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A CHARACTERIZATION OF THE ALMOST *0-MANIFOLD

By YOSHIKO KUBO*

Dedicated to Professor Kentaro Yano on his sixtieth birthday

The theory of linear connections in an almost Hermitian manifold has been
studied by Obata [2], Walker [4], Yano [5] and others. One of remarkable results
obtained by these studies is a characterization of the complex manifold by the
existence of a symmetric connection with respect to which the covariant deri-
vative of the structure tensor / vanishes. So it may be expected that a special
almost Hermitian manifold can be characterized by the existence of a certain
linear connection. From this stand-point, we shall try in the present paper, to
give such a characterization for the almost *O-manifold.

1. Preliminaries.

Let M be an almost complex manifold of real dimension 2n, that is, a dif-
ferentiable manifold which admits a tensor field / of type (1,1) satisfying

(1.1) P=-h

where 1 denotes the identity mapping of the tangent bundle of M. The tensor
field / is called an almost complex structure of M. It is well known that a neces-
sary and sufficient condition for an almost complex manifold to be a complex
manifold is that the Nijenhuis tensor N oί f defined by

(1.2) N(X, Y) = UX, JY] -J[X, JY] -JIJX, Y] - [X, Y]

vanishes identically.
First of all, for any tensor T of type (0,2), we define operators O and *O as

follows:

2O(TXX, Y) = T(X, Y)-T(JXJY),
(1.3)

2*O(Γ)(Z Y) = T(X, Y) + T(JXJY).

Then it is easily verified that
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O+*O=1,

0-0=0, O *O=*OΌ=0, *0 *<9=*0.

Thus the two conditions

O(Γ)=0 and *O(Γ) = Γ

are equivalent to each other. Moreover, the two conditions

*O(Γ)=0 and O(T) = T

are also equivalent to each other. We say that a tensor T is hybrid or pure if it
satisfies

O(Γ)=0 or *O(T)=0

respectively.
Now we assume that the almost complex manifold M admits a Riemannian

metric g satisfying

(1.5) Ofo)=0.

A Riemannian metric g satisfying (1.5) is called a Hermitian metric. An
almost complex manifold with a Hermitian metric is called an almost Hermitian
manifold. In an almost Hermitian manifold the 2-form ω defined by

(1.6) ω(X,Y) = g(JX,Y)

is of rank 2n. We now remark that, given an arbitrary positive definite Rieman-
nian metric g, we can construct a Hermitian metric g in the following way:

g(X, Y)=*O(0)(X, Y)=\(ΰ{X, Y)+g(JXJY)).

A connection V satisfying

(1.7) Fg=O

is called a metric connection. Let F be a metric connection and F the Levi-Civita
connection constructed from the given Riemannian metric g. Then we can put

(1.8) FXY=FXY+T(X, Y)

where T denotes a tensor field of type (1,2).
Equations (1.7) and (1.8) show that for a metric connection V we have

(1.9) {Vxg){Y,Z)=-g{T{X, Y)9Z)-Q(Y, T(X,Z)).

The connection F, in general, has a torsion, so we put

(1.10) 2S(X, Y) = FXY-FYX-[X, Y].
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Using S(X, Y), we find that the metric connection V satisfies

g{VYZ, X)=g(PyZ, X)+g(S(X, Y), Z)
(1.11)

+g(S(Y,Z),X)+g(S(X,Z),Y)

If an almost Hermitian manifold satisfies

(1.12) fr=0,

(1.13) dω=0,

( 1 - 1 4 ) tfί
or

(1.15) *O(FJ)(X, Γ)=0,

we call the almost Hermitian manifold a Kaehlerian manifold, an almost Kaehlerian
manifold, an almost Tachibana manifold or an almost *Omanifold, respetively.

