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ON THE ORR-SOMMERFELD TYPE EQUATIONS, I;

W. K. B. APPROXIMATION

BY TOSHIHIKO NISHIMOTO

§ 1. Introduction.

We consider in this paper the 4-th order ordinary differential equations of the
form

(1.1) -εV 4 ) +Λ0s, e)y^+p2(x, e)y/+p1(xy e)y = 0,

where ε is a small positive parameter, y is a function of ε and a complex in-
dependent variable x, and the differentiation is taken with respect to x. The
coefficients pi(x,ε) (z'=l, 2, 3) are holomorphic functions in the region

(1.2) D: |a?|<oo, 0 < ε ^ ε 0 < l

and as ε tends to zero they have uniformly asymptotic expansions in power series
of ε with holomorphic coefficients such that

(1.3) Pi(x, ε) £ ΣpUxy ( ί=l, 2,3),

in a region

DM:

for arbitrarily large M.
The above equation (1.1) is one of the generalization of the so-called Orr-

Sommerfeld equation which plays a fundamental role in the problem of the
stability of parallel flow of a viscous fluid and is written as

(1.4)

Here w(x) is a given function of x, a and R are real parameters and c is a
complex parameter. Physically speaking the function w(x) is the velocity for the
basic parallel flow, a the wave number of disturbance, R the Raynolds number
and c the complex wave speed. The deriviation of this equation from the Navier-
Stokes equation is explained in, for example, Lin [7]. The function w(x) can only
be a quadratic function of x from the consideration of the exact solution of the
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Navier-Stokes equation, but for our present purpose, we shall not restrict our-
selves to a quadratic function of x> so that our treatments of the equation (1.1)
could be applied to other problems. From the physical reasoning, it is usually
studied the asymptotic expansion of the fundamental system of solutions of (1.4)
as (aR)-1=e tends to zero, but at the turning points where w(x)—c=0 it becomes
quite complex.

There have been many contributions to the equation (1.4) and its variants,
in particular by Langer [6], Lin [7], Wasow [10], Lin and Labenstein [8], Graebel
[3] and Kuentum [5]. Most of them are concerned with the construction of
asymptotic expansions of solutions in a small neighborhood of the turning point
by using the related equation method, the matched asymptotic expansion technique
or the method of multiple scales. On the other hand, asymptotic expansions in
an arbitrarily large but bounded region were considered by Lin and Foote [2]
when w(x)—c is a quadratic function of x, and by Wasow [11] in the whole x-
plane when w(x) is a linear function of x.

The purpose of this paper is to construct systematically asymptotic expansions
of fundamental system of solutions of the equation (1.1) in an arbitrarily large
bounded region. The main idea is to define unbounded regions called canonical
regions which were introduced firstly by Evgrafov and Fedoryuk [1] in the
asymptotic theory of the second order differential equations containing turning
points. Through certain deformations of these regions, we can obtain the regions
of admissibility in which asymptotic expansions are valid. These regions are
arbitrarily large, bounded and exclude certain neighborhoods of turning points
called domains of influences which shrink to turning points as ε tends to zero.
Therefore our theory does not give any informations about the asymptotic nature
of solutions at turning points and at infinity. The lack of the former is over-
come by combining the local theory at turning point and our theory, that is, by
using the matching procedure between an inner asymptotic expansion which is
valid in a small direct neighborhood of the turning point and our outer asymptotic
expansions. On the other hand, the asymptotic expansions at infinity could not be
obtained in this paper because of the fact that we have no enough global theory
of the second order differential equations containing irregular singular point at
infinity for our present studies.

In section 2, we state the assumptions on the holomorphic coefficients, and
then a few transformations are made so that the coefficient matrix of the trans-
formed equation has a formal expansion with diagonal form to the order of ε. In
section 3, it is defined the domain of influence which is a small neighborhood of
the turning point and shrinks to the turning point as ε tends to zero. This is
done by considering the singularity which appears in the coefficients of trans-
formations and the transformed equation at each turning point. In section 4, we
calculate the first formal approximation of the fundamental system of solutions,
and a region of admissibility is defined by small deformations of canonical region.
And finally in section 5 the existence theorem is demonstrated, that is, for the
first formal approximation there exists a fundamental system of solutions whose
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asymptotic expansion coincides with it in the region of admissibility.
The connection formulas between the different regions of admissibility, or the

error bounds for asymptotic expansions will be considered in future.

§ 2. Assumptions and preliminary transformations.

At first, we introduce the vector variable Y by
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then the given 4-th order differential equation becomes the system of differential
equation such that

(2.1)

εY'=P(x,s)Y,

0

0

0
P(x,e) =

ε

0

0

_ pί(x, ε) p2(x, ε) pd(x, ε) 0 _

Here the matrix function P(x, ε) is holomorphic in the region D, and when ε
tends to zero it can be represented uniformly by an asymptotic power series of ε
with holomorphic coefficients in DM'>
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Here we make following assumptions on the functions piv(x).
(1) The function p3(x, 0) is not identically zero, and then has a finite number

of zeros which we denote by a1,a2,'-,as, and call them turning points of the
equation (1.1) or (2.1).

