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CERTAIN COEFFICIENT INEQUALITIES

FOR UNIVALENT FUNCTIONS

BY MITSURU OZAWA

1. Let S be the family of normalized regular functions f(z) univalent in the
unit circle \z\<l

In this paper we shall prove the following theorems.

THEOREM 1. In S

a 5 - 4 - —
JL5
2

Equality occurs only for zl(l-~elίzY, ε: real.

THEOREM 2. In S

4 - — a\
23 1 A J_

1Γ+ 8Γ o + 4r0

where r0 /5 of 2r3— 4r=l satisfying 1.5256 <r0< 1.5257.

Both theorems are proved by Bombieri's method [1] together with Schiffer's
variational method. Theorem 2 does not assert its exactness. A similar inequality
can be proved for

2

2a3 — Da\,

when 1<Z?<23/16. However it is not again best possible. For D— 79/54 we have
proved already

4 — — a
79

-̂ -p
54

_
2 '
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[9]. For D=3/2 Grunsky's inequality gives the result,
function is not extremal.

THEOREM 3. In S

For ^ 23/16 Koebe's

for 0^5^4. This is best possible.

It is known as Garabedian-Schiffer's inequality [4] if δ=3. For <5=0 it is
Gόrsky-Poole's inequality [6]. <5=4 gives a Grunsky inequality. Jenkins [8] had
given another proof in the case <5=3 as a corollary of his coefficient theorem.
Gόrsky-Poole stated a conjecture for general δ (0<<5<4). However Jenkins' theorem
includes the result, although he did not state it explicitly. We state it explicitly
in Theorem 3.

THEOREM 4. In S

-I- βa\

I -(16/5+67.5),

x 16/3+67.5, /3*rg/3

where 3(9+2β)R2=R+l, R>0 and β* is defined by

- 16 = 0, 0.95 < ̂ * < 0.96.

These estimations are sharp. When /3^i— 35/8 or β>β*, equality occurs only for
zl(l+eίez)2, ε: real. If β=β*, an extremal function is z/(l+eίez)2, ε: real.

A special case | a5 — ̂ a2a^ — 3al/2 + 9a2

2a3 — 9al/2 1 ̂  9/2 is an extension of
I <z4 — 3a2a3 + 2al | ̂  2. There are formal analogies between the corresponding
Schiffer's differential equations. The method of proof of Theorem 4 has a wide
range of applicability, although we do not know its general theory at all. We
shall give examples for which the method of proof of Theorem 4 is applicable.

THEOREM 5. For δ^-l

I a5 - - ka\ | ̂  - 5 - 9δ.
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Equality occurs only for zl(l—eίez)2, ε: real.

THEOREM 6.

85-14 for B^jg,

A + 1 , 22-VT ^,23
3 + 18(2-5) f°r 12

14—85 for B< —
12 '

estimations are best possible. Equality occurs only for z/(l — etεz)2, ε\ real
when 5^23/12 and 5<(22-V~5~)/12. For β=(22-V~5~)/12 there is an extremal
function other than zl(l — eisz)2, ε: real.

We cannot give the extremal functions explicitly for (22—V"5")/12^5<23/12,
which involve a hyperelliptic integral and an elliptic integral with unknown
coefficients. For B=2 we already proved it in [9].

THEOREM 7.

31

if £^(23-/3)/12 and /5^3. Equality occurs only for zl(l-z}\

For β<3 we do not have any effective method excepting the use of Grunsky's
inequality. We do not enter into this method.

THEOREM 8. // 9faa^1.8, then

— .

Equality occurs only for zl(l—z)2.

This inequality can be proved starting from the Garabedian inequality [3].
In view of the method employed here we can prove several other inequalities
involving some parameters.

By the way we shall give a proof of

2
-tf3

2 |^— ,
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which had been proved by Schiffer [10] and Golusin [5]. Jenkins [8] also had
given another proof of it by his method. Recently Duren [2] has given its ele-
mentary proof.

2. Proof of Theorem 1. Recently Bombieri [1] has considered the following
problem: Let Q(ζ)dζ2 be a quadratic differential on the ζ-sphere. Let be given
a good subset TO of the set T of critical trajectories of Qdζ2, a continuously
differentiate Jordan arc / on the ζ-sphere. Under which conditions on / can we
assert that /Π T0 is either empty or a single point? His answer is given in his
Theorem 1 and its corollary and its Remark. We make use of his method. We
consider the extremal problem

max SRF,
s

3
F= a5 - 2a2a4 -—a\+ ka\az - a\.

In this problem we may assume that |arg α2 |^ττ/4. By Schiffer's variational
method the image of \z\=l by any extremal function w satisfies

with a suitable parameter t. This implies

(i)

Let Q*(w)dw2 be the associated quadratic differential

tλJ

Let Q(ζXζ2 be Q*(l/ζ)J(l/ζ)2. Then

< . / ζ .

