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THE KERNEL FUNCTIONS OF SZEGO TYPE

ON RIEMANN SURFACES

BY SABUROU SAITOH

§ 1. Introduction.

1. The Bergman kernel and the Szego kernel are typical kernel functions
in complex analysis. The Bergman kernel is considered on an arbitrary Riemann
surface, but in most cases the Szego kernel is only considered on a regular
region in the plane. Ozawa [9] considered the Szego kernel on some infinitely
connected plane region, and Hawly-Schiffer [6] considered it on a compact bordered
Riemann surface by regarding it as a half-order differential. However, it is
difficult to consider it on an arbitrary plane region and the latter method does
not lead to study of kernel functions, but to study of half-order differentials.
Under these circumstances, a kernel function called the Rudin kernel whose ex-
istence was pointed out by Rudin [11] is very interesting,

Let S be an open Riemann surface and let H2(S) be the class of analytic func-
tions on S for which |/|2 has a harmonic majorant on S. For fixed x,teS, there
exists the Rudin kernel Rt(τ, x) (€ffa(S)) which is characterized by the following
reproducing property:

for all feHz(S). Here {Sw}π=0 (#» t€Sn) is an arbitrary regular exhaustion of S, dSn

is the relative boundary of Sn,Qn(τ,f) is the Green function of Sn with pole at t
and the derivative is taken along the inner normal. The limit exists and is in-
dependent of the choice of regular exhaustions {Sw}~=o

The object of this paper is to give some fundamental properties of the Rudin
kernel and some related reproducing kernels on a compact bordered Riemann
surface.

§ 2. Preliminaries.

2. For any Riemann surface S, let HP(S) (p>G) be the class of analytic func-
tions on S such that \f\p has harmonic majorants u on S. Let uf denote the
least harmonic majorant of \f\p. Then we define JEΓp-norm with respect to t by
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KERNEL FUNCTIONS OF SZEGO TYPE 411

\\f\\p=Uf(f)1/p for any fixed point t on S. Here u/(t) is represented by any regular
exhaustion {Sn}ϊ.β as follows:

Ffp(S) is analytically invariant (cf. [1]) and the norm is conformally invariant. Let
Hp(S) be the linear space of all feHp(S) with finite norm at teS. The normed
space H^S) is a complete separable linear Hausdorff space and if p^l, H*P(S) is
a Banach space; if />>!, it is uniformly convex. Let H$(S) be the unit ball
||/||p^l. The functions f$H$(S) are locally uniformly bounded and therefore
H$(S) is a normal family.

§3. Extremal problems in HP(S) (p^l) and constructions of kernels.

The existence of the Rudin kernel is easily assured by a general theory of
reproducing kernels [2]. An important problem in the theory of kernel functions
is to construct the so-called adjoint L-kernel ([12], pp. 40-46). Hence, we consider
extremal problems in H^(S) under the duality relation ([5], [8]), which gives basic
meanings of the relation between ^-kernel and L-kernel. Here we assume that S
is a compact bordered Riemann surface with contours {Cm}m=ι and of genus /.

3. We consider the problem of maximizing \f(x)\ in HP(S). The existence
of the extremal functions /J(τ; x, t) is assured by the compactness of H$(S). If
/>>!, the uniform convexity of HP(S) guarantees the uniqueness of the extremal
functions except for a rotation [3]. Let T be the linear functional on HP(S)
defined by Tf=f(x). This functional is represented by the Cauchy integral [10]:

(3.1) Tf=f

where /(τ) means the Fatou boundary values of / at τedS. Here W(τ,x) is defined
as follows: W(τ, x) — g(τ, x) + ig*(τ, x), where g*(τ, x) is the harmonic conjugate of
g(τ9x). Since 0r(τ,#)=0 on 9S, we have

idW(τ, x}= τ ,
ov

which implies that dW(τ,x) has precisely 21+ k— 1 zeros in S. For {/(r)€Lp(dS)|
f€Hp(S)} is a closed subspace of Lp(dS), we apply the Hahn-Banach theorem to
extend T from {f(τ)eLp(dS)\f€Hp(S)} to LP(9S), preserving its norm, so that T is
represented as follows, using the representation theorem of Riesz,

(3.2) Γ / = - /(r)Λp(r)«W(r,0, for all
6π jds

where if p>l, hpeLq(dS\ l/p+llq=l, and
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i
and if p=l, hi is mesurable on 3S and |Aι(τ)| =
and (3.2), we have