(2) Let us expand the function piv(x) in the neighborhood of turning point a3

by the convergent power series of x—a3:

)= Σ
then we assume

(2.3) ί=l ,2 ,3 ; v=ΰ, 1; ;=1,2, •• ,s),

where q=tn3o3.

It is to be remarked that q is the order of zero of p30(x) at aJt and the
assumption (2.3) implies that the characteristic polygon (see Iwano-Sibuya [4])
associated with the turning point a3 consists of only one segment, and that the
reduced equation

has a regular singular point at a3.
Now we state transformations which make the equation convenient to calculate

formal solutions.
Transformation 1. By a linear transformation

Γ 1

(2.4) Y=Ω(x)Yi with Ω(x) =
0

0

the equation (2.1) becomes

{x, ε)=Ω(x)-1P(x, e)Ω{x)-εΩ{xY1Ωf(x)1

where P c l ) (#, ε) has an formal asymptotic expansion of the form

0

0

0

Piojx)

0 0

0 0

0 0

= 7 = ^ Vp30(x)

0

0
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In the following we make use of the block diagonalization technique. To do
this, the vector Fi is splitted into two parts and the matrix P^{x, e) into four
blocks such that the equation for Yι is written

(2.5)

where

F,=
C7Ί

2/2
Vl =

Vs

4°1 Lo
ε

0

0

p3(x, i

o(x) 2p3<)(x) _

and

(2.6)

0 0

i

0 0

*M 0

Transformation 2. Let the equation (2.5) be transformed by the relation
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Uil ϊE+εQR εQΊΓ U2Ί Γ f t l \E -εQ ΊΓ C7i

L F J L R

into the form

Ά2

= A i + B λ R - eQ(Ci+U!R) + {eAiQR - ε2QdQR - ε2Q'R},

V2\ VC2 D2\\_V2

where E is the 2-2 unit matrix, Q and R are 2-2 matrices chosen appropriately
in later, and the matrices A2) B2i C2, D2 become

(2.8)

D2=D1 + {-R(B1-εQD1)+εC1Q}-{εRA1Q-ε*RQC1Q-ε2RQ'}

Here we determine the matrices Q = Q0(» and i?=i?0W+i?i(j?)e by

(2.9)
e{Cn(a;) + A i W W + Ao(a?)i?i(a?)}

a?)OoWi?o(ar) - εRo(x)Qo(x)Cιo(x) - eR'0(x)} - ί)

so that we can write

x)ε\ B2^ Σ B2i(x)ε\
%=2

(2.10)

with

Σ C«(a;)e*,
1 = 2

A22(x)=B1R1ε-1-Q{C11+D11Ro+DloR1},

A23(x)=-Q{C12+D12Ro+D11Ri}+A1ε-1QR1-QCloQRi-Q'R1,

A2v(χ) = - Q{&, y - i + A . w-ii?o+A. .-2i?i} - QCi, v-8Qi?i,

(a?)= -[QA.v-i+QCifV-aQ]
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C22 (x) =Ci2+D12Ro+D11R1 -RiA.ε-1 +&0QR1 -RiBtRo

+R0QDιiRo+RiQD l oRo+R0QD1 0Ri+RoQC

C2s(x)=^-R1B1R1ε-1+RoQ/Ri-RoA1QR1ε~1+C13+D1BRo+D12Ri+CnQRi

287

RiQ'Ri - RiAiQRie- * + C u + D u R o

+RiQD12Ro+R0QD12Ri+R

+RiQCioQRl9

+RiQC12+R0QC1XQRX

+RoQDlt v-*Ri+RiQDlt .s

+RiQChυ-iQR1

D2o(x)=Dlo(x),

Dil(x)=Dn+C10Q,

u v-i+RiQCi, ,-s+RoQCi, v-*QRi

D2Xx)=Dlv+RoQDhv-1+R1QDltV-2+Chv-iQ+RoQChv-2Q+RiQChv-sQ

A short calculation using (2.6) and (2.9) gives

—pio(x) —p2o(x)

Q(χ) =

Ri(χ) =

r o o
1

0
Ro(χ) =

0 0

pio(x)psi(x) pn(x)

{pso(x)}2 pzo(x) '

iPzo(x)}2

piojx)

(2.11)
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D20(x)+D2i(x)ε =

From the method of determining the matrices Q and R, we can choose them
analogously so that the coefficients of formal power series of the matrices B2 and
C2 are zero to as many powers of e as we wish, but to avoid the complexities, it
will be calculated only the first term of asymptotic expansions in this paper.
Next, the expansion of the matrix D2(x, ε) will be diagonalized to the order of ε
by the following transformation.

