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THE RUDIN KERNEL AND THE EXTREMAL

FUNCTIONS IN HARDY CLASSES

BY SABUROU SAITOH

1. In [8], we have been concerned with the Rudin kernel and some associated
reproducing kernels on_ compact bordered Riemann surfaces. The Rudin kernel
which is analytic on S (i.e. the closure of S) is characterized by the following
reproducing property on a compact bordered Riemann surface S: Let H2(S) be the
class of analytic functions f on S such that |/|2 has harmonic majorants on S.
For fixed x,tcS,

for all

Here 3S is the relative boundary of S, g(τ, t] is the Green function of S with pole
at t and the derivative is taken along the inner normal. Furthermore the adjoint
L-kernel j£t(τ, f) is characterized by the following relation:

(1.1) W^^j^dsr = ̂ j:t(τyx) along dS.

Here £t(τ, x) is an analytic differential on S except for a simple pole at x with
residue 1. However as we have pointed out (cf. [8], Lemma 3.1), the Rudin kernel
on a compact bordered Riemann surface does not characterize completely the Rudin
kernel. In the present paper, we shall be concerned with some further properties
of the Rudin kernel on an arbitrary Riemann surface and a general region in
the plane. Let S be an arbitrary open Riemann surface. For fixed x,t(eS), let
{Sn}n^<> (S03x,t) be a regular exhaustion of S. Let Rln\τ, x) denote the Rudin
kernel of Sn with respect to t and x. Let gn(τ, t) denote the Green function of Sn

with pole at t. Let HP(S) (/>>0) be the class of analytic functions f on S for which
\f\p has harmonic majorants on S. For any feHp(S), let uf denote the least
harmonic majorant of \f\p. Then we define J^-norm on S with respect to t by
\\fl\ts,p=uf(ty/p for any fixed point t on S.

The author wishes to express here his sincere thanks to Professor N. Suita
for his encouragement and useful criticisms.

2. At first, the following theorem is fundamental:
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THEOREM 2.1. The sequence of the Rudin kernels {-R?°(r, #)}£-<» converges
uniformly to an H2(S)~ function Rt(τ, x) on an arbitrary compact subset of S.
Further it also converges to Rt(τ, x) in H2-norm. Rt(τ, x) is determined uniquely
and independently of the choice of regular exhaustions {Sn} Moreover the kernel
is characterized by the following reproducing property:

for all

Proof. From the reproducing property, we have

Hence we have

Since R(

t

n\x, x) decreases with respect to n [8], {Rln\τ, x)} is locally uniformly
bounded and therefore it forms a normal family. By passing to a subsequence
if necessary, we may assume that {R(

t

n\τ, x)} itself converges uniformly on
compact subsets of S to an analytic function Rt(τ, x). At first, we shall prove

dsτ

For any m, n such that SnnSm, we have

I f l p / r M2 dgm(τ, 0
2^rJ^ l^ίfcaOΓ -̂̂

— lim 7?(nY'x» iΛ—T? (Ύ <γ \— lim j\£ \^x, α,y—-ί\£^x, x^.
n—»oo

On letting m tend to infinity, we have \\Rt(τy x)\\1

SΛ^Rt(x, x)l/2. More precisely, we
shall show \\Rt(τ,xWs,2=Rt(xtx)1/2.

Because Rln\τ, x)/R(

t

n)(x, x) is the unique extremal function minimizing H2~
norms among the functions fζH2(Sn) with /(#)=! [8], we obtain

J_

2τr jds~

τ, α?) Vn(τ, t) Rt(τ,

Rt(χ, x)

(Note that
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Hence

< . \Rt(τ

= ί ( >

Letting n tend to infinity, we have R^xJ^^R^^x)^.
Next, we shall see that Rt(τ, x) has the reproducing property on S. For any

gn(τ,t)

, f)

On letting ^ tend to infinity, we see that Rt(τ,x) has the reproducing property
for {Sn}. Because the 772-function which has this property is determined uniquely,
Rt(τ, x) is determined uniquely and for any regular exhaustion {Sn} (hence in fact
for any exhaustion in the sense of Lemma 3. 1) Rt(τ, x) has the reproducing pro-
perty on S.