?(a?; x, f)\ a. e. on dS. From (3.1)

fora11

It is valid for functions / analytic in S and continuous on S. Hence from the F.
and M. Riesz theorem [14], there exists a function FςHι(S) such that

a. e. along 3S,

a. e. on

Here, ωf is defined as follows. For m=l, 2, •••,&, let ^m be a 1-1 conformal
mapping from an annulus R={z\r<\z\<\] onto a neighborhood of Cm such that
ψm({z\ |^|=r})=Cm, ψm(R)cS and <^0<r| M=l})nCTO=#. We fix an ω0 such that
ω0 is a nonvanishing analytic differential on S. Then in terms of uniformizer
reίθ=ψm-l(τ) in the neighborhood of C», ω0 has the form am(reίθ)dr+bm(reίθ)dθ, we
define ω0* as bm(eίθ}dθ. Substitution of /J into (3.2) yields

*;*, 01 =

a?,/)I for p>l.

Hence we have for some real θ

f$(τ; x, t)hp(τ) = eίθ\f$(x; x, t}\ \fξ(τ\ x, t)\p a. e. on dS,
(3.3)

If p=l, we obtain for some real θ

ff(τ ,x,f)hι(τ) = eiθ\ff(χ ,x,f)\ \ff(τ\xyf)\ a. e. on dS,
(3.4)
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Here we note that /$ and hp can be continued analytically across dS.
For fixed x0£dS, let Δ be a neighborhood of x0 which satisfies the following

(1) Δ is conformally equivalent to U={\z\<l), i.e. φ(Δ)=U.

(2) x, {tj}$Δ. Here [tffif-1 are critical points of g(τ,t\

(3) dΔΓiS is an analytic curve.

Let γ be the part of dU such that ^(d J Π S) - {end points}. From (3.3) or (3.4)
we have

(3.5) A(z}=f*(φ-\z}}hp(φ-\zy)=e"\f$(x}\ \f$(φ-ιm* a. e. on r.

From A(z)^Hl(U] and arg^L(2)=0 a.e. on γ, A(z) can be continued analytically
across γ [11]. Hence .̂(2) is analytic on U except for end points of γ and con-
tinuous on U. A(z) can be represented by the Poisson integral as follows:

(3. 6)

Here {z3}(sU} are zero points of A(z). From /$, hpsHι(U), they can be repre-
sented uniquely as follows [7]:

'(z)) = e"1 exp .

(3.7)

( ' I ft* eίφ+z \ / z—z \
~ϊ~ \ ^ * dfrW x some f actors of Π 1 — r— ,- ώ T Γ J o ^ A / j \ 1 — 2j 2; /

( 1 f2f f ^4-^

^-^ k>g|^-V))l -Jfzr
(3.8)

( ]_ r»2π g#°_|_2 \

2^J0 ̂ τF^xsome factors of

Here μj(φ) are non-increasing functions. Now from (3.5), (3.6), (3.7) and (3.8)
we have

λ = λι + λύ 1 = exp f 9- \ dμι(φ) + dμι(φ) \.

Hence μlf μ2 are constants. From (3. 5), we have

a. e. on

Therefore the factor
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is analytic on γ. i.e. f% and also hp are analytic on γ.
Let Hx,t(S) be the class of functions such that

1 (idW(τ, x)-F(τ)ωt(τ» for all
idW(τ, 0

Then we are aware that, conversely if a function of H$(S) and a function of
Hχ,t(S) satisfy (3.3) or (3.4), they are extremal functions. Now we have the
following theorem:

THEOREM 3. 1 (cf . [5], [11]) For fixed x, teS, there exist the extremal functions
fp(τ\Xyf) and hp(τ) uniquely, which maximizes f(x) in H$(S)(p>l)Γι{f(x)>Q} and
minimizes Hq-norm in HX)t(S) respectively. These extremal functions are charac-
terized by the following properties:

f%(τ\xίt}hp(τ}=f%(x]x,t)\f%(τ]xyt}\ΐ> on dS and

If p=l, there exist the extremal functions /?(τ; x,f) and hι(τ) which maximizes f(x)
in #ιl(S)n{/(#)>0) and minimizes esssup\h(τ)\(τ£dS) in Hx,t(S) respectively. They
are characterized by the following properties:

/*(τ; x, OAiM =/?(#; x, Ol/?fa x, 01 on dS and

Furthermore f%(τ; x, f) and hp(τ) can be continued analytically across dS and hι(τ)
is determined uniquely.