Transformation 3. Firstly the matrix D20(x) becomes diagonal by

V,=f,Ϋt, - 1

1

1

- 1

thus the equation (2.7) becomes

(2.12)
Bs •0,

where the matrices Ά&, Bs, C3 and D3 have the same forms as (2.10) and

JVPso(x) 0

L o - Vpso(χ) +τ

Psi P2(

VpBO pΆl

wpso pso 2pso

pSl

p
Pi.

By the same idea as used in the transformation 2, we change the equation
(2.12) by

Ό l+ε2q(x)r(x) εq{x)'

εr(x) 1

where

q(x)=-

— εr(x) 1+ε2q(x)r(x)

X)

o(α?)
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and we obtain

(2.13)
F 3

where the matrices As, Bs, C3 and Ds have the same forms of formal power series
of ε as in (2.10), and

C.= Γ,-€8= T1,-1

1 + εφ?) + £

2 ^ ) r W 1 + εφ;)

ε ^1 fl( Ύ^vf Ύ*\ 1 £Y( Ύ*\ —I— C^* fl( Ύ*\Y( Ύ*\

The matrix Z)3 can be written as before in power series of ε, and its first two
terms are

(2.15)
L 0 - Vpso(x)

0

(3.1)

§ 3. The domain of influence.

We rewrite the equation (2.13) by neglecting the indices

UΎ [A

V C DJIV

where the matrices A,B,C, and D are identical with the matrices AB, BS} C8, and
D3 defined in (2.14) respectively, and let their formal power series of e be

(3.2)

Σ Cv(x)εv,

Here we consider the asymptotic nature of the matrices A(x, ε), B(x, ε), C(x, ε)
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and D(x, ε) in the neighborhoods of turning points, that is, count the order of
poles of each element of these matrices at turning points.

Let aj be one of the turning points, q=mBOj be the order of zero of pzo{x) at
the point α3. Furthermore, let Oτ[p{x)]—α denote a rational number which is the
order of pole of the function p{x) at the point αJy but if the function p(x) has no
pole there α may be negative and we put α = — oo if p(x)=0. For a matrix
M(x) = (niij{x)), Or [MO)] denotes a matrix (Or'[niij(x)]).

The followings are immadiate consequences of the assumption (2.3):

(3.3)

-|" - 1 .

From these, we have

Π r Ψ ψ I+3, Or[^"-f"± Ψ

Thus we have at most

Or[C10(a;)] =

Or[Clv(x)J =

Or[Cu(.»]=ί
— OO —OO
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Or[AoO)] =

Or[Dφ)] =

Or[Q(x)] =

- o o - -

- _ - o o

— oo —oo

I -
— oo —oo

- o o -

Or[Du(x)] =
— OO —OO

Or[i?0(x)] =
— OO —

1

oo

From the relations (2.10), (2.14) and the above, each matrix function of (3.3) has
at most the following order of pole at the turning point a/.

Or[A,(x)] =

i + » i + 2

— oo —oo

3 . 3

<7+21

U+4 q+3]

Γ —oo —oo 1

0r[53(x)] =
q+2\

Or[B4(x)] =

— OO —OO

2ί+l

(3.4)

Γ —oo —oo

}
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Or[C,(x)] = Or[Cs(χ)] =
[q+5 q+4

L?+5

Or[Ct(x)] =
2^+6 J'

Or[C,(s)] =

Or[C.(x)] =

3<7+8j'

3^+5

Or[D2(x)] =
ί+2 ί+2

f+2 f+2
+3

9+3 J

l2q+5

Or[£>6(a;)] = Oτ[A(a?)] =
3^+7 J'

4?+8 ^

When ^ = 1 , which is the most cases in applications, the above estimates are
rather superfluous. In this case the condition (2.2) is automatically satisfied for
all mivj^:0 (t=l,2,3;y=0,l), mZOj=q=l' By the same procedures as before we
have instead of (3.4) the following estimates at the turning point ay.



Or[Λ,(ar)] =

Or[B,(x)] =

Or[C,(x)] =

(3.4)'

1
Or[C.(aO] = |

Oτ[D2(x)] =

1
Or[D6(x)] = \

Γ 2
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2

3

. 2

" 7
2

7
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" 8

- 8

- 5
2
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. 2

• 7

. 7
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2
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2 .
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2

7
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8 Ί
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7 Ί

7 .

ORR-SOMMERFELD

Γ 3

, Or[A,(*)] =

Γ2~u
Γ 5

, Or [C3(x)] =
L 5

" 8

19
_ 2

Γ 4

L 4

, Or[Z>β(#)] =

-17
2

17
. 2
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3 I
, Or[AXx)] =

4 J

2 1

3 1

5 1

5 J' ° r [ C 4 W ] ~

8 '

19
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2 .
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" — OO
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From (3.4) and (3.4)', we obtain following lemmas.