From this theorem, we have a formula of Poisson-Jensen type on an arbitrary
open Riemann surface by making use of Rt(t,x) = l and the identity

dsr, for all

COROLLARY 2.1.

for all /€#i(S).

~ Re[/(τ)] Rt(τ, x)
π

ds,,

COROLLARY 2.2. f(x)=f(f) for all fsH*(S) if and only if Rt(x,x)=I. Espe-
cially in a plane region G, for some x,t($G, x^t) (and hence for all x,t€G, x^t\
Rt(x,x)=l if and only if G€θπ2 (i.e. the class of Riemann surfaces for which
HZ(S) contains only constant members).

3. Let Hϊ>(S) denote the linear space of all f$Hp(S) with finite norm at
Let ff§(S) be the unit ball ||/||^,p^l. Now we consider the extremal functions
f%(τ\ x,f) which maximize f(x) in the subfamily of Hl

p(S} satisfying f(x)^Q (P^\)
(cf. [8]). If p>l, by virtue of the uniform convexity property and the com-
pactness, we have the following lemma easily.
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LEMMA 3.1. The extremal functions f $ ( τ \ x > t } (/>>!) exist uniquely. Let {Sm}
be a sequence of arbitrary domains containing x and t which exhausts S from
within. Then the sequence of the extremal functions /J>772(τ; x, t) which correspond
to {Sm} converges uniformly on compact subsets of S to fp(τ', x, t). In particular,
we have

(1) /*(>; #,/) = ! if and only if /J(r; x, t) = l.

(2) /ί(r; ί, *)Ξ=1.

(3) f f ( τ ; x , t ) = Rt(τ,x)IRt(x,xγ'*.

In addition, (1) and (2) are valid for ff(τ; x, t}.

Now, we state Theorem 3. 1 as a generalization of Corollary 2. 2 which is a
direct result from Lemma 3.1 and the next lemma:

LEMMA 3.2.

„, ~, Λ Γ I f
/(#) =/$(#; x, 0 lim -o- \n->oo Zπ: Ja^w

for all fsHp(S) (p^l).

THEOREM 3.1. f(x)=f(t) for all fsHp(S) if and only if f$(x\ x,t}=l (p^l).
Especially in a plane region G, for some x,t(sG, x^t) (hence for all x,tεG, x^t\
fp(x', x,f) = l if and only if GzOHp.

Proof of lemma 3. 2. We set fp(τ; x, f)=fp(τ\ x, t)lfξ(x\ x, t\ then fp are the
extremal functions which minimize Hp-norms in the subfamily of HP(S) satisfy-
ing /(α?) = l. Consequently for any complex number λ and fzHp(S}y we have

\fp(r, x,
n ov

By using a natural norm preserving isomorphism between HP(S) and the closed
subspace of Hp({\z\<l}) (cf. [7], p. 179), and from the arbitrariness of λ, we have

Hence

v ( τ ; x , ί } \ p dgn(τ,f)

P(r; ̂  ί) 9v

Thus we have completed the proof of the lemma.
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4. Next in connection with Theorem 3.1, we assert the existence of a non-
OHp Riemann surface on which f(χ)=f(t) (x^t) for all feHp(S) (p>0). The
idea of this construction lies in Myrberg [6]. We introduce two copies Si, S2 of
{z\ |2|>1} and distinguish the segments [2n,2n + l] (n=l, 2, -••). We construct the
desired surface S by joining Si to S2 along their common distinguished slits in
the usual manner. Let {x,t} be the preimage of z (\z\>V) with respect to the
projection map. Then we see that S$0Hp (p>ΰ) and f(x)=f(f) for all fsHp(S)
(cf. [5] pp. 36-37).

5. Let E be a compact subset of S such that S—E is connected. Then we
shall investigate a property of E for which R(

t

s\x,x)=R(

t

s~E\x,x) (^=1, x^t and
x,t€S—E) is valid. In the cases of the Szegδ kernel and the Bergman kernel
(with respect to the class of single-valued, square integrable, analytic functions
having a single-valued indefinite integral) in the plane region, it is well known
that such a case happens if and only if the analytic capacity of E is zero and E
is a A^D-null set respectively (cf. [1], [4]). In our case, the condition of this type
is quite different from theirs. We obtain such a condition from the following
theorem by making use of the identity ff(τ; x, t) = Rt(τ, x)IRt(x, #)1/2.