4. Now a Rudin kernel Rt(τ, x) and the adjoint L-kernel J7ί(τ, x}, which is an
analytic differential on S, except for a simple pole at x with residue 1 can be
defined as follows:

From the relation between ff and h2 on dS, we have

(3.9) Rt(τ,x)idW(τ,t)=—j:t(τ,x') along 8S.
ί

That the Rudin kernel is a function and the adjoint L-kernel is a differential is a
remarkable fact, because both the Bergman kernel and the Szego kernel are in
fact differentials. It is easy to see that the Rudin kernel has a reproducing pro-
perty as follows and is characterized by it:

for all



KERNEL FUNCTIONS OF SZEGO TYPE 415

We list up some elementary properties.

(II) Rt(τ,f) = l (Rudin [11]).

(III) Rt(τ9x)IRt(xjx) is the unique extremal function minimizing ^-norms
among the functions /€/J2(S) with /(#) = !. Especially we have Rt(x,x)^l.

(IV) Let Si, S2 be regular subregions on an arbitrary Riemann surface S such
that S2^Sι$x,t. Then we have R?>(x9x)^R?>(x,x). Here Rp(τ,x) (7 = 1,2) is the
Rudin kernel of S, with respect to x,t.

We consider the differential class Hξ(S) which consists of analytic differentials
ω on S such that ω/ω0=f€Hp(S). It is defined independently of the choice of ω0

which is introduced in Theorem 3. 1. Let {ax(τ)} be the class of analytic differentials
with a simple pole at x, residue 1, which satisfy

<oo.,.
ιdW(τ,t)

(V) In {ax}, Xt(τ,x} is characterized by the following:

ω(τ)£t(τ,x] _~ -

On an arbitrary open Riemann surface, we shall state some further properties
of the Rudin kernel.

5. Let N(τ', x, f) be a Neumann function on S with poles at x and t. i.e.
N(τ\x,t) is harmonic on S except for x,t, where N(z(τ)m, x,t)+log\z(τ)—z(x)\ and
N(z0(τ); x, t} — loglzoM— ̂ o(OI are harmonic, in terms of local parameters z and z0

around x and t, respectively. N(τm, x, f) is continuously differentiable on S and
dN(τ-,x,t)lfo=0 on dS. We set V(τ\ x,f)=N(τ; x,f)+iN*(τ; x,f) and define mero-
morphic differentials as follows:

P(r, x, t) = [ ^F(τ; a?, t)-dW(τ, x)-dW(τ, ί)],

P(τ; x, t) - [ JF(r; ̂  0-rfTΓ(r, ar) + dW(τ,

^(τ; a?, 0 - - [- JF(r; a?, O-

Since JF(τ; x,f) and idW(τ,x) are real along dS, we have



416 SABUROU SAITOH

p(τ]x,f)=-q(τ\x,t\
(3.10)

p(τ\ x, t) = - q(τ\ x, t) along dS.

Now (l/ϊ)^ί(r,Λ?)-(l/ί)g(r;a?,0 and Rt(τ,x)idW(τ,x) + if)(τ ,x,t) are analytic on S
(note Rt(t,x) = ϊ) and we have

Rt(τ, x)id W(τ, t) + ip(τ\ x,t) = -r Jh(τ, x}-— q(τ\ xy f) along

Therefore we have the following representations (cf. [4]):

1 1 2l+k-\

~~r JCt(τ> x) := —— q(r] x,f)-\- Σ &μ(%> Oω/«(Γ)>
2 I «=ι

(3.11) Rt(τ,
μ=\

Here {aμ(x, f)} are constants and {ωμ(τ)} is a base of the analytic differentials which
are real along 3S. For the local parameter z around τ, we set ωμ(τ)=Wμ(z)dz,
p(τ\ x, f)=P(z\ x,t)dz and so on. Then we obtain the following identities by putt-
ing in (3.11) τ=tf

