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DIFFERENTIABLE SOLUTIONS OF ALGEBRAIC

EQUATIONS ON MANIFOLDS

BY SAMUEL I. GOLDBERG AND NICHOLAS C. PETRIDIS

1. Introduction. Yano [7] introduced the notion of an f-structure, which is a
non-null (1,1) tensor field / of constant rank r on a C°° manifold of dimension
r+m, satisfying /3-f/— 0. An almost complex and an almost contact structure are
particular cases of an /-structure the existence of an /-structure being equivalent
to a reduction of the structural group of the tangent bundle to U(r/2)xO(m).
They were studied by various authors ([1], [2], [6], etc.) with particular focus on
the case of globally framed structures [2]. Extending the concept of an /-structure,
Goldberg and Yano [3] introduced the notion of a polynomial structure on a
manifold.

An /-structure is a particular case of an almost product structure [7], [8]. The
purpose of this paper is to point out the close relation of the polynomial structures
on manifolds and the almost product structures as defined by Walker [8]. In § 2
it is shown that any polynomial structure generates an almost product structure.
From this follow necessary and sufficient conditions for a distribution to be globally
framed and for a manifold to be parallelizable. In §3 reductions of the structural
group of the tangent bundle of a polynomial structure are obtained, similar to that
for /-structures (see [7]). It is shown that for any polynomial structure with
structure polynomial decomposable into distinct irreducible quadratic factors over
the reals R that there is an underlying almost complex structure. In §5 an ana-
logue of the normal /-structures [2] is examined which is more general in the sense
that the tensor field / is not required to satisfy an algebraic equation.

2. Almost product structure. Let M be a differentiate manifold. A C°° tensor
field / of type (1,1) on M is said to define a polynomial structure if / satisfies the
algebraic equation

(2.1) P(x)=xm+amχn-1 + +a&+a1I=Q,

where / is the identity mapping and fm~\P\ fm~2(p), ~ ,f(P\I are linearly in-
dependent for every psM. Clearly, / is non-singular if and only if α^O. The

polynomial P(x) is called the structure polynomial. If P(x)=x2+I we have an
almost complex structure.

An almost product structure on a differentiate manifold M is a system of
differentiate distributions Tlt T2, •••, Tk such that
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(i)

(ϋ)

for every pςM, where T(p) is the tangent space of M at p. It is denned by a
system of projectors πι(p}: T(p)-+Ti(p), i=l,2, •••, k, which are C°° tensor fields
of type (1, 1) on M, satisfying Σϊ=ιπi=/, πiπj=δijπi, where δij is the Kronecker delta.
The distributions Tlt ί=l, 2, •••, ft, are the basic distributions of the structure. A
distribution of the form Tf-Σ§jTJt δj=0 or 1, will be called a distribution of the
structure] the distribution T" = Σ (l—δJ')Tj is called the complementary distribution
to T.

THEOREM 1. A polynomial structure on a differentiate manifold Mt defined
by a C°° tensor field f of type (1, 1), induces an almost product structure on M. The
number of distributions of the structure is equal to the number of distinct irreducible
factors over R of the structure polynomial, and the projectors are expressed as poly-
nomials in f.

Proof. Let p(x) be the structure polynomial and p(x)=pι(x)*lp*(xY* —A(a?)β*,
where the pι(x) are distinct monic irreducible polynomials over R. Since pι(x)eι

~,Pk(x)ek are relatively prime in the ring F[x] of polynomials over R, applying the
Euclidean algorithm, we obtain polynomials hι(x), h2(x), •••, hk(x) such that

ιp(x)hι(x) + 2p(x}hz(x) + + np(x)hk(x) = 1,

where tp(x) is the polynomial obtained from p(x) by deleting the factor pi(x)eί. If
we put /»=rf</)Ai(/), ί=l, 2, •••, ft, then

The ,̂ f=l, 2, •••, ft, are thus C°° projectors defining an almost product structure
with distributions Tt, i=l, 2, — , ft, where Tt(p)=ltT(p).