LEMMA 3.1. For each turning point a3, there exists a neighborhood of the form

(3.5) Nε"^\x-aj\^ρ, 0<εgε0, α=2/(?+2)

for sufficiently large positive constant N, sufficiently small positive constants p and
so, for which there exists a positive constant L such that if

(3.6)

0

0 1

(x-aj)

0

) 0

1

B(x, ε)

C{x,ε)
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and if q—1, we have

(3.6)'
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\\A(x,ε)-εA1(x)\\^L\x-aJ\-W2εi,

\\B(x,ε)\\^L\x-aj\-^ε\

\\D(x,ε)-Do(x)-eD1(x)\\^L\x-aj\-5/2ε2.

Here the norm \\A\\ of a matrix A=(βij) is defined by Σ ϋ

Proof We prove only for A(x, ε) with q^2 and other cases can be proved
analogously. From (3.4) there exists a positive constant U such that

0

{x-aj) 0

0 1
(ί=2,3,4),

in the neighborhood of aJ} and also from the asymptotic properties of pi(x,ε)
(£=1,2,3) and (3.4) it is easily verified that

Γ

L
O

Then we have

Πx-aj)-1 01 V{x-ai) 01

L o i j { x's~ε L o l j

Each element of the transformations used in the section 2 is bounded in the
domain DM except for turning points. Then we have from the asymptotic pro-
perty (2.2):

LEMMA 3.2. There exists a positive constant L such that

\\A{x, ε)-ε

(3.7)

for all (x, ε) satisfying

(3.8)

\\C(x,ε)mLε\

\\D(x, ε)-D0(x)-D1(x)ε\\^Ls\

Min \x-aj\ ^p,
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Now we can define the domain of influence Naj at the turning point aJf that is

(3.9) Naj = {x: \x-aj\^NeaJ, 0<ε^ε0}, a3=2j(q+2).

This region shrinks to the turning point a3 when ε tends to zero.

§4. Region of admissibility.

For the first formal approximation of a fundamental system of solutions of
(3.1), we put

Γ Ulx) 0
(4.1) Wo(x) = \

L 0 Vo(x,e)

where U0(x) is a 2-2 matrix which constitutes a fundamental system of solutions
of the reduced equation

(4.2) Uί=A!(x)Uo,

and Vo(x, ε) is a 2-2 matrix such that

0 exp\ " v w ^ _ ^ 3 1 w [ ^2ow j ^

Let F(#, ε) be a fundamental system of solutions of (3.1) and let

with
Γ U^Kx, ε) U*\x, ε)

M^,ε) =
lV^{xyε) 7»fefi)

where Uω(x,ε), Vω(x, ε) (z = l, 2) are 2-2 matrices and must satisfy

(4.4)

where A2=A-εAly B2=B, C2=C and D2=D-DQ-εD1.
Here we write down the explicit form of the matrix U0(x). If q^2, it can be

written as
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~(x-ak) 0-\[φ$\x-ak), φ$\x-ak)J(x-aky* c(x-aky*log(x-ak)
(4.5) Uo(x) = \

C\ 1 1 (&) (on Π \ (fc) (on yy \ C\
\J JL _J l_C^21 \X ~~~ til k)) V 2̂2 \X~~Cl>k)AL. ^

where >[*, ̂ * are roots of the characteristic equation

λ* + (a+l)λ+a+b=0
with

a= lim (x—ak)
 20, , , δ= lim (x—akγ

 10, . .

When λk—μk^integer, c equals zero, but when ^ — ^ is an integer c may be
1 or 0, and we assume λk—μk^O. The functions #>$(#) (i,j=1,2) are all con-
vergent power series of (x—ak) in the neighborhood of <zfc and

Γ ^ ( O ) ^ ( O ) Ί
det #0.

If q=l, UQ(X) has the same form as (4.5) except it does not take the first
matrix along and λk, μk are roots of

The system of differential equation (4.4) is converted into the system of
integral equations of the form

x, ε) = ε-1Uo(x)^ Uo{τ)-ι{A*(τ, e)(U0(τ)+U^(τ, e))+A(r, s)V^(τ, ε)}dτ,

e) = e'1Vo(xf ε ) " 1 ^ F0(τ, ε ) " 1 ^ ^ , ε)(U0(τ)+ U™(τ, e))+D2(τ, 6 ) 7 « ( r , e)}dτ,

(4.7)

j : C τ, ε)(F 0 (r, ε ) + F ( 2 >(r, ε))}dτ,

(z, e) = e-1Vo(x, ε ) " 1 ^ F0(τ, e ) - ^ , ε)(F0(r, e)+V™(τ, ε))+C2(τ,

If we put

Γ(x- ak)
λk c(x - ak)

