{k} F_{\jmath}^{{ }^{2 *}}=-\nabla_{k} v_{j}, \tag{3.4}
\end{equation*}
$$

$\tilde{V}_{k} F_{1{ }^{2}}{ }^{2}=\nabla_{k} u^{2}$,

$$
\begin{equation*}
\tilde{\nabla}_{k} F_{2^{2}}=\nabla_{k} \nu^{2}, \tag{3.4}
\end{equation*}
$$

$$
\begin{equation*}
\tilde{V}_{k} F_{2^{*^{*}}}=-\tilde{V}_{k} F_{1{ }^{*}} 2^{* *}=-\nabla_{k} \lambda . \tag{3.4}
\end{equation*}
$$

Hence we have
Proposition 6. Suppose that M has an (f, g, u, v, λ)-structure. Then a necessary and sufficient condition for the product Riemannian manifold $M \times R^{2}$ to be a Kählerian space with (G, F) is that all of f, u, v and λ are covariantly constant in M.

§ 4. Hypersurfaces in a unit sphere.

Let M be a hypersurface immersed in a unit sphere $S^{2 n+1}(1)$ with canonical almost contact structure. Then there is an (f, g, u, v, λ)-structure (f, g, u, v, λ) induced in M, which has the following properties:

$$
\begin{aligned}
& \left.\widetilde{c h} \begin{array}{c}
h \\
j
\end{array}\right\}=\left\{\begin{array}{cc}
h \\
j & i
\end{array}\right\},
\end{aligned}
$$

$$
\begin{align*}
& =\left\{\begin{array}{c}
\bar{h} \\
1^{*} i
\end{array}\right\}=\left\{\begin{array}{c}
\bar{h} \\
2^{*} i
\end{array}\right\}=0 \text {. } \tag{3.2}
\end{align*}
$$

(4. 1)

$$
\nabla_{\jmath} f_{i}^{h}=-g_{j i} u^{h}+\delta_{j}^{h} u_{i}-k_{j i} v^{h}+k_{\jmath}^{h} v_{i}
$$

$$
\begin{equation*}
\nabla_{j} u_{i}=f_{j i}-\lambda k_{j i} \tag{4.2}
\end{equation*}
$$

$$
\begin{equation*}
\nabla_{j} v_{i}=-k_{j m} f_{i}^{m}+\lambda g_{j i}, \tag{4.3}
\end{equation*}
$$

$$
\begin{equation*}
\nabla_{j} \lambda=k_{j i} u^{i}-v_{j} \tag{4.4}
\end{equation*}
$$

where $k_{j i}$ is the second fundamental tensor of the hypersurface M relative to $S^{2 n+1}(1)$ [3]. We now assume that the induced (f, g, u, v, λ)-structure (f, g, u, v, λ) of M satisfies the condition that the tensor fields P_{1} and w_{1} defined in $\S 2$ vanish identically, i.e., that

$$
\begin{equation*}
N_{j i}{ }^{1 *}=0, \quad N_{1^{*}{ }^{1 *}}=0 \tag{4.5}
\end{equation*}
$$

hold identically. Substituting (4.1)~(4.4) into (4.5), we have

$$
\begin{equation*}
u_{m} k_{j}^{m} v_{i}-u_{m} k_{i}^{m} v_{j}=0 \tag{4.6}
\end{equation*}
$$

and
(4. 7)

$$
-u^{m} \nabla_{m} u_{j}-u_{m} \nabla_{j} u^{m}-\lambda \nabla_{j} \lambda=0
$$

Transvecting (4.6) with v^{2}, we obtain

$$
\begin{equation*}
u_{m} k_{\jmath}{ }^{m}=\alpha v_{\jmath} \tag{4.8}
\end{equation*}
$$

where

$$
\begin{equation*}
\alpha=\left(u_{m} k_{i}^{m} v^{i}\right) /\left(1-\lambda^{2}\right) \tag{4.9}
\end{equation*}
$$

Substituting (4.8) into (4.4), we find

$$
\begin{equation*}
\nabla_{j} \lambda=(\alpha-1) v_{j} . \tag{4.10}
\end{equation*}
$$

Substituting $u_{m} \nabla_{j} u^{m}=-\lambda \nabla_{j} \lambda$, which is a direct consequence of $u_{m} u^{m}=1-\lambda^{2}$ (cf. (1.4)), into (4.7), we have

$$
\begin{equation*}
u^{m} \nabla_{m} u_{J}=0 . \tag{4.11}
\end{equation*}
$$

Transvecting (4.2) with u^{3} and using (4.8), we find
(4. 12)

$$
\begin{aligned}
u^{j} \nabla_{j} u_{i} & =f_{j i} u^{j}-\lambda k_{j i} u^{j} \\
& =-f_{i}{ }^{j} u_{j}-\lambda k_{i}{ }^{j} u_{j} \\
& =-\lambda v_{i}-\lambda \alpha v_{i} \\
& =-\lambda(1+\alpha) v_{i}
\end{aligned}
$$

Thus, from (4.11) and (4.12), we have $\alpha=-1$. Therefore, (4.10) reduces to

$$
\nabla_{j} \lambda=-2 v_{j} .
$$

On the other hand, Yano [4] has recently proved
Theorem. Suppose that a complete and rientable $2 n$-dimensional Riemannian manifold $M^{2 n}$ is immersed in $S^{2 n+1}(1)$ as a hypersurface. If the (f, g, u, v, λ)-structure (f, g, u, v, λ) induced on this hypersurface is such that $\left(1-\lambda^{2}\right)$ is non-zero almost everywhere in $M^{2 n}$, and, if it satisfies $\nabla_{i} \lambda=-2 v_{i}$, then $M^{2 n}$ is \imath sometric to $S^{n}(1 / \sqrt{2})$ $\times S^{n}(1 / \sqrt{2})$.

If we now take account of this theorem and of (4.13), we have
Proposition 7. Let M be a complete $2 n$-dimensional hypersurface immersed in a unit sphere $S^{2 n+1}(1)$ with natural almost contact structure. Denote by (f, g, u, v, λ) the induced (f, g, u, v, λ)-structure of M. If $\left(1-\lambda^{2}\right)$ is non-zero almost everywhere in M, and, if the tensor field P_{1} with components $N_{j i^{1}}$ and the covector field w_{1} with components $N_{1^{1}}{ }^{*}$ * vanish identically in M, then M is isometric to $S^{n}(1 / \sqrt{2})$ $\times S^{n}(1 / \sqrt{2})$.

Bibliography

[1] Sasaki, S., and Y. Hatakeyama, On differentiable manifolds with certain structures which are closely related to almost contact structure II. Tôhoku Math. J. 13 (1961), 281-294.
[2] Yano, K., Differential geometry on complex and almost complex spaces. Pergamon Press (1965).
[3] Yano, K., On (f, g, u, v, λ)-structures induced on a hypersurface of an odd-dimensional sphere. Tôhoku Math. J. 23 (1971), 671-680.
[4] Yano, K., Differential geometry of $S^{n} \times S^{n}$ To appear in J. Diff. Geom.
[5] Yano, K., and M. Okumura, On (f, g, u, v, λ)-structures. Kōdaı Math. Sem. Rep. 22 (1970), 401-423.

Department of Mathematics, Tokyo Institute of Technology.