Let M be a differentiable manifold with two complementary C°° distributions
Γi, T2 of constant dimensions and projectors ττι, τr2, respectively. If there are m
vector fields Eay a=I, 2, •••, m, globally defined on M, spanning the distribution 7\,
and m pfafiian forms ?yα satisfying

ya(Eb)=δϊ, a,b=l,29 . ,m

where ^? is the Kronecker delta, and if πι—Ea®η(L, then the distribution Γi is said
to be globally framed. (The summation convention is used here and in the sequel.)

An m-dimensional C°° manifold is called parallelizable if there are C°° vector
fields Xi, X2, •••, Xm, globally defined on M such that, for every point pεM, Xι(p\
•••, Xm(p) span T(p\ the tangent space of Mat p. Such distributions can be trivially
defined on parallelizable manifolds.

COROLLARY 1. Let M be a simply connected (paracompacf) manifold. A
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necessary and sufficient condition for M to have a globally framed distribution is
that there exist a polynomial structure on M, defined by a tensor field f of constant
rank k, with structure polynomial of the form

xP(x),

where P(x) is of degree k having k distinct non-zero real roots.

Proof. Let ci, c2, •••, ck be the roots of P(x) where c^O, cl^cj, i*j, i,j=l, 2,
•••, k. Then,

Applying Theorem 1, we obtain an almost product structure on M, with projectors
given by

4 =

where φ(χ) is P(χ) with the factor x-c,, deleted. If Tlt T2, — , Tk+ί are the cor-
responding distributions, then Tk+1 is the null space of /. Since / is of rank
k, Tk+1 must be of dimension n — k and each of the TVs, ί=l, 2, •••, k, must be of
dimension one.

We define on M a metric g and a connection L such that the distributions
Tι, T2, •••, Tk+i are orthogonal with respect to g, parallel with respect to L, and g
is invariant by parallel translation (see Appendix). If ψ(p) is the holonomy group
of L at pzM then the distributions Ti(p\ i=l, 2, •••, k+l are invariant by ψ(p\
and since M is simply connected

where the ^<(^), ί=l, 2, •-, &+1, are normal subgroups of ψ(p\ Since ψi(p} is
irreducible on 7ί(/>), ί=l, 2, •-, A+l, and acts trivially on T/^), ί>Λ and since the
?*(^), *'=!, 2, •••, A, are of dimension one, it follows that the ^(/>) coincide with
the identity subgroup.

Let Eι(p\ Ez(p\ -, 5fc(ί) be unit length vectors spanning T,(p\ T2(p), •••, Tk(p\
respectively. By parallel translation we define the vector fields Elt E2, •••, Ek, which
span the distributions Tl9 T2, •», 71*, respectively. Defining the pfafftan forms ηa by

it follows that

The orthogonal complement of Tk+ι is therefore a globally framed distribution.
Suppose now that JΊ, Γ2 are two complementary distributions and that 7\ is framed
by the globally defined vector fields £α, 0=1, 2, •••, A. Let ^α be the dual forms.
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We define the tensor field / of type (1,1) and rank k by

where the cα's are real, Ca^c^ for a^b, and ττ2 is the projector corresponding to
the distribution T2. Observe that τf((f-cJ}X)=Q, (since ηa(Eb)=ty for every
vector field X of M. It follows that /satisfies the equation x(x—Cι}(x—c2) (#—c*)
=0.

COROLLARY 2. A necessary and sufficient comdition for a simply connected C°°
manifold M of dimension m to be parallelizable is that there exist a polynomial
structure on M with structure polynomial of degree m having m distinct non-zero
real roots.

COROLLARY 3. There exists a polynomial structure of degree 3 (7) on S3 (S7)
with 3 (7) distinct non-zero real roots.

3. Reduction of the structural group. Let M be a differentiate manifold
with a polynomial structure defined by / and structure polynomial

(3.1) P(x)=x2+a2x+a1I

which is irreducible over R.
If a+βi are the roots of (3.1), then / satisfies the equation

(3. 2) (a?-α)f+j8»=0.