It is easily verified that a Kaehlerian manifold is an almost Kaehlerian mani-
fold and is also an almost Tachibana manifold and that an almost Kaehlerian mani-
fold and an almost Tachibana manifold are both almost *O-manifolds. We also see
that an almost *O-manifold with vanishing Nijenhuis tensor is a Kaehlerian
manifold. Examples of an almost *O-manifold which is not almost Kaehlerian
and not almost Tachibana are E4xS2 and E2xS\ These examples are given
in [6].

2. A characterization of an almost *O-manifold.

Let M2n be an almost Hermitian manifold and (/, g) the Hermitian structure.
We call an affine connection V satisfying Fz/=0, X being an arbitrary vector
fiield, a /-connection. We need the following

LEMMA 2.1 [2], In an almost complex manifold, if the torsion tensor of a J-
connection is proportional to the Nijenhuis tensor, then the proportional factor
should be equal to 1/8, that is,

(2.1) S(X,Y)=jN(X,Y).

Now we suppose that there exists a metric /-connection whose torsion tensor
S(X, Y) is proportional to the Nijenhuis tensor N(X, F). Then, by the lemma
above we have S(X, Y) = (1IS)N(X, Y) and consequently

(2.2) g(FYZ, X)=gφγZ, X)+ ^{g(N(Y, Z\ X)+g(N(X, F), Z)+g(N(X, Z), F)}.

Using this connection, we have
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g{{PxJ)Y,Z)=g{{PxJ)Y,Z)

(2.3) +j{g(N(XJY),Z)+g(N(Z,X)JY)+g(N(Z,JY), X)

+g{N{X, Y),JZ)+g(N(JZ,X), Y)+g(N(JZ, Y),X)}=0.

On the other hand, using PxY—FrX=[X,Y], we can write the Nijenhuis
tensor as follows:

(2.4) N(X, Y) =JPγJ{X) -JVxK Y) + (PJXJ) Y- (PjγJ)X.

Thus we have

g((Px/)Y,Z)=g((Pχf)Y,Z)

- j {QiJVxJiJY) -JPjyJ(X) - VγJ{X) - PJXKJY), Z)

+g{FzJ{X) -JVxRZ) + PjχJ{Z) - PJZRX), JY)

+g{JPzKJY) -JVJYRZ) - PyJ(Z) - PJZJUY), X)

+g(JPχK Y) -JPγJ(X)+PJYI(X) - PJXK Y), JZ)

+g{JpjzJ{X) -JPxJUZ) + PjχJ(JZ)+PzJ{X), Y)

+g{JVjzJ{ Y) -JVYJUZ) + PjγJ(JZ)+PzR Y), X)}

=g((PxJ)Y,Z)

- j {g(JPχKJY) -JPJYKX) - PYRX) - PJXJ(JY), Z)

-g(-PzJ(X)+PxRZ) +JPjχJ(Z)-JPjzRX), Y)

+0(JPzJ(JY) -JPJYJ{Z) - PrRZ) - PJZKJY), X)

-g{- PχJ( Y)+PYRX) +JPJY/(X) -fPjxfi Y), Z)

+g(JpjzJ(X) -JPχJ(JZ)+Pjχf(JZ)+PZJ{X\ Y)

+g(JpjzK Y) -JPYΠJZ)+PJYRJZ)+PzJ( Y), X)}.

Since Pχl=—Pχ/ f—f Pχf=O, the equation above reduces to

Q{{VxJ)Y,Z)=g{{PxJ)Y,Z)

- \{g{PχJ{Y), Z)+g(Pjγf(X)JZ)-g(PrJ(X), Z)

(2.5) -g(PjχJ(Y),/Z)-g(Fχf(Z), Y)-g(PjZJ(X)JY)

+g{PjχJ{Z)JY)+g{PzJ{X), Y)+g(PzJ(Y), X)

+g(PjγJ(Z), JX)-g(PrJ(Z), X)-g{PjZRY), IX)}.
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We need to get further results

LEMMA 2.2. For any X, F, ZG T(M), we have

(2.6) g(MnX)=-g(ϊzJ(X), F),

(2.7) g{tfjzJ)