_

(3.12) Σ <*f(x,f)W,lit,)=iP(t1ix,f) (j=l,2,
μ=l

For simplicity, we stand tj itself for the local parameter around tj in the sequel.
Further we assume that {tj} are all simple. In the other cases, we modify (3. 12)
according to the multiplicity of {tj} in the usual fashion. Then {aμ(xtf)} is re-
garded as a solution of (2/ f A — 1) -equations (3.12). Furthermore, we are aware
that the solution of (3. 12) is determined uniquely. Finally let ft be a differential
analytic on S except for a simple pole at t with residue — i and positive along dS.
We note the fact that the result of Theorem 3. 1 is valid in a reduced form by
replacing idW(τ,t) with ft. The corresponding kernels are constructed similarly,
and they have a representation in the form (3.11). The representation is de-
termined uniquely again. Hence we have the following

LEMMA 3. 1. Let {tj}2/^'1 be zero points of a differential ft. Then we have

Here we assume that {ί/JJίS*"1 are all simple. In the other cases, we obtain
modified forms.

6. Using this lemma, we are ready to construct the reproducing kernels
which correspond to the Rudin kernel. Let δ(x,f) be a constant such that
d(x,f) q(τ 9x,t)ldW(τ9t) has residue 1 at x. We consider (2/+&-1) -equations which
correspond to (3.12):
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2l+k-l

Σ β,(χ, f)Wf(tj)=-δ(x, t}Q(t3; x, t} (;=1, 2, -, 2/+Λ-1).
μ = l

The existence of a solution of this equation is assured by Lemma 3. 1. We
set this solution (βμ(x,f)} again. Now we construct a function Lt(τ9x) which is
analytic on S, except for a simple pole at x with residue 1, and an analytic
differential &t(τ9x) on S as follows:

21+k-l

δ(x,t}q(τ\x,t} + Σ βμ(x,t)ωμ(τ}

(3.13)

&t

From (3.10), we have

(3. 14) &(Γ, a?) = y Lt(τ, x)idW(τ, t\ along dS.

In H?(S), we introduce an inner product (ωί9 α>2) as follows:

( ^ 1 ( - l

(0)!, 0)2)— 15— \ (Oi ωz -Trr// - TV" •
2ττ J3)s tdW(τ,t)

Under this inner product, H?(S) becomes a Hubert space. In terms of local para-
meters z and £, around τ and Λ?, respectively, we set &t(τ,x)=ίίt(z,ξ)dz. Then
(3. 14) implies that Rt(z, ξ)dz has the reproducing property in H?(S) as follows:

(3. 15) *(£)= ^ ^ f o - . for all ω(τ)=a(z)dzeH?(S).

We call the analytic differential jRί(r, a?) the conjugate Rudin kernel. In this case,
the adjoint L-kernel Lt(τ,x) is not a differential but a function. Summing up, we
obtain the following theorem:

THEOREM 3. 2. For fixed x, teS, an analytic differential &t(τ, x) on S and a
function Lt(τ, x)9 analytic on S except for a simple pole at x with residue 1, exist
uniquely and satisfy the following

&t(τ,x) = —ϊ<t(τ9x)idW(τ,f) along dS.

Here the conjugate Rudin kernel &.t(τ9 x) is characterized by the reproducing pro-
perty (3. 15). On the other hand, the adjoint L-kernel Lt(τ, x) is characterized by
the following extremal property:

m i n g M lAfcaOltM^ * C
O .*)} *π las vv ϊπ Jd
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where {h(τ, x)} is the class of L2(dS}-functions which are analytic on S, except for
a simple pole at x with residue 1. Here we assume that a local parameter ζ
around x is fixed arbitrary.

We list up some preliminary properties.

( I ) Rt(z1,z2)=Rt(z2,z1}.

(II) Rt(zι, Z2)dz1dz2 is an invariant form with respect to change of both
variables.

From (3.9) and (3.14), we have J"9jsLi(r,n)j:i(r,r2)=0. Here if we fix local
parameters zλ and z2 around τi and τ2 respectively, such that Z1=ψ1(τ1) and z2

= φz(τ2\ we have Lt(τ2, φl\z^}dz^=-Xt(τ^ <fc\z$)*

(III) If we take the local parameter z around r, Lt(τ, φ~\z)}dz is an analytic
differential with a simple pole at τ. On the other hand, Xi(r, τ) is an analytic
function with respect to τ except for a simple pole at τ. In particular, the residue
of Lt(τ, x)Xt(τ, x) at x is zero.