If in (3. 2) we put /=/3/+α/, then / satisfies the equation x2+I=Q and, conse-
quently, it defines an almost complex structure on M. We shall call / the almost
complex structure induced by /.

THEOREM 2. Let M be a C°° manifold with a polynomial structure. If the
structure polynomial has only distinct complex roots, then there is an underlying
almost complex structure on M.

Proof. Let / denote the tensor field which defines the polynomial structure
on M. According to Theorem 1, it defines an almost product structure on M Let
Ti, T2, •••, Tie be the basic distributions of this structure with corresponding pro-
jectors Λ, 4, •••, /Λ. Let P(x} = qι(x)qz(x)- qk(x) be the factorization of the structure
polynomial, where qi(x), i=l, 2, •••, k, are monic irreducible over R quadratic
polynomials.

The restriction of / to each Tι(p\ i=l,2,-~,k, has minimal polynomial #*(#),
for each psM. Hence, that the restriction of / to each Ti(p) induces a complex
structure Λ on Ti(p] for each pzMy that is

(3. 3)

for any vector field X. From (3. 3) it follows that the tensor field F=f1lι+fJS:
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H ----- hΛ/fc defines an almost complex structure on M.

COROLLARY 3. Let M be a C°° manifold of even dimension m with a polynomial
structure defined by the tensor field f of constant rank r and structure polynomial
of the form xP(x), where P(x) has constant term 1, and its factors are distinct
irreducible quadratic polynomials. If the distribution defined by the projector τr2=P(/)
is globally framed, then there is an underlying almost complex structure on M.

Proof. First note that πι=—P(f)+I, and π2=P(f) are projectors defining two
complementary distributions Γi, T2, respectively. It follows from Theorem 2 that
/ restricted to 7\ induces on it a complex structure Jlt that is (/ι2+/)τrι=0. Thus,
the dimension r of 7\ is even, and so also the dimension m— r of Γ2. Let T2 be
spanned by the globally defined vector fields Ea with dual forms ^α, 0=1, 2, •••,
m—r.

We define the tensor field

γyt _ Y
1-fi1-1®^', i=l, 2, .-, - — .

Clearly, (/2

2+/)7r2— 0, so f=fιπι+J2π2 is an almost complex structure on M.
It follows immediately, under the assumptions of Theorem 2, that the structural

group of the tangent bundle L(M) is reducible to GL(w/2, C), the complex linear
group of complex dimension m/2. Similarly, under the assumptions of Corollary 3,
the structural group of L(M) is reducible to GL(r/2, C)xGL((m-r)/2, C).

More refined reductions can be obtained if we assume that the ranks of the
projectors /t, /=!, 2, ••-, k, are constants n, ί=l, 2, •••,&, respectively. In this case,
under the assumptions of Theorem 2, the group of L(M) is reducible to

GL(fι/2, C) X GL(ra/2, C) X - - X GL(r*/2, C).

4. Integrability. The torsion of an almost product structure is defined by

(4. 1) H= Σ MA, li]
1

(see [8]), where A, /=!, 2, •••, y^, are the projectors of the structure and [A, A] is the
Nijenhuis tensor (see §5). It is known [8] that the almost product structure is
integrable if and only if H=Q. A polynomial structure defined by / is said to be
integrable if [/,/]=0.

Considering the almost product structure generated by /, the 4 in (4. 1) are
expressed as polynomials of /. Making use of this fact and the identity

[/i, Λ/s] + LΛΛ, /«] =/ι[Λ, /»] +/s[/ι, /s] + [/i, /J/8 + LΛ, Λ] Λ,

where
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(see [8]), the torsion H is expressed by

Hence, If the polynomial structure is integrable, then the almost product structure
generated by the polynomial structure is also integrable.

5. Normal /"-product structures. For any C°° tensor field F on Λf of type
(1, 1), the Nijenhuis tensor field [F, F] is given by

[F,F](X9 Y) = [FX,FY]-F[FX, Y]-F[X, FY]+F*[X, Y].