THEOREM 5.1. Any non-constant HP(S-E) function f can be continued ana-
lytically to S in the following way:

t \\-f\\t
~,P—\\J\\S-E,P

if and only if (logarithmic) Cap £=0. Here the norms are considered with respect
to an arbitrary point t(sS—E) (hence all tεS-E).

COROLLARY 5.1. For some x,t(GS—E, x^t) (hence for all x,t€S—E,
if and only if CapE-0.

Proof of theorem 5. 1. At first, we assume that a non-constant HP(S) (S~S—E)
function / can be continued analytically to S in the following way: l!/|||3,=||/||!s,3>
Let u and ύ be the least harmonic majorants of \f\p on S and S, respectively.
Then we have ύ(τ}^u(τ) on §. From the assumption, we have ύ(t) = u(t) for
/(eS). Hence from the maximum principle we have ύ(τ)=u(τ) on S. Let {Sw}™=0

be a regular exhaustion of § and we define Sm,n as the component of SmnSn

which contains t. Then ύ(τ) may be represented as follows:

n->oo
ra-»oo

If Cap E^O, at least E contains a regular boundary point a0 in the sense of the
Dirichlet problem (cf. [2]). Because \f\p is continuous on E, we have
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From the maximum principle, we have \f(τ)\p=u(τ), which is absured.
On the other hand, if Cap E=Q, it is well known that Hp(§) -functions can be

continued analytically to S [7]. It is readily verified that this extension has the
desired property.

6. In this section, we shall consider the relations between the extremal func-
tions /J(τ; x, t) and the Rudin kernel Rt(τ, x) on S. If Rt(τ, x) has no zeros and
Rt(τ, x)2/p becomes a single-valued analytic function in S, then in some cases
these relations are very simple. Here the branch of Rt(τ,x)2/p is determined by
Rt(xj x)2/p^l in the sequel. In addition, these relations should be compared with
the case of ^-classes in the plane region which was considered by Havinson [4].

THEOREM 6.1. (I) 2>/>^l: For all n>n0 (for some ΛO), if Rίn\τ9x) has no
zeros in Sn and Rt(τ, x)2/p is a single-valued analytic function in S, then the follow-
ing relation (6. 1) is valid.

(II) p>2: If Rt(τyx) has no zeros and Rt(τ,x¥/p is a single-valued analytic
function in S, then (6. 1) is valid.

(6.D
for all feffp(S).

In particular, from (6. 1) we have

Proof. In the case (I), we assume that R[n\τ, x) has no zeros in Sn for all
. For any fixed SΛ, we set

Λ. n(τ; x, f) = RjL^'X}[ (€fli(S,)), and
Kt (X9 X)

ff fτ. x t]- _ 1_ . 1 . tfoofc x] . W\τ>*W"(τ *)Λi, n(τ, x, t) - idWn(^ t} . Kt (x, x) ^n)^ ̂

Here Wn(τ,f) is defined by gn(τ,f)+ig%(τ,f), where gj is the conjugate harmonic
function of gn(τyf). From (1.1), we have

.n(r; a?, /)| on aSn, and

l l/ι,n(τ;α?, 011^,1 = 1-

From Theorem 3. 1 in [8], we have

/ι,n(r; a?, 0=/ί«(r; ΛΓ, 0 and £i,»(r)sAlin(r).

Here /ίn and A l f « are the extremal functions on Sw which we have stated there,
Hence we have
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f?.n(τ;χ,V= ^p^)2-

On letting n tend to infinity, we have /? (τ; x, t)=Rt(τ, x)2/Rt(x, x\ and therefore
from Lemma 3.2 we have

/ ( τ ) - r f s r , f o r a l l
n Kt(τ, X) ou

Next we note that for p^l,

\f(τ)Rt(τ, xγw^ \ p

and therefore

f(τ)Rt(τ, xγ^-^GH^S) for all feHp(S) (p^l).