Assume that Sto^O. We put an=xn+iyn Let ζ be real. Then

In our case the right hand side does not vanish, since y\^x\. Now we can apply
Bombieri's Theorem 1, Corollary. Then we have that the image Γ of \z\=l by ζ
and the real axis intersect only at the origin. Further ζ=0 is a simple pole of
Q(ζXζ2, since tf2^0. Hence ζ=0 is an end point of Γ. Hence Γ should lie in
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either the upper half-plane or the lower half-plane. Further Γ has the tangent
vector with the argument — arg( —al) at the origin. Since — 3(—0!)3<z2>0, Γ lies
in the same half-plane as az does. However it is known that

2π

Hence the mean of Γ lies in the opposite half-plane as a2 does. This contradic-
tion gives that y2=Q for extremal functions. Thus we may seek for the extremal
functions among univalent functions with real a2. Further then the critical
trajectories of Q(ζ)dζ? are symmetric with respect to the real axis.

Assume that a2=Q. Then by our earlier result in [9]

a5 -
_3_
2

79
54'

or

we have

^ l = 2 ̂  2 '

Hence we may omit the case #2=0.
Thus #2^0, which implies that the origin is a simple pole of Q(ζ)dζ2. There-

fore Γ starts from the origin along the negative real axis. Since Γ has the
mapping radius 1, Γ should meet to — 2a2, which is a simple zero of Q(ζ)Jζ2.
Then Γ should fork at — 2a2 into two curves, whose tangent vectors at — 2az

have the arguments 2ττ/3 and 4π/3. If a2=2, then Γ stops at -4. In every case
we have the second representation of (1)

( 2 ) z*~
w 1

Vz2+ Wz+M).

Originally the right hand side of (2) or of (1) satisfies

Hence

(3)

( 4 )

( 5 )

(6)

| = |M|=1, QP=P, U=WM, V=VM, MQ2 = l and

2PQM+Q2W=Q>

(P2 + 2Q)M+ 2PQ W+ Q2 V= 0,

2PM4- (P2 + 2Q) W+ 2PQ V+ Q2 U= R,

M+2PW+(P2+2Q)V+2PQU+Q2=4F.
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Let Q=et', M=e-2ίφ, P=reίa, W=seίβ, V=teίr. Then e2ia=eίφ, e-
2ίr=e2ί*. By (3)

s+2rcos(a-3φ-β)=Q,

Assume r=0. Then 5=0. By (4)

2e

Hence t=2, cos(3φ+γ) = -l. Since U=WM, U=0 in this case. By (6)

4F=e-2ί*+2teίφ+ί'+e2ί*

=2cos2ψ+2teίφ+ίr.

Hence

For the Koebe function z\(l—zf 4F=30. Hence we may omit this case. Next we
assume that r^O. Then sm(3φ+β-a)=Q. This implies that s=2r, cos(a-3φ~β)
= —1. Hence we have eίβ=—e(a~3φ:>l = —e~5ίa. We now divide into two cases:
i) e

ίr=e-ίφ, ii) eίr=-e~ίφ.

Case i). In this case we have

Q=e2ia, P=reίa, M=e~*ia, W=-2re^ia

1

V=te~2ίa, U=WM=se-ίβ-4ίa=-2reίa.

By (4) we have

which implies

If cos2α=0, then ί=2-3r2. By (6) we have

4F=2 cos 4α-8r2 cos 4a+r*t+2t

=2+4r2-3r4.

This shows that

^ -̂  = max(2+4r2-3r4).
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Here max is attained at r2=2/3. Again 4F^10/3<30. Hence we may omit
this case. If sin2α=0, then t=3r2-2. In this case 4F=-2-4r2-f3r4. Since
P-— Zι — z2, Q=ZιZ2 with |2ι| = |2:2|=l, we have r^2. Here equality occurs only
for Zι=zz. In this case

4F^ 30 = max (3r4 - 4r2 - 2).
0^r^2

Equality occurs only for r=2. Hence 2:1=2:2. Returning to the image Γ of \z\=l
by ζ=l/M>, Γ has only two end points and Γ contains — 2a2. If — 2a2 is not
an end point of Γ, two end points other than the origin, one of which may
degenerate to — 2a2, appear. In any case z^z2y which is a contradiction. Hence
Γ reduces to a single segment [— 2a2, 0], which must have the mapping radius 1.
Hence —2a2=— 4. This implies that equality occurs only for the Koebe function
z/(l-z)2. If t=3r2-2 and t=2-3r2, then ί=0, r2=2/3. By (6)

Hence this may be omitted.