(IV) In {A(τ, #)}, Lt(τ,x) is characterized by the following:

\ f(τ)tt(τ, x) ̂ ~^ dsτ=0 for all
Jds oι>

We note that the property (IV) of the Rudin kernel is not valid in general
with respect to the conjugate Rudin kernel.

7. Next, we consider a reproducing kernel ^(τ.x) in the closed subspace
HξE(S) of H%(S) which consists of exact differentials. The existence of the kernel
<R¥(τ,x) is assured by the general theory of the reproducing kernels [2]. Hence
we shall state some properties of the adjoint L-kernel. At first, we consider the
Bergman kernel K(z, j) in the Hubert space which consists of exact differentials
df, analytic in S and J/€L2(S). Here z and ξ are fixed local parameters around
τ and x respectively. K(z, ξ}dzdξ is invariant with respect to change of both
variables, and K(z, f) satisfies

(3.16) K(z,ξ)=K(ξ,2).

Let L(z, ξ)dz be the adjoint L-kernel. L(z, ξ)dz is an exact differential, analytic on
S except for x where it has a double pole:

L(z,ξ)dz=( — — +regular terms)<fe,
\7Γ (Z — ξ) J

and satisfies

(3.17) -K(z,j)dz=L(z,ξ)dz along 3S
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(3.18) L(z,ξ)=L(ξ,z) (cf. [13], pp. 135-137).

Since K(z, ξ)dz belongs to H?E(S), we have

Hence

(3. 19) .

Because TsΓfo 9X2: and L(z, ή)dz are exact differentials we may define K(x, η} and
L(x,η) as follows:

S
Λ /x/ CX

K(z,rj}dz, L(x,η) = \ L(z,η)dz.
J

We integrate (3. 19) from t to x, then we have

g(x, η)-&(t, 9)= - -̂  t (Γ(α?, e)-Γ(
^7r Jds

Here we assume that {£,-} are all simple. In the other cases, we can modify the
following arguments slightly. Then we assume that dW(τ,f) has the following
expansion around t3\

[W"(tjy t) (z(τ)-tj)+ regular terms]^, (W"(t3,

Using the Cauchy integral formula, and substitute τ for x, we have

( }

Here JK(τ, ^)+JL(τ, 77) and dK(τ,η)—dL(τ,η) are a pure imaginary and a real
analytic differential along dS, respectively. Consequently, we can take constants

{am(η)}m-ι such that

(3.21) tf(r, 5)=-L(r, ?)+«„(?) on Cm.

From (3.20) and (3.21), we have

-iRf(z,η)dz _ r £. )+α ( )_^7 ]̂

(3.22) '
2

_^ V
' ' ~ τ ' « m y - , , o n
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Finally we define the adjoint L-kernel L?(τ,η) which is analytic on S except for
a simple pole at η with residue 1 and define constants {Λm(η)}m=ι as follows:

,o 9oΛ fEf ^ Γf N 2l+^~l Φfo*Λ #, T V(3.23) Lf(τ,rj)=-πL(τ,η)-π Σ WTTT/-^ lg(Γ>0)>

(3.24)
j=

From (3. 22), (3. 23) and (3. 24), we have

(3.25) £f(*,?)ώ=[£f(τ, v ) + A » W ] - r f S r on Cm.

Here we can normalize that AfcO?)=0. We integrate (3.25) along Cmt and we have

/0 0/.N Λ , , -1 1 Γ *p, N 30(r,f) , ^
(3.26) Am(η) = -τ—~ a , f} -̂ - \ Lf (τ, η) — dsr on Cm.

From (3.25), we have the following theorem:

THEOREM 3. 3. We fix points x, t on S and a local parameter ξ around x.
Then the extremal function L¥(τ,τj) and k-tuple (AlfΛ2ί •••, -Afc-i, 0) of complex
numbers which minimize

in {h(τ,ξ}} and {(#ι, α2, •• ,^*-ι, 0)|αmeC} αr^ uniquely determined. Moreover, they
satisfy (3. 25). Conversely they are characterized by (3. 25).

Finally we state the interrelation of kernels. Using the reproducing property
we have

(3. 27) f(η, £ ) = ( ? , ξ)-- Σ Λjj) Rt(z,η)dz.
Δπl m=ι

Next, from

we have

1 *-ι

(3.28)
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