λk log (x - ak) 1

L 0 (x-aky* J

(4.8)
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then (4.7) becomes

, ε)F^(τ, e)}A(τ, ak)A(x, a^dτ,

X{C2(r,
(4.9)

?, ak)A(τ, a*)-1*'1

, e )+5 a ( r , ε)(£+F<2>(r, ε))}F0(r,

?, e) = J 7o(α?, ε)F0(r, e)-^- 1

τ, ε)F<2>(τ, ε) + C2(r, ε)#<2>(r, ε)}Fo(r, e)Vo(x, ε)"1

where each integral is to be taken along an appropriate curve described in later.
We prove in the next section the existence of solution of the equation (4.9).

To do so, the notion of canonical region with respect to ξ(x, x0) will be introduced
following [1], where

X0

The family of curves S: Re ξ(x,xo)=const, does not depend on the initial point
xo, the choice of path of the integral in the complex #-plane or the determination
of the square root of psO(x)f and has branch points at turning points. We call the
curves passing through turning points the Stokes curves, and these curves divide
the x-plane into a finite or infinite number of simply connected unbounded re-
gions: Stokes regions. The function ξ(x, x0) can be considered as the mapping of
the .r-plane into the £-plane which is univalent at all points of x except turning
points, and each Stokes curve is mapped onto a straight segment or a ray parallel
to the imaginary f-axis. Then the image of Stokes region is vertical strip or
half plane.

The canonical region with respect to ζ(x, x0) is a union of an appropriate
number of adjacent Stokes regions bounded by the Stokes curves, contains no
turning point in its interior, and is mapped by ξ(x,xo) onto the whole £-plane cut
by unbounded verticals. Various properties of the canonical region or examples
are given in [1] and Wasow [12].

We denote the complex ^-plane by X and the complex £-plane by Σ. Let
D[ξ] be one of the canonical regions and DM[ξ\=D[ξ]n{xeX, \χ\^M}. Suppose
that ai,a2, ~,amtbi,b2,~',bn be the set of turning points which are on the
boundary of DM\ξ] and a Stokes curve from each a3 is going into the interior of
DM[ξ]> We take up a turning point ak from a3 ( ;=l ,2, ,m) and fix it. Now
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we define a few type of regions which are obtained by small deformations of
DM[ζ]. Firstly

DM[ξ, ak\ =DM[ξ\ Π (X-Nak\

where Najc is the domain of influence at ak defined in (3. 9).
If this region DM [ξ, a*\ is transformed into the ζ-plane by ζ(x, xo)y the image

3)u[f, <Zk] is a region bounded by a curve which consists of a part of an image of
the boundary \x\=M and vertical cuts issuing from ζ(akfx0)f and removed the
small neighborhood of ζ(ak,x0): U2ak that is an image of Najc.

Now we change the region g)M[ζ, <?d into S)M\ζ, akf γ] by a small deformation
with the following conditions:

There exist two points η+ and ψ on the boundary of <3)M[ξ, ak, γ] such that
for every point ξ in iDjf [f, α*, p] we can describe two piecewise smooth curves
cc+)(s, ?, 9+) and cc~}(5, £, ̂ -) connecting ξ and 5?+, ??~ respectively and they satisfy

(1) cw(s, ξ, η*) are contained in g)M[ξ, ak9 γ],
where 5 denotes the arc length,

(2) for some small positive constant γ,

Re-^->r on c^(s9ξ,η+)9

(4.10)

R e - ^ - < - r on c<->(s>ξ>V~)

As the region £)Mlξ, ak, γ] and the points rf, we take here as follow. Let us
pUt tan φ =

(1) If there exists one point on the boundary of ^)M[ξt ai\ which is on the
most righthand side, we take this point as η+

f and if there are many such points,
we fix one of these points as η+.

(2) We describe the two lines issuing from η+ with argments πβ+φ and
— π/2—φ, and cut off from iZ)jf[£,#*] the right hand parts of two lines, and if
there exist regions which are in the exterior of g)M[ξ,ak] and bounded by the
boundary of ϋMf, ak] and two lines, we add them to <Dx[ζ, «*]• For sufficiently
small γ, the above two lines are almost vertical line starting from η+.

(3) By the same methods as in (1), (2), we choose the point ψ and cut off or
add some portions from g)M\fi>ak\.

(4) In the neighborhoods of £(tffc,a?0) for which we suppose that the vertical
cut is directed downward, we firstly draw concentric circles C and O around
ξ(ak,x0) whose radii are N'e and p' respectively, where N' is nearly jVce+2)/2 and
pf nearly p&+v/2 of (3. 5). Moreover write two segments Lλ and L2 starting from
ξ{dkyXo) with arguments φ and π—φ respectively. Let Pi, Qi be cross points of Li
with C and C, and P2 and Q2 be cross points of L2 with C and C respec-
tively. From Pi we draw a segment of argument —πβ+2φ to the cross point
Ri with C, and from Ri continue a line of argument -π/2+φ to the boundary of

?, ak], and denote this polygonal segment by llm Analogously we draw a poly-
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gonal segment /2.
that is, a region surrounded
3)M[ξ,ak] (Fig. 1).