Case ii). eίr=—e~ίφ. Similarly by (4) we have

(-3r2+2-ίO cos 2α=0,

When cos 2α=0, then £=3r2-2 and 4F^10/3. When sin2α=0, then t=2-3r2 and
4F^30. Here equality occurs only for zl(l-z)2. When t=3r2-2 and t=2-3r2,
then 4F^10/3, which may be omitted. Therefore the proof of Theorem 1 has
been completed.

3. Proof of Theorem 2. We consider the extremal problem

max 5RF,
s

3 23
F= a5 - 2a2a4 ---al+ 4a2

2a3 - a\.

By Schiffer's variational method every extremal function satisfies

z2 - - a\w* + a\wz + 2a#o + 1 = - (1 + 2Rz* + 4F<r4 + 2RzB + z8),
Z

9
~ a\.

Let Q(ζ)Jζ2 be
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Here we may assume that xl^yl, a2=x2+iy2. In this case we can make use of
Bombieri's theorem 1, Corollary and its Remark, assuming y2*?0. ζ real. Then
similarly we have a contradiction. Hence a2 must be real non-negative. If ^2=0,
then we can again use our earlier result as in Theorem 1. We, then, have
9lFίil/2, which may be omitted, if we can show the existence of functions in S
satisfying 9lF>l/2. If #2>0, then the image Γ of \z\=l by ζ=l/w starts from
the origin along the negative real axis. Then Γ should meet to a simple zero
— XQ of <2(ζ)ύ?ζ2, since #o<3#2/2. And then Γ forks into two curves at — XQ.
Further there is only one zero of al/4: + a2

2ζ>+2a2ζ>

2-}-ζ>

3 in the open interval (—4,0).
Hence we have the second expression

w'2 112 -̂ T (j a\u?+a\w2+2a2w+1

4+ Uz* + Vz2+ Wz+M),

QP=P, U=WM, V= MQ2=l.

Hence we have (3), (4), (5), (6) in the proof of Theorem 1. Now we can use the
process in the proof of Theorem 1. In what follows we shall make use of the
same notations as in the proof of Theorem 1.

Firstly the case r=Q appears. Then t—2 and s=0, e*ίφ+ίr=—l. Hence

=2 cos 2φ-2t cos 2ψ= -2 cos 2^2.

Thus F^l/2.
Secondly we have the case r^O, cos(a—3φ — β) = —l, s=2r and r=φ+2pπ. If

cos2α=0, then /=2-3r2. By (6) we have 4F=2+4r2-3r4. In this case by (5)

By Grunsky's inequality

Hence

13

13

12
1

24"

Here equality occurs only for zl(l-eiφz)2, By (5)
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This gives two admissible intervals of r

[0, ra], [n, r0],

where r2 and n are two roots of 2r(2-r2)=l satisfying 0.258 <r2< 0.259, 1.26<rι<1.27
and r0 has been defined already. Since 4F=2+4x— 3x2, x=r2 is symmetric with
respect to x=2/3 and is monotone increasing for #<2/3, 4F takes the maximum
value at χ=r\ by r2+rl>1.262+0.2562>4/3 and its value is 2-f 4r2-3r*.

If sin2α=0, then £=3r2-2 and 4F=-2-4r2+3r4. By (5) we have 2Re~%a

=4r3— 8r. Hence |2r3— 4r|^l. In this case again we have two admissible in-
tervals [0, r2], [n, r0]. However 4F=-2-4^+3^2, #=r2 is negative for [0,4/3]
and is monotone increasing for x>2/3. Therefore 4F^— 2— 4r2,-f3rJ. Since
2rjJ— 4r0=l, we have

If /=2-3r2 and £=3r2-2, then f=0, r2=2/3. Since \R\^l, |8r-4r3|^2. Hence
r2=2/3 should be excluded.

The above results hold in both cases i) and ii). Now we shall compare the
results. Since

3 1
2+-^rQ +— >2+4r^-3r2

4>2,

we have

Assume that equality occurs. Then R=l and 2r3— 4r=l, which leads us to the
Koebe function zK\.—ei&zf, ε: real. Then |F|=l/2, which is a contradiction.