An almost complex structure F on M is integrable, if and only if, [F, F]=0.
Let M be a differentiate manifold with an almost product structure defined

by the distributions Tίt T2 of ranks n, rz and projectors πίt π2, respectively. In
addition, we assume that T2 is globally framed with (globally defined) vector fields
Ea spanning Γ2 and dual forms if such that πz=Ea(8)ηa.

If there exists a C°° linear transformation field / on M inducing an endomor-
phism on Tι(p\ for each pzM, and /=0 on TZy i.e., rank f=rlίf=fπι=πιfyfπz=0t

we shall say that we have an f -product structure on M. The globally framed /-
manifolds are examples of such structures. An /-product structure is said to be
normal if the dηa are of bidegree (1, 1) with respect to /, i.e., if

and if

(5.1) [

These relations are clearly satisfied on a normal globally framed /-manifold [4]. A
normal f -product structure will be denoted by M(fy Ea, ^

α).
Let Rr* be the r2-dimensional affine space. For an arbitrary point (p, x)eMxRrz,

the tangent space T(p, x) of MxRr* at (p, x) will be identified with the direct
sum T(p, x)=T(p)+Ts(x), where T(p) is the tangent space of M at p and T*(x) is
the tangent space of Rr* at x. From the almost product structure of M we have
Γ(£) = Ti(/0+Γ2(/0. Hence, the distributions Tl9 T2, TB define an almost product
structure on MxRTz. Let πίf τr2, π3 be the corresponding projectors.

The frame field {£Ί, Ez, •••, ET2} defines a non-singular linear mapping e: Rr*
-+T2(p) for each psM. Let Xa=e~1(Ea\ a = l, 2, -, r2. We define a C°° tensor field
F of type (1, 1) on MX IP* by

We then have the following basic theorem.

THEOREM 3. For a normal f -product structure

IF,F] = 0.
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COROLLARY 4. For a normal f-product structure M(f, Ea, η° \ the vector fields
Ea are infinitesimal automorphisms, i.e.,

(5.2) [£α,£ 6]=0,

(5. 3) L,tf=0,

(5. 4) LEJ=Q,

where Lx denotes the Lie derivative in the direction of X and [Ea, Eb]=LEaEt» a, b
=1,2.-,*.

This generalizes Lemma 2 in [4].
To prove Theorem 3, we establish a number of lemmas.

LEMMA 1.

(5.5) Fn=fa=nf=f, FEa=Xa,

(5. 6)

(5. 7)

(5.8) F2πz=-π2,

π$F3 = — Fπ2 =

(5. 9) πs[πX, πY]=0, Xa(πX

where π=

Proof. (5. 5) and (5. 6) follow directly from the definitions, and (5. 7) follows
from (5. 5) and (5. 6). The first two relations of (5. 8) follow directly from the
definition of F and the third follows from (5. 5) and the first of (5. 8). The last
relation of (5. 8) follows from the first two of (5. 8), from (5. 6) and the first relation
first formula of (5. 9) follows from the fact that the distribution defined by π is
of (5. 5). The integrable, and the last two relations of (5. 9) follow from the fact
that Xa=d/dxa, a = l,2, ~,r2, where (x1, •••, xr2) are the natural coordinates of Rrz,
and πX is a vector field over M.

LEMMA 2.

(5.10) [

implies

(5.11) π
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Proof. Let U be a coordinate neighborhood of M such that the distribution
Tι is spanned in U by the differentiable tensor fields Xa, α=l, 2, •••, n. Then,

is spanned in U by

(5. 12) Xlt X2, .-, Xrι, Elt Ez, .... Erf

Since [F, F] is bilinear over the module of vector fields £(M) of M, it is
enough to prove (5. 11) for the vectors of a local frame (5. 12). We have

(5. 13) [F. F](Xa, £ΰ = [FX, FEb] + F*[Xa, E>] - F[FXa, E>] -F[Xa, FEt].