(5) For each turning point
radius pr around

We delete from <DM[ξ,ak] the
by lu upper circle

neighborhood of vertical cut,
PiP2, U and the boundary of

we draw in the f-plane a circle C of
the ζ(aJtx0) and let Pi, P2 be the same points as in (4). From

Pi we draw a line lx of argument — πβ+φ to the boundary of WM[ξ,ak], and also
from P2 a line h of argument —π/2—φ. Then from £DM[ζ,ak] we delete a region
bounded by lu l2 and the part of circle O'.

Thus we obtained the two points η* and region <3)M[ζ, βic, γ] by performing the
above procedures. Next we define the curve cw(s, ξ, η+) for every ζ££)M[ζ,ak>γ].
Clearly the curve c(-}(s, ξ, ψ) can be defined by the same method (Fig. 1).

Fig. 1

(1) Let

'ε^\ξ-ξ(ak, xo)\^p' M[$, a*, γ}}

and if vertical cut issuing from ζ(akf x0) is directed downward, draw the line
of argument —πβ—ψ from the point Q2, and denote by iDϊ^f, akf γ] the region
bounded by the above line, the circle C and the boundary of £)M[ζ,cιk,γ]. Then
the region £)M[ξ,ak,γ\ is divided into the several subregions such that

where

i\ U ̂ ϊ } [ f , a* γ] U g)'M[ξ, ak,

, γ}-£>W[ξ, ak> γ\.
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(2) For ξ in <3)r

M[ξ>ak>γ\> we can easily draw a curve c^\s,ξ,η+) contained
in £)r

M[ξ, βk, γ] with the desired property by at least connecting several segments,
owing to the shape of <DM[ζ,ak,γ]

(3) Let us divide 3)[ak,γ] into three parts <D™[ak,γ], £)^[ak,γ] and 3)w[ak,γ],
where <Dσ:>\ak, γ] is a part of £D[ak,γ] below the segment Lly S)^\ak,y\ between
Li and L2, and £)iZ:>[ak} γ] below L2.

(4) For ξ in £)σ:>[ak, γ], we draw downward a segment of argment —π/2+φ
from ξ to the point of C or to the point on the segment PiRi. In the former
case we connect it with a curve defined in (2), and in the latter case we continue
it along PiRi and then combine it with one described in (2).

(5) For ξ in 2)^{ak, γ], cw(s,ξ,η+) is a curve along the circle of radius
\ξ—ξ(ak,x0)\ from ξ to the point on Li and connect it with a curve stated in (4).

(6) For ξ in 3)™[ak,γ\ and ^^[ξya^γ], cc+)(s,f, rj+) consists of the segment
of argument π/2—φ from ξ to the point on L2 and a connected curve described
in (5).

As a region of admissibility we take the inverse image of £)M[S, dki γ] under
the mapping ξ=ξ(x,x0) and denote it by DM[χ,aic,γ], and also we denote the
inverse images of £)[ak,γ], two points rf and two curves c(±)(s, ξ, rj) by D[ak,γ],
XΪ and cc±)(s, x, x0) respectively.

From the above construction, we can prove the following two lemmas.

LEMMA 4.1. / / we put

then we have

d Re ξ(x, xo, ε) ^ A , , 1 W λ^r1—— ^ 0 along cc+)(5, x, x0),
do

(4.11)
d Re ξ(x, x0, ε)

7, x0, ε)

Λ1+εpX))'
dReξ(x,xo,ε) __ d Re ξ{x, x0) / R c Φn{x) \ ^ dξ(x, Xo)

ds Pso(x)

then if we take \εp^i(x)lp^(x)\ sufficiently small, and by using the condition (4.10),
the desired inequality (4.11) clearly follows. The magnitude \ep3l(x)lp άo(χ)\ can be
as small as we please by taking ε0 sufficiently small and TV sufficiently large in
the definition (3.9).
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LEMMA 4.2. For all ζ in ^)f

M[ξ,^k,γ] or ^^[ξ, ak, γ], there exists a constant
K such that

(4.12)

and for ξ in £D[ak,γ],

(4.13)

[

[ \vξ(k,o)\\v\

Analogous inequalities hold when the integrals are taken along cc~}(s, £, η~).

Proof. (1) For ξ in £)^[f, #*;, γ] the inequality (4.12) is clear since the region
3)M[£> βk, γ] is bounded.