If α2>0, then Γ should fork at — a?0, x0<3α2/2^3. Hence the extremal func-
tion in this case does not coincide with the Koebe function. Moreover we can
say that max$lF>l/2. If not, then the Koebe function should satisfy the cor-
responding Schiffer's differential equation, which has been just excluded.

Therefore the proof of Theorem 2 has been completed.
Since the same reasoning as in the above goes through for

with 1<Z)<23/16, the Koebe function is not an extremal function.

4. Proof of Theorem 3. Let Σ be the family of functions univalent for
|2|>1, regular apart from a simple pole at the point at infinity and having expan-
sion at that point
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n=ι Z

Jenkins [8] proved the following result:
Let g belong to Σ. Then for ψ real and 0^<τ^

- - .

This is best possible.
Jenkins, using this result, proved Garabedian-Schiffer's inequality

Evidently we have

c0=— a2, c1=al—a3ί c2=—

cs = - a5 + 2# 2#4 + a\ -

Jenkins' method does work for

Firstly we put

Then

C_ 2

2Cl

1 3

σ4~ "T log"T

We may assume that

If ^(β-2ί^!)=0, then we put <τ=0. Using this a,

Then there is a σ in (0, 2] satisfying
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<9(<7, c) is increasing for 0 < σ < σ0 and decreasing for σ0 < σ, where σ0

=2exp(-(3+<0/(2-2c)). Let Θ(σ0, c) be max Θ(σ, c). Then with

C 2

+ ~2Cϊ

Let δ be 3+c and cs,Cι be represented by a^a^a^az, then we have the desired
result. The equality statement is similar as in Jenkins'.

5. Proof of Theorem 4. Let us consider the extremal problem

3
T= as - 4α 2# 4 - — a\

Then any extremal functions satisfy the differential equation

y/2

^VΊλ)

z

+ (18 + 4iQ)δ

We have the second expression of the right hand side

z

|P| = |F|=1, ^=F£ , S=FA C-FC.

Hence we have

P2F=1,

P*D+2PE+F=al

Let P=eiθ, E=teίr, D=seiβ, C=reia. Then e~
2la=e2lθ and
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° + 2seίβ + te^-ίe =

Hence

First we consider the case 9+2^0. Then

^ -2(18+4jδ)|β!| +2|βi| +4|α2| +2

However for the function z/(l+eisz}2, ε: real

4|Γ| = -270-64,9.

Thus max 9ΐΓ=- 67.5 -16j§. Equality occurs only for 2/(l-eίίr/4z)2, zl(l-ei3*/4z}2,
z/(l-e~ίπ/*z}2, z/(l-e-ίsπ/4z)2. Secondly we consider the case 9+2β>0. In this case

4Γ=2(18+4$|tf2|
3 cos (3φ-θ)-2\a2\

2 cos (2φ-2θ)

-4|02| cos (^-3^)-2 cos (-4^),

^2 = 1^2!̂ .

For simplicity's sake we put \a2\=R and

F(R, 0, 0=2(18+4j8)Λ8 cos (3φ-θ)-2R2 cos (2φ-2θ)

- 4:R cos (^) - 3^) - 2 cos ( - 40).

We now seek for the maximum value of F(R,θ,φ) in Q^R^2, 0^
For the inner maximum we have

3R "' 3φ "' 90 "'

By dF/dR=Q and dF/dφ=0,

6(18+4#)7?2 cos (3^ - 0)=47? cos (2p - 20)+4 cos (φ - 30),

6(18+4jS)7?3 sin (3^-0)=47?2 sin (2φ -20)+47? sin (p-30).

If 7?=0, then F(0,0,^)--2cos (-40)^2. If 7?^0, then
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Hence

which implies

6(18 + 4β)R2 cos (2φ + 20) = 4R cos (φ + 0) + 4,

6(18 +4β)R2 sin (2y>+20)=4# sin (φ+0).

If 6(18+4β)#cos(^+0)=2, then

4# cos (φ+θ)- 6(18 + 4β)#2 = 4£ cos (φ + 0) + 4,

which is a contradiction. Hence 6(18 + 4/3) jR cos ($0+0) =^2. Thus we have si
=0. Thus e«*+'> = ±l and

We divide into two cases: i) eίψ=e~lθ, ii) eίφ=—e~ίβ.

Case i). 3(9+2^2-,??-l=0. If this has no solution in (0, 2), we may omit
this case. This implies that β^— 35/8. So we may assume that β>— 35/8. In
this case by 3F/dθ=0

3(2(18+ 4]8)ΛV(3ί>-w -4R2eί(2ψ-2θ> - l2Reί(φ-*0} -Se~uo} =0.

Then

O 00

--^-^2-^-^-8^0 for Q^R^2o O

shows that sin 4#=0. Hence cos4^ = ±l. When cos 40=1,

F(R; θ, 0=

which may be omitted. When cos 40 =— 1,

Case ii). Then 3(9+2$#2+#-l=0. By dF/dφ=Q,

3{ - 2(18 + 4β)R*e~«' + 4R2e~*i0 + l2Re~w - 8e~*iθ} = 0.

Hence by 2R2- 4#+ 3^0 sin 40=0. When cos 40 = 1,
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If O^R^l, F(R,θ,φ)^Q, which may be omitted. Hence 1<R^2. In this case
F(R,θ,φ) attains its maximum at R =2 and F(2,0,y>)=2/3, which may be omitted,
since we have already maxF^2. When cos 40=— 1,

In this case we have O^Λ<1. Hence

- Ί

6(9+2$ ^ '

This implies

which is a contradiction. Hence case ii) may be omitted. Further we must
consider two end points of (0,2). If jR=0, then 4Γ=F=-2cos40^2. If R=2,
then

3147^4167.5+1601.

Summing up the results, we have for — 9/2 <β^— 35/8

max^4Γ=max (2, 4|67.5+16^|)

and for /3>-35/8 with 3(9+2$#2-#-l=0

max3l4Γ=max ^-|-(^2+4Jf?+3), 2, 4|67.5+16|8|)

Hence for -9/2<]8g-35/8

sjMΓ^ -4(16^+67.5).

Equality occurs only for

We now consider the case β> -35/8. First the solution R(β) of
is monotone decreasing for increasing β. Further 2(^2+4jR+3)/3>2. If β lies in
[-34/8, -33.5/8], then 4 1 67.5 +16̂  2. Hence in this case

~(
ό
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This is exact. Thus

max

9 1 QR

4(-K2+4£+3), -4(67.5+16,3) , _.£
O J O

, 4(67.5+16/3)1, --̂ -
J o

By 3(9 +2β)R2- R- 1=0 we compare

|-(#2+4#+3), ±4(67.5+16$.

If - 35/8 <j3<- 34/8, then (l + VT)/3<#<2. In this case put

It is very easy to prove ψ(R)>0 for (1 + VT)/3<7?<2. Hence

max

This is of course sharp. If /?>- 33.5/8, then O^R< (4+2 V34)/15. Put

qr>2

There is only one solution R* of ψ(R)=Q for [0, (4+2V34)/15) and ^)<0 for
R*>R and ψ(R)>0 for ^> .̂ Further we have 0.95<#*<0.96. We put

Then we have

O

for -

.4(67.5+16^3) for β^β*,

where j§ and 7? satisfy 3(9+2$.#2=#+l. These estimations are sharp. If β>β*,
equality occurs only for
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If β—β^ equality occurs only for the above four functions and a function satisfy-
ing the differential equation. Together with this case — 35/8 < 3̂ <^ leads to the
extremal function, for which we cannot give any explicit expression, because the
corresponding differential equation still involves a hyperelliptic integral with un-
known coefficients and an elliptic integral with unknown coefficients. However
our process together with Schiffer's variational method gives the exactness of our
estimation.

6. Proof of Theorem 5. The proof of this theorem depends upon the process
of section 5. However we only need its simplified version. Let us consider

Max SRfo - 40204 + δal + 80103 - 402)s

for — 3/2^<5^i — 1. The extremal functions satisfy the differential equation

w'2
z2^- [{-204+αθ-4<5)0203-402>

3

+ {(3+2<5)03-02>2-M]

+ 80^03 -

We have the second expression of the right hand side

z

We now make use of the same notations as in the proof of Theorem 4. Then

4(05 - 40204 + da\ + 80|03 - 402)

-4|02| cos (p-30)-2 cos (-40),

where a2 = \a2\eίφ, a3 = \a3\eiφ. Hence

^-20-363.
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Here equality occurs only for

z z

Hence in general

- 4# 2

4) ̂  - 5 - 95.

For δ<— 3/2 an easy algebraic consideration leads to the result immediately. For
<5> — 1 we do not have any effective method.

7. Proof of Theorem 6. Let us consider the problem

max ^(#4— 3aza3-\-Bal).

This gives the differential equation satisfied by any extremal functions

z2~{(-

— {1 - atz

This allows the second expression

z

|Γ| = |P|=1, Q = TS, R=TR.

Hence we have

PJΓ=1,

P2S+2PT=-a2,

P2R+2PS+T=3(B-2)al,

Putting P=eiβ, T=e~2ί0, S=sela, R=reίβ,

2s cos a+2reίθ+iβ=3(at-3a2a,+Baΐ).
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Hence

=6(B-2)\a2\
2cos(2φ-θ)+2\a2\cos(φ-2Θ)+2cos3θ.

If

rg 245-42.

Equality occurs only for zl(l-e2πίci/3z)2, &= 0,1,2. We put

F(R, θ, φ)=6(B-2)R2 cos (2φ-θ}+2R cos (φ-2θ)+2cos 30.

Assume that B<2 and 0<^<2. We now consider maxF.

0= -=ΓF(R) θ, p)=12(5-2)Λ cos (2ω-θ)+2cos (ψ-2θ\
oK

oφ
0= ~ F(R, θ, φ) = -12(B-2)R2 sin (2φ-θ}-2R sin (φ-

Hence

which implies

6(B-2)R=-l,

If ^^23/12, then R^2. Hence if 5^23/12, there is no maximum in 0<#<2.
Hence we may compare F(0, 0, φ) and F(2, θ, φ), for which

F(0, 0,0 =

, 0-3(85-14)^3^=3(85-14) cos 3 .̂

Hence in general for 23/12:g£<2

If 125<23, then

~ 6(2-5) ' "

at the points giving the maximum of F(R, θ, φ). Then

F(R, θ, φ) = {6(B-2)R2+2R+2} cos 3φ

= (R+2)cos3φ
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at the maximum points. Therefore

maxF(R,θ,φ)=R+2.

On the other hand

F(2, 0, p)= 3(85 -14) cos 3φ.

Hence

max

= max (max F(#, #,9), maxF(0,#,^>), max F(2, 0, y>))

=max(#+2, 3|85-14|).

If 45^7, then #+2^3(85-14). Here equality does not occur, since 125<23. If

45<7, then #+2=- 3(85-14) has the solution 5* in 5<7/4. The value of 5*

is (22-V"5")/12. This implies that if 5*^5<7/4the maximum is R + 2. If 5<5*

the maximum is —245+42. Equality occurs in every case. Especially equality

occurs only for */(l+^/3z)2, A =0,1, 2, if 5<5*. If 5:g5*, the functions men-
tioned above are extremal.

8. Proof of Theorem 7. We need a lemma.

LEMMA. For /3^3

Equality occurs only for zl(L—z)z.

Proof. Let us consider the problem

( 3a3--τ

which leads to the differential equation satisfied by any extremal functions

Let Q(ζ)Jζ2 be
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for which we are able to use Bombieri's method as in the second section. We shall
omit its detail. Then we may assume that #2 is real positive or zero. If tf2=0, then
l^sl^l If #2 is real positive, then the image of |z|=l by ζ=l/w starts from the
origin along the negative real axis. If #2/2+/3^4, then the image of \z\ =1 by ζ forks
at ζ=—az/2—β into two curves. In this case we have the second representation

|Q|=1, P=QP.

Thus Qa=l, 2PQ=a2/2+β,

Hence

This implies that for the extremal functions with coefficients a2,

for every g with coefficients af, of. If jS=3, then the above phenomena occurs
always. Therefore

Equality occurs only for zKl—z)2. This gives the desired fact for the general /3i^3.

Now we return to the proof of Theorem 7. Let us consider the extremal problem

no _

^-3β2α3 +

Then the extremal functions satisfy the differential equation
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+ (3tf4 - 9a2a3 + 3Ba\ + 4βa3 - 3βa2

2 + β2a2)z3

+ {3(B-2)ά2+βa2+β2}z*+(2β-ά2)z5+z6]

with B=(23—β)/12. This has the second expression

|P| = |Γ|-1, Q=Ts, R = TR.

Thus we have

P2Γ=1,

P2S+2PT=2β-a2,

P2R+2PS+T=3(B-2)a2

2+βa2+β2,

We put P=eie, S=seίa, R=reίδ. Then T=e~2ie, e-
2ίa=e2id,

seίa+2e-*ίθ=-a2e-2ίθ+2βe-2ίff,

reίθ+ίδ+2seta+e-3ίθ=3(B-2)a2

2e-iθ+βa2β-ίθ+β2e-ί0,

A=2scosa+2reiθ+ίδ

2e-ίθ+2β2e-ίθ-

\ cos(φ-2θ)+2β\az\ co$(φ-0)

+ 2β2 cos θ - 4/3 cos 20-1-2 cos 30.

Our problem is to seek for the maximum of

By Lemma for /3^

Equality occurs only for zl(l—z)2. Hence if max 9L4 is given by z/(l—z)2, then
max F is given by zl(l—z)2. So we shall consider 9L4 for the extremal functions.

In this case A is real. Let \aΛ\ be R. For 0<R<2

AA
0= ~ =l2(B-2)Rcos (2φ-θ)+2cos (φ-2θ)+2β cos (φ-θ\

oK
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dA
0= -— = -12(B-2)R2 sin (2φ-θ)-2R sin (φ-2θ)-2βR sin (y>-0).

(7(Λ

Thus at the points at which the maximum of A is attained

6(B-2)Reί(2φ~θ) +eί(ψ-™ +βeuφ-θ> =0,

which implies

> = 0,

or

6(B-2)R cos £>+cos 0+/3=0,

6(B-2)Rsinφ=smθ.

Further

0= — - =6(£-2)7?2sin (2φ-ff) +4R sin (9- 2^) +2^ sin (^-^)
oo'

-2^2 sin 0+8/3 sin 2Θ -6 sin 3θ

=3R sin (φ-2θ)+βR sin (φ-θ)-2β2 sin ^+8j9 sin 26»-β sin 30

=37? sin ^ cos 2Θ—3R cos ̂  sin 2θ+βR sin ^ cos 0—^7? cos φ sin 0

-2/32 sin 0+8/3 sin 20-6 sin 30

S n ox cos 20-67? cos ^ cos 0 sin 0+ jf p
m cosθ-βR.cos φ sin 0
—

-2β2 sin 0+16/3 cos 0 sin 0-24 sin 0 cos2 0+6 sin 0.

Hence sin 0=0 or

cos 20 ._ Λ Λ73-67? cos ̂  cos 0+ -̂ - -/37? cos ^

- 2^2 + 16/3 cos 0-24 cos2 0 +6=0.

If the second alternative occurs, then eliminating 7? cos φ by

6(B-2)R cos ̂ +cos 0+β=0

we have

cos2 0(300-144£)+/3 cos 0(965- 184) + (/32-3)(25- 125) =0,
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Since 5=(23-0)/12, 0^3, we have

4(-204-1203-302+360+36)<0 for 0^3,

which implies that

cos2 0(300 - 1445) + β cos 0(965 - 184) + (β2 - 3)(25 - 120) % 0.

Hence sin 0=0, which implies sin^=0 and cos^=l, since

6(2- B)R cos φ=β+cos 0>0.

Evidently cos0=±l. Hence

6(2-5)^=0+1 or 0-1.

If cos0=-l, then

Hence this does not give the maximum. If cos 0=1, then

which contradicts 0<7?<2. Hence we may consider the values of A at R =0 and
R =2. For R=2 we have simply for the extremal functions

A ={(4,-

= (4-20) cos 3^>+2β2 cos φ.

We now consider dA/dφ=Q. Then either sin^=0 or

12(2-0) cos2

If sin^=0, then cos^?=±l. Hence

In this case

3F^ 202 - 20 + 4 + 4/32 = 6/32 - 2/3 + 4.

Equality occurs only for z/(l—z)2. If the second alternative occurs, then cos2 φ^l
implies 3^0^6. Hence for 0>6 the second case does not hold. If 0=6 or 0=3,
then cos2y>=l, which gives

A=±(202-20+4),
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If 3</3<6 holds, then

A=8(2-β) cos3 φ+2(βz+3β-6) cos p

In this case 4<73— 3^=0 implies

3F^ ̂ -(p+3β-6) cos ̂ +4/32 cos p
o

We now compare this with 6/32— 2/3+4. We consider

It is very easy to show that the above expression is surely negative for 3</5<6.
Therefore for R=2, β^3

2/3 +4.

For #=0 we have #2=0. Thus

Hence

Evidently for /3^3

6/32-2β+4>2+6/3.

This completes the proof of Theorem 7.
Our Lemma can be completed for 0^β<3. This is implicitly included in

Jenkin's results [8].

9. Proof of Theorem 8. Let f(z) be in S. We put
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then

Garabedian [3] proved the following inequality:

3t{c22+2λclz + (λ2+μ)cn + q(a2 + λ, μ)}

Seίgti

where ^=f +iη is restricted to lie inside or on the involute

θ+i sin3 θ}-s cos 2Θ - -

of the hypocycloid

£2/3+^/3=42/3

and -12 ̂ μ^!2. This is best possible.

Here we need the following fact: If Λ = l-f-μ/4, then the extremal function is
the Koebe function zl(l—z)2. Now we put Λ = l, μ=0. Then

This is just

_3
2

Let us introduce the following notations;
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Then we have

f 3
a5-a2a4-—

5
—

19

r

by Garabedian's inequality. We now rewrite this inequality

By the area theorem

we have

for O^Λ ^O.3. We now divide into two cases: i) τ/^0, ii)

Case i). In this case we have for 0^#^0.3

, 19 , / 3 1 \ ,

- ^ + ~ η
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6 \ / 3

By the trivial inequality

— a^ - a ^ + T — if, α>0.

and by the area theorem we have

5 3-2α-2 19 / 3

Now we put α=2/15. Then

p
, 13_ 19 65

 t

-f W- go + is ̂  432
 x
 '

It is very easy to prove

for

Case ii). In this case

Further by \a\—#3|^1

Hence

1 ._19 , , J5 «
4 18 + 432

/2 14 19 65 2 65 n] . , , 9 ,2 , , , , 15 /2

---6-χ + j2x 432^ "-d- ' 2 ' /2
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10 19 , 65 t 65
— 6-^72 x 432

By the trivial inequality and the area theorem

.. 5 l-2« 19 . 65

Now we put α=l/5. Then

3 19 65 2

^W- 2θ" + l8^- 432-* •

Again it is very easy to prove P(#)>0 and Q^O for 0^

Summing up the results, we have the desired result

10. A proof of |^4-2^2^3+^|^2/3. By Schiffer's variational method any ex-
tremal functions w(z) for the problem τs\^yLS^ί(a^—2a2az-{-a^) satisfy

Let ζ be l/w and consider the quadratic differential

Let Γ be the image of |z|=l by ζ. Let ζ=ξ+iη and ^2=^2+^2. Then on the
trajectories

If x2+ξ A-0. Then

On the other hand we have
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Now we may assume that |argα2]^τr/3. In what follows we make use of the
term "the first quadrant, the second around a point A " as if we set a coordi-
nate system, being parallel to the original coordinate axis, at A.

1) 0<|argtf2 |^π/4. We treat only 0<arg^2^ττ/4. If (ξ,η) belongs to the
first quadrant /i around — α2, then dηldξ>l. Hence Γ, which has tangent vector
at the origin with the argument π/2— (arg#2)/2, does meet the open segment join-
ing two points —y2—iy2, — iy2. Γ does not meet the closed segment joining — a2

and —y2—iy2. This fact can be deduced by dηfdξ>\ in the first quadrant /i
around — a2 and by

Thus Γ enter into the fourth quadrant 74 around — a2. Then we have —
<—1 in 74, since dηldξ=Ξ&z implies that Γ should be a segment parallel to the
imaginary axis. Hence

which is a contradiction.

2) arg#2=0. Then Γ is tangent to the imaginary axis at the origin. Then
Γ does not enter into the second and the third quadrants around the origin.
This is again a contradiction.

3) π/4<arg#2^π/3. The case — π/4>arg#2;^ — π/3 is similar. If Γ intersects
to the open segment joining — a2 and — iy2, then the situation is the same as in
1). Thus Γ should meet the segment joining — a2 and —x2—x2i. Then we have
two subcases: Γ meets — a2 or Γ does not meet — a2. Assume that Γ does not
meet — az. Then Γ enter into the second quadrant I2 around — a2, in which
Q<dηldζ<\. If Γ does not meet the straight line y=—y2, then Γ lies in the
upper half plane of the straight line z=—a2+teτπ/*, — oo</<oo. This con-
tradicts

Hence Γ must meet y=—y2. Consider dη\dξ around this intersection point In
the upper half-plane 0<dη/dξ<l and in the lower half plane dηldξ<—I. This
contradicts the continuity of dηfdζ or the analyticity of Γ. Hence we have
a contradiction. Thus Γ should meet — a2. Since — a2 is a simple zero of
— (02+ζ)rfζ2, Γ, then, forks at — a*. Returning to wy we have the second ex-
pression
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Wfz

Z2 — g-

Further g(l/z)=g(z). Thus we have

#2=1, P=RQ,

2R -f 2PQ = 3(#4 - 2a2a3

This shows that Q=P=0. Hence a3— al=Q and

2

This gives the desired result. The equality statement is easily obtained by in-
tegrating the equation.

In the above discussion we have assumed that #2^0. If #2=0, then the
origin is a simple zero of — ζJζ2. Hence the similar second expression remains
true. Hence we have the desired result.
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