By Lemma 1

F2[Z», Eb]=f*[Xa, £6]-π2[X, E6],

F[FXa, E6]=f[fXa,

[FX.,FEt]=Q,

so, from_(5. 13)

(5. 14) π[F, F](Xa, E6) =/2[X, £-,] -f[fX,, Et]-π,[Xa, Eb\

where we have put S/=[/,/] + .Eα(g)Jιf.
Applying the last two relations of (5. 9), the first two relations of (5. 8) and

the first formula of (5. 5), we obtain

[F, F](EΛ, E,)=fz[Ea, Ed-πJίE*, Et]

(5. 15) =Sf(Ea, Eύ)

=π[F, F](Ea, Et).

Finally,

(5. 15a) [F, F}(Xa, X,) = [fXa, fXύ] + F*[Xa, Xβ] - F[fXa, Xβ] - F[Xa, f X f ] .

Applying the first relations of (5. 8) and (5. 6) yields

π[F, F](Xa, Xt) = [fX.,fXt]+f [X,, Xβ]-πz[Xa, Xf]
(5. 16)

-flfX., Xβ]-f[Xa,fX?]=Sf(Xa, X,).

The lemma now follows from (5. 14), (5. 15) and (5. 16).

LEMMA 3. For a normal f -product structure
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(5. 17) ττ3F[F, F](FπX, πY) = πz[F, F](πX, πY).

Proof. We show

(5.18) ττ3F[F, F](FXa, Xβ)=π9[F, F](Xtt, Xβ).

From (5.15a)

F[F, F](FXa, Xβϊ=F[f*Xa,fXβ] + F*[fXa, Xβ]-F*[f*Xa, Xβ]-F*[fXa,fXβ].

Applying the third and fourth formulas of (5. 8), we obtain

/r -I Q\ _ 7?ΓZ? Z?V 7? V V \ ~ Z?Γ/"2V f V1 _ Z7L. Γ^V V Ί
^0. LΌ) TΓs/* [/*, jΓ J^/y-Λα, -AjSJ — TC^I1 [J Λa, jΛ.β\—7U3Γ7Ϊ2ijΛ.a, Λ~β\.

From the normality condition S/(/Zα, -X"^)=0, we get

^[/2^,/^]-7Γ2[/^,^],

so (5.19) becomes

7raF[F,F](FX,^)-0.

On the other hand,

Γ77 Z7Ί/Y" V \ ^ Z? /Γ/"V VI I Γ V ^" V11
7Γ3[/, Γ \(Λ.a, Λ.β)— —7Γ3.Γ7Γ2U/-Λ-α> Λ-β\\\_Λ-a) jΛ-βlf

Since the dη
a
 are of bidegree (1.1) with respect to /

τ*[F,F}(X
a
,Xύ=Q

which completes the proof of (5.18)
We now show that

(5. 20) π3F[F, F](FXa, Eb)=n[F, F](Xa, Eb).

Using the second formula of (5. 9) and the third and fourth of (5. 8)

π%F[Fy F](FXa, Ej)) = —Fπ2,[fXay E^

πs[F, F](Xaί E^) = —Fπz[fXaj E^]y

from which (5. 20) follows.
We also show that

(5. 21) π3F[F, F](FEa, Eb)=πs[F, F](Ea, Et).

Using the last two relations of (5. 9) and the first of (5. 8)

[F, F}(FEa> E,) = F[Ea, E,},

[F, F](Ea, E6)=F*[Ea, Et],

from which (5. 21) follows.
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Finally, we show

(5. 22) π3F[F, F](FEa, Xa}=π,[F, F](Ea, X).

Using the first formula of (5. 8), the second of (5. 7) and of (5. 9),

ττ3F[F, F](FEa, Xa) = -πBF[Ea, FXa]=πs[F, F](Ea, XJ.

The relations (5. 18), (5. 20), (5. 21) and (5. 22) complete the proof of the lemma.

LEMMA 4.

(5. 23) τr3F[F, F](π*X, πF) = -τr3[F, F](π*X, FπY).

Proof. Applying the second formula of (5. 7) and the last two of (5. 9)

(5. 24) 7Γ3F[F, F](Xa, Xa) = π,F[FXa, fXa] = -τr3[F, F](Xa, FXa\

Moreover,

(5. 25) πsF[F, F](Xay Eb}=π*[F, F](Xay FEb) =ΰ.

Now, (5. 24) and (5. 25) yield (5. 23).

LEMMA 5.

(5. 26) π,F[F, F](FπsX, πY)=πs[F, F](πsX, πY).

Proof. Applying the second formula of (5. 9) and the second, third and fourth
of (5. 8) gives

(5. 27) ττ3F[F, F](FXa, -X.) - -π*F[FXa, Xβ]=πt[F, F](Xa, Xa).

Also

(5. 28) π3F[F, F](FXa, Eb)=π9[F9 F](Xa, Eb) = -πΆF[FXa, Eb].

Now, (5. 27) and (5. 28) yield (5. 26).

LEMMA 6.

(5.29) ττ3[F, F](π3X,π3Y)=Q.

Proof. Applying the last two relations of (5. 9), we obtain

τr3[F, F](Xa, Xb)=πs[Ea, £6]=0,

thereby giving (5. 29).

LEMMA 7. For a normal f -product structure

(5.30) [F, F](πX, πY)=Q.
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Proof. By Lemma 2, it is enough to show

(5.31) πz[F,F](πX,πY} = $.

From Lemma 3

(5. 32) π3[F, F](πX9 πY)=πBF[F, F](FπX, πY).

(a) Suppose FπX=πZ. Then, (5. 32) becomes

π>[F, F](πX, πY) = π*F[F, F](πZ, πY).

Applying the first relation of (5. 7) and Lemma 2, we have

π*F[F, F](πZ, πY)=π,Fπ[F, F](πZ, πY) = Q

which establishes (5. 32) in this case.

(b) Suppose FπX=π*Z. Then applying Lemma 4

π3F[F, F](FπX, πY) = πzF[F, F](π*Z, πY) = -πs[F, F](π*Z, FπY).

If FπY=πsW, then by Lemma 6

τr8[F, F](πzZ, FπY)=πz[F, F](π*Z, π,W) = 0.

If FπY—πW then, by Lemma 5

, FπY)=πΆ[F, F](π*Z, πW]

W) = π*Fπ[F, F](πFπ*Z, πW).

But, from Lemma 2,

π[F, F](πFπsZ, πTF)=0.

The lemma follows from (a) and (b).

LEMMA 8.

[F, F](πX, ττF)-0

implies

[F,F]=0.

Proof. We must show that

(a) [F, F](πX, ττ3F)=0 and (b) [F, F](πsX, πBY)=0.

For (a), we have

[F, F](Xa, XJ = -[Ea, FXa] + F[Ea, Xβ],
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IF, F](Ea, Xa)=F*[Ea, Xa]-F[Ea, FX.],

that is

F[F, F](Xa, XJ = [F, F](Ea, X.)=0

by assumption. Since F is non-singular, this implies [F, F](Xa, -X»)=0. On the
other hand,

[F, F](Xa, E6~)=F[Ea, E»],

[F, F](Ea, Eb)=F*[Ea, E>],

that is

F[F, F](Xa, Et)=[F, F](Ea, Eύ)=0

which implies

[F, F](Xa, £,)=0.

For (b)

[F, F](Xa, Xt)=[Ea, E,,]

[F, F](Ea, E»)=F*[Ea, E,],

that is

F*[F, F](Xa, Xt)=[F, F](Ea, £i)=0.

With this lemma, the proof of Theorem 3 is complete.

Proof of Corollary 4. Let X be a vector field on M, then πX=X. From
Theorem 3 we have

[F, F](X, Xa)=0, that is, [FX,FXJ-F[X,FXa]=0,

or

[fX+FπzX, Ea]-f[X, EJ-FπΛX, £J=0,

that is,

(5. 33) [fX, Ea] + [Fπ2X, Ea]-f(X, Ea]-Fπ2[X, Ea] =0.

From the second relation of (5. 9) and the first of (5. 7)

(FπzX, Ea] e T», Fπ,[X, Ea] e Γ,.

Thus, from (5. 33)

(5.34) [fX, EA-flX, Ea]=0,
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(5. 35) [Fπ2X, Ea] - Fπ2[X, Ea] =0.

From (5. 34), we have LEaf=Q. Since π2=Ea®^a, we have π2X=ηa(X)Ea and
Fπ2X=7]a(X)F(Ea)=ya(X)Xa and Fπ2[X, Ed= η*([X, E^)Xa. Since [Xa, Eb]=Q, (5. 35)
gives Ettf(Xy)Xa-ιf(lEb,X])=0, that is, E*(ιf(X))-ιf([E», -X])=0, or L^α-0.
Finally,

[F, F](Xa, Xύ = [Ea, Eb].

Therefore, [F, F]=0 implies [£α, £6]=0 which completes the proof of the corollary.
Consider a polynomial structure / on M with structure polynomial

It defines two complementary distributions Ti, Γ2 with projectors

_ _ xy -/"m xy -fm—l /
TΓl — — Clm+lJ —<ZmJ ----- <

and

respectively. This polynomial structure is said to be globally framed if the distri-
bution T2 is globally framed.

If, in addition, the dηa are of bidegree (1, 1) with respect to / and

the polynomial structure will be called a normal polynomial structure.

COROLLARY 5. For a normal polynomial structure f of constant rank the
relations (5. 2), (5. 3), (5. 4) are satisfied.

Proof. Clearly, the almost product structure defined by the complementary
distributions discussed above is a normal /-product structure.

REMARK 1. If the polynomial structure is an /-structure, and if it is globally
framed, then [/,/] + £t

α(8)^α=0 implies the bidegree property [2].

REMARK 2. The bidegree property of a normal /-product structure is trivially
satisfied if dηa=Q, a—\, •••, k, which in the case of metric /-structures characterizes
the £ -structures [1].

6. Appendix. The following theorem is basically due to A. G. Walker.

THEOREM 4. Let M be a (paracompacf) C°° manifold with an almost product
structure defined by the distributions 7\, Γ2, ••-, Tk with corresponding projectors
πi, π2f •••, TΓfc. Then, there exists a metric connection on M with respect to which
the distributions Tlί /=!, 2, ••-, k, are parallel and orthogonal.
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The proof will be split into the following two lemmas:

LEMMA 9. Let M be a (paracompacf) C°° manifold with an almost product
structure [defined by the distributions 7\, T2, •••, Tk with corresponding projectors
πi, π2, •••, πk. Then, there exists a metric connection on M with respect to which the
distribution 7\ is parallel and the distributions 71, i=l, 2, •••, k, are orthogonal

LEMMA 10. Let M be a (paracompacf) C°° manifold with an almost product
structure defined by the distributions JΊ, T2, •••, Tie with corresponding projectors
πi, τr2, •••, TΓfc. If there is a metric connection on M with respect to which the distή-
butions 71, i=l, 2, • ••, k, are orthogonal, and the distributions T3,j=\, 2, ••-, my m<k,
are parallel, then there is a metric connection with respect to which the distributions
71, i=l, 2, •••, k are orthogonal and the distributions Tj,j=l, 2, •••, m+l are parallel.

Proof of Lemma 9. Let Γ be a connection on M Then the distribution Ti
is parallel with respect to Γ if

(6. 1) Pzτrι=0

for every vector field Z of M, where F denotes covariant differentiation with
respect to Γ.

Defining the tensor field aίr of type (1, 2) by

(6. 2)

we have, by (6. 1),

(6.3) αιr=0.

Let h be a positive definite metric on M and define the tensor field g by

(6. 4) g(X, F)=

Clearly, g is a positive definite metric with respect to which the 71, /=!, 2, •••, k,
are orthogonal. Let C be the Levi-Civita connection defined by g, then

(6. 5) F^=0

for every vector field Z of M, where V denotes covariant differentiation with
respect to C.

If S is a tensor field of type (1, 2), then Γ=C+S is a connection and

(6.6) FzΓ=FzF+S(F,Z).