Hence we have

/(*) = Rt(x, xf»-> l i m - f(τ)Rt(τ, *)'<"/» r ~ dsr,
n_*oo Δπ Jdgn -"-ί(r, Λ?; OP

for all /€flp(S) (ί^l), and therefore we obtain (6.1) for ̂ 1.
At last, as to (II), we have

for all

and from Theorem 2. 1, we obtain (6. 1), similarly.

In the case of a simply connected region, we see that all assumptions of
Theorem 6. 1 are satisfied. More generally, in the case of a finitely connected
plane region, we have the following theorem:

THEOREM 6.2. Let G be a finitely connected plane region. For fixed t(sG\
there exists a neighborhood U(t) of t such that Rt(τ,x) (x$U(f)} has no zeros and
Rt(τ, x)2/p (^>0) becomes a single-valued analytic function in G. In addition, in
this case for p=l (and therefore for p^l) the formula (6. 1) is valid.

Proof. Without loss of generality, we may assume that G is a regular re-
gion. Let UQ(t) be a neighborhood of t such that tzUQ(t)c: UQ(f)c.G. In particular,
Rt(z, x) (z€dG, x€ Uo(t)) is a continuous function for two variables z and x and
therefore it is uniformly continuous on dG X U0(f). Hence for one, there exists
<5>0 such that

for all \z-z1\ + \x-

On setting Zι—z and x\—t^ then from Rt(z,f) = l (as we see from Theorem 2.1),
we have
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\Rt(z,x)-l\<l, for all ztdG and all xeU0(f) such that \x-t\<δ.

Hence we have a desired neighborhood Z7(/):

From the conformal invariance of the Hp-norms and the proof of Theorem 6. 1,
we see that (6.1) is valid for p=l in these cases.

Here we remark that in the case of infinitely connected plane region, Theorem
6. 1 is no more valid in general. In fact, Hejhal [3] have pointed out the existence
of a region G such that GeO#2 and G$OHl From Theorems 3. 1 and 6. 1, we shall
see that for this region G, Theorem 6. 1 is not valid. Further we note similarly
that in the Case (I), the assumption "^n)(τ, x) (for all n>Ho) has no zeros in
Sn" can not be substituted for "Rt(τ,x) has no zeros in S" in general. Next for
a regular region G, let F(p*\z] x, f) be the extremal functions which maximize
[dNf(z)ldzN]M (Λ^l) in the subfamily of H$(G) satisfying [dNf(z)/dzN]M^0 (p^l).

It is easy to see that

Therefore we note that for these extremal functions the circumstances as Theorem
6.1 does not happen. In addition, in connection with F^m(t\ x, t)=Q, we see that
Fψ\t\ a?, 0=0 (p^l, P*2, N^ΐ) is not valid in general.

7. Let G be an n-p\y connected regular region in the plane. It is well-
known as a very important property that the Szegδ kernel and the Bergman
kernel (which we have stated in No. 5) on G have n—l and 2n—2 zeros in G,
respectively ([4], [9]). In this section, we shall consider the problem of the ex-
istence of zeros of the Rudin kernel. Unfortunately the total number of zeros
depends on G, x, and t. We shall see these circumstances for the doubly con-
nected plane region in detail. Without loss of generality, we may assume that
A is an annulus such that {z\ r<\z\<l}. Let f?(z; x,f) and hι(z) be the extremal
functions which we have considered in ([8], Theorem 3.1). Then we have

(7.1) /*(*; x, OAι(*) =ff(x; x, 0!/?(*; *, t) \ on d A

Here hι(z) is the unique extremal function which minimizes ess. sup \h(z)\ (z€dA)
in the class of meromorphic functions such that

for all

Since hι(z) is analytic on A and has at most one simple zero in A except for /
(as we see from (7.1) by the argument principle), hι(z)jff(x; x, f) is characterized
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as the unique extremal function which maximizes \Resz=xh(z)\ in the class of h
which satisfies the following conditions:

where f(z) is an analytic function on A and c is a real number.

(2) |A(z)|=l on dA.

(3) h(z) has at most one simple zero a in A except for t.