(2) Let ξ be in £)^[ak,γ\ and ξ-ξ(ak,xo) = \ξ-ξ(ak,xo)\elt The integral path
cw(s>ζ>V+) consists of possibly three parts, ci+)(s,ξ,η+), cϊ+)(s,ξ,η+) and c(

3

+\s, f, η+).
Here Ci(+)(5, ζ, η+) is in the exterior of <3)[ak,γ], c(

2

+)(s,ξ,γ]+) is a straight segment of
argument — π/2+φ from f to a point 5$ which is on the C or PjR^ and if Ŝ  is
on PJRi, the ci+\s, $, η+) is a segment SξRi. Now we estimate the integral (4.13)
for each parts.

Firstly we have

for some constant Kr.
Next, ci+)(s,ξ,η+) can be written as

-ψ) tan (̂

where

^ ^ - ^ ^ ~ -φ,

Then we have

I η - ξ{aky Xo) I ̂  I ξ - ξ(βk, Xo) I COS (φ - ψ)

ΓO)| sin 9 = r | ί -

Thus we have
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Lastly we consider the contribution of cl*\s, ξ, η+). On this segment

and we have

\Sξ-ξ(ak, xo)\ = \ξ—ξ(akf xo)\ cos (φ—ψ) tan ^ ,

where ψξ is a certain argument satisfying ()<</>£ <π/2—2<p. Then we have

Thus by adding the above three estimates, we obtained the desired inequality.
(3) For ξ in WQ2)[ak,γ], we denote by cί+)(s, <?, 57+) the part of c(+)(s, <f,)?+) in

the interior of £)ί2)[aki γ], and by c(

2

+\s,ξyη
+) remaining part. From (2),

for some constant Kf. On the other hand c[+)(s, ξ, η+) can be written as

V-ξ(ak,xo) = \ξ-ξ(ak,xo)\eίθ

ds=\ξ-ξ(ak,xo)\dθ,

then we have

Jc[+hs, ί,^+)

Thus by adding the above two inequalities, we obtained the inequality (4.13).
(4) For ξ in Π)^[aki γ], the contributions of the integral from the path in

the cDC3)[ak,γ] is obtained by the same method as (2), and the contribution from
other part is obtained from (3). Thus proved the desired inequality for this case.

(5) Finally for ξ in <3)ψ[ξ,ak, γ], the inequality (4.12) can be proved easily
by combining the above procedures and we omit them here.

§ 5. Existence theorem.

We prove in this section the main existence theorem. At first the system of
integral equation (4.9) will be considered in the region DM\x, ctk, γ] defined in the
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§4 and let ak be one of the turning points a, (/=1,2, •• ,m) and fix it throughout
this section. Here the matrix Uo(x), which was defined only in the neighborhood
of the turning point ak, is to be considered as defined in the region DM[x,ak,γ]
by an analytic continuation.

The system (4.9) is splitting into two subsystems, that is, a system for
Um(x, ε), Ϋσ\x, ε), and a system for U&\x, ε), Ϋm{x, ε):

(5.1)

(5.2)

x, e) = 00(x)^Λ(x, ak)Λ(τ, at

X{A2(τ, ε)(Uo(τ) + O^

x, e) = J* Vo(x, ε)Fo(r, ε)"^" 1

X{C2(r, ε)(Uo(τ) + U«\

x, ε) = Uo(x)^Λ(x, ak)Λ(τ, β*

X{D2(τ,

We prove at first the following lemma.

r, ε)}Λ(τ, ak)Λ(x,

, ε)}Λ(τ, a,)Λ(x,

τ, ε))}Vo(τ, ε)Vo(x,

τ, e)ϋ<*>(τ, ε)}Vo(τ, ε)V0(x, εY'dτ.

LEMMA 5.1. The system of integral equations (5. i) (i=l, 2) have solutions
Um(x, ε), Ϋm(x, ε) for which there exists a positive constant K such that (1), for
q%.2, and for x in D'M[x, «*, γ], where D'M[x, ak, γ] =DM[x, ak, γ]-D[ak, γ],

(5.3)

for x in D[ak, γ],

(5.4)

—auYx 0"

0 1.

\\(x-ak)Ϋ»\x,i

(2), for q=\, and for x in D'M[x,ak,γ],

(5. 3)'

for x in D[ak,γ],
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\\U™(x,ε)\\^K\x-ak\-s/2ε,

Proof. We treat only the case i=l, q^2. And the same method will be able
to apply to other cases. If we write down (5.1) for each component, some of
them contain exponential function coming from Vo(x, ε) Vo(τ, ε)"1. Suppose that one
of them carries the function exp ζ(x, τ, ε) or exp {—ζ(x, τ, ε)}, then we choose the curve
cc+)(s,x,XQ) or c^ζSyXyXϊ) as the integral path of (5.1), and if it does not carry
the exponential function, the integral path is one of c(±)(s, x, #f), where

exp ξ(χ9 τ, ε)=exp

From the Lemma 4.1, the exponential function is bounded in each integral path.
Let Uσ>(x,ε) and Vσ\x, ε) are matrices as in the Lemma 5.1, and let Tθσ>

and TΫσ:> be the integral expressions of right hand side of (5.1). T can be con-
sidered as a mapping of Uσ:>(x,ε) and Yw(x, ε). Now we prove that the mapping
T has a contraction property from which the Lemma 5.1 can be concluded by the
standard methods such as methods of fix point or successive approximations.