The metric g is preserved by Γ if and only if F^g=0 which, because of (6. 5)
and (6. 6), beoomes

(6. 7) g(S(X, Z), Y) + g(X, S(F, Z))=θ,
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Now, (6. 2) may be written as

(6. 8) α,Γ( Y, Z) = αle( F, Z) + (π, - π2 ----- πk] [Sfa Y, Z) - πιS( Y, Z)]

so that (6. 3) becomes:

(6. 9) aίe(Y, Z)=(πι-π, ----- Jc*)[fflS(y, Z)-S(πιY, Z)].

We wish to determine S so that (6. 7) and (6. 9) are satisfied.
Using (6. 5) and the fact that the Z\, i=l, 2, •••, k, are orthogonal,

g(alc(X, Z), Y)=o((xι-π -----

flfcA-X; F)

), F) ----- flrfokfa-y), F)-g(^F^, F)

=g(X,

+g(X,

=g(X, πjzY)-g(X, π1Fz(πίY)}+g(X,

Thus,

(6. 10) g(alc(X, Z\ Y)+g(X, alΰ(Y, Z))=0.

If in the second member of (6. 9) we put S=alc

, Z)]

from which

(6. 11) alc(Y, Z} = (πι-π2 ----- ίr»)[ίnα,e(F, Z)-ale(πιY, Z)].

From (6. 10) and (6. 11), we see that if
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(6. 12) aie=S,

then (6. 7) and (6. 9) are satisfied.

Proof of Lemma 10. Let Γ be a connection on M with respect to which

(6.13) Fz7Γι = F*7ra= = fW=0, m<k,

(6. 14) 1^=0

for every vector field Z of M, where V denotes covariant differentiation with respect
to Γ and g is a metric such that

(6.15) g(πtX, π,F)=0 for *>/.

Defining the tensor fields car, i=l, 2, •••, m+1, of type (1, 2) by

(6. 16) αίτ(F, Z) = (2πi-π)(rzπi)Y, π^^ + +πt

the relations (6. 13) become

(6. 17) «ir=0, /=!, 2, -., w.

Consider the connection L=Γ+S, where S is a tensor field of type (1, 2) and
denote covariant differentiation with respect to L by F. We wish to determine S

so that

(6. 18) aiL=Q, i=l, 2, •••, w+1

(6. 19) g(S(X, Z\ Y)+g(X, S(Y, Z))=0

where α^z, is given by (6. 16) with V replaced by F.
Applying the identity (6. 6) and (6. 17) we obtain

(6. 20) aiL(Y, Z} = (2πί-π)[S(πlY1 Z}-πτS(Y, Z)], i=l, 2, -, m

and

(6. 21) am+ί,L(Y, Z)=αw+ι,r(F, Z) + (2^m+1-ττ)[S(πm+1F, Z)-τr

so (6. 18) becomes

(6. 22) (2πi-π)[S(πiY, Z)-π£(Y, 2)1=0, ΐ=l, 2, -, m

and

(6. 23) α»+ι,r(3Γ, Z) = (2πm+1-π)[πw+1S(F, Z)-S(πm+1F, Z)].

We observe that
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since ff

z(πίY)=πί^zYy ί=l, —, m\ hence am+ί,r(πiY, Z) = 0, i = 1, — , m. Similarly,
?riα»+ι.r(y, Z)=Q, i=l, — , m.

It follows that

(6. 24)

We also observe that

(6. 25) Xm+iGm+i, r(Yt Z) =

and

(6. 26) αm+1,Kτrm+1F, Z)-(2^w+1

Subtracting (6. 26) from (6. 25) gives

Hence,

(6. 27) αwι,r(F, ̂ ) = (2ττm+ι — 7r)[τrm+ιαm+ι,r(F, Z) — αTO+ι,r(?Γm+ιF, Z)].

It follows from (6. 24) and (6. 27) that (6. 22) and (6. 23) are satisfied for S=am+ι.Γ.

In a similar manner to that used to establish (6. 10)

(6. 28) <7(*m+ι,r(X, Z\ Y) + g(X, α*+ι.r(F, Z))-0.

Consequently, if S=αw+ι,r, (6. 18) and (6. 19) are satisfied.
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