Here if x coincides with the critical point tι of g(z,t\ Res2=sa. h(z) is substituted
for the coefficient of l/(z— x}2. Therefore for an admissible function h, we may
represent the extremal property as follows:

(7. 2) log \h(z)\ =g(z, x)-g(z, f) + g(z, tj-δgfa α),

for some a€A and <5=0 or 1.

(7.3) ω1(x)-ω1(t)+ω1(tί)-dω1(a)=n1 (integer).

Here ω^(z] is the harmonic measure of the inner boundary C\ of A.

log I Res h(z)\ = u(x)-g(x, f)+g(x, tj-dg(x, α)

(7.4)
ι, x) — δg(a, x).

Here u(z) is defined by g(z,x)+log\z—x\. (7.3) represents the condition for h(z)
to become a single-valued function. More precisely, HI may be represented as
follows:

Hence the zero α of hι(z)/ff(x', x, t) (if there exists) is characterized as the unique
point which maximizes (7. 4) under the condition (7. 3).

Case 1. ωι(x}—ωι(f)-\-ωι(tι] is not an integer.

Then we have δ=l. Hence hι(z) has two zeros a and t, and therefore the ex-
tremal function ff(z\ x, f) has no zeros on A.

(a) \t\=r1/2: Then we have ωι(t)=ω1(tι) and ωι(α?)— <wι(α)=«ι and therefore
Λι=0.

(b) r1/2<μ|<l: We set ΰ=-

(1) a>ι(x)<l—D: we have «!=0.

(2) Q>i(a?)>l— jD: we have ^ = 1.
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(c) r<\t\<rί/z (-KZKO):

(1) <UI(Λ?)< — D: we have n^ — — 1.

(2) ωι(^)>— jD: we have ^ι=0.

Case 2. ωι(x)—ωι(f)^-ω^(t^ is an integer:

Then we have δ=Q. Hence ^1(2) has only one zero point t and therefore the
extremal function ff(z; xy f) has one zero on A. Here any zero on the boundary
is to be counted with half its multiplicities in this enumeration.

(a) ff(z; Xjf) has one zero in A.

(b) fί(z\ x,f) has one double zero on 8 A.

At first, we note that in the Case 1 the extremal function f?(z; xy f) is
determined uniquely. Let ff(zm, x, t) be any extremal function which maximizes
f(x) in the subfamily of H[\A) satisfying /(#)^0. By the uniqueness of hι(z),
from (7. 1) we have

-Δ

°n

Hence we have /ffc; x, f)=ff(z\ x, t).
Now, in the cases (a), (b) (1), (c) (2) in Case 1 and Case 2; (b), /*(*; x, t)1/z

(ff(x] x, 01/2>0) becomes a single-valued analytic function and therefore we have,
as we see from the proof of Theorem 6. 1,

Hence in these cases, Rt(z, x) has no zeros on A except for the Case 2; (b), in
which Rt(z, x) has one simple zero on dA. Next, in the cases (b) (2) and (c) (1) in
Case 1 and Case 2; (a), ff(z; x, t}l/z does not become a single-valued analytic func-
tion and therefore

"^", ,- Rt(x>x)

is not valid. In particular, from Theorem 6.1 we see that Rt(z, x) has one simple
zero in A (if there exists, the total number of zeros is at most one as we see
from (1.1)).

In summary.

( I ) Case 1; (a), (b) (1) and (c) (2): Rt(z, x) has no zeros on A and therefore
Xt(τ,x}=Lt(z,x)dz has one simple zero in A as we see from (1.1).

(II) Case 2; (b): Rt(z, x) has one simple zero on dA and therefore Lt(z, x)
also has the simple zero at the same point on dA.
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(III) Case 1; (b) (2), (c) (1) and Case 2; (a): Rt(z, x) has one simple zero in A
and therefore Lt(z, x) has no zeros on A.

It is easy to see that Case (II) in fact may happen.
Finally in connection with the assumption of Theorem β. 1, we note the

existence of the cases such that Rt(z,x) has no zeros on Ά and Rt(z,x)2/p

(p>Q, p*?l,2) is not a single-valued analytic function.
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