Firstly let x be in D'M{xyakiy\. Then from (3.7) and the Lemma 4.2 we have

(5.5) \\TU«>\\9 \\TV^mL'ε+L'Ke\

for some constant Z/, where U denotes unspecified constant in the followings.
For x in D[aic, γ], the following inequality is valid from the Lemma (3.1);

Since we have

τ-a
x-ak

TUσ:>(x,£) consists of linear combinations of

r , Jx-ajcY
\y)(Λ?, r ,ε) ί J
J \τ—ak/

C [φ(x, T, εXτ-aky*~'* log - ^ ^ r ,

c [φ(x, τ, ε)(x-aky><-μk log X~ak dτ,

(5.6)

τ-ak

dτ

where φ(xfτ,ε) can be written



ORR-SOMMERFELD TYPE EQUATIONS 305

with holomorphic function φ(x,τ,ε) satisfying

\φ(χ,τ,ε)\^L'ε+L'Kε2.

We assume here that none of the quantities — (ql2+2)±(λk—μk) equal —1 for
simplicity. Then by using the integration by parts and the Lemma 4.2, each
term of (5.6) can be estimated by

•dτ

(5.7)

(5.8) \\(x-

Hence if ε and \{x—ak)-CQ/2+1h\ are limited sufficiently small, that is, the con-
stants ε0 and N'1 in (3.5) are taken sufficiently small, and if K is taken large
enough, we have

Therefore we have for some constant L

(x-a,)-1 0

0 1

By the same method we can deduce

from which we can conclude that the mappung T has a contraction property, and
then the Lemma is proved.

From the Lemma 5.1 and (4.8), the system of integral equations (4.7) and
then the system of differential equations (4.4) have a solutions as follow.

THEOREM 5.1. The system of differential equations (4.4) has a system of
solutions W(xy ε) in the region DM\X> die, γ] such that for x in ΌM\X, dki γ],

(5.9)

and for x in D[ak, γ],

0

(5.10)

r — rrJ-WU
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for some positive constant K, and X{q)=—1 if q^2, X(q)=O if q—1.

The fundamental system of solutions of the original system (2.1) can be
obtained from Theorem 5.1 by multiplying the transformations 1, 2 and 3 defined
in §2:

ΓE+εQR sQJE 0 ]
(5.11) Y(x,ε)=Ω{x)\ „ \[Wo(x,ε)+W(x,ε)l

L R EJIO TSTS\

where Wo(x, ε) is defined in (4.1).
Let us put

Γ E °~}\E ° 1
(5.12) Yt(x,e)=Ω(x)\ „ \Wo(x,e),

\A{x,at) 0 γ1

(5.13) W(x,ε)=Ω{xY1[Y(x,ε)-Yίs{x,ε)]\
[ 0 Va{x,ε)\

Here we can estimate the above W{x, e) from the Theorem 5.1 and the order
estimate of transformations at the turning point ak.

THEOREM 5.2. There exists a positive constant K such that

\\W(x, β)|| g Kε for x in D'M[x, at, γl

E 0 W,
0 (x-ak)E\

ε) ^K\x-ak\-<q/2+1h for x in D[ak,r].

Proof The first inequality is trivial and so we consider the second one.
From (4.1), (4.8), (5.11) and (5.12), we have

[εQR εQTsΆ l[U0(x) 0] ΓE+εQR εQT,(5.14, ^ , , = [ A f im_ J o £j + [ R Λ R

By considering the order estimation made in § 3, especially for R(x, ε), we have

\\εQ(x)R(x, e)U9(.x)\\ g K'{\x-ak\-«'^ε}\

And also from the Lemma 5.1,

\\eQ(x)R(x, e)U

\\(x-ak)R(x, ε)U«\x, ε)\\ g



ORR-SOMMERFELD TYPE EQUATIONS 307

for some constant K'. From these inequalities and (5.14) the Theorem is straight-

forward.

As a conclusion, we would like to say that our theory gives the rigorous

mathematical foundations on the W-K-B approximation used frequently in treat-

ing the Orr-Sommerfeld equations, and makes a small progress in the sense that

the domain of existence is extended in the neighborhood of a turning point by

introducing the domain of influence. There remain problems such as the con-

nection problem, error analysis and application of our theory, and these will be

treated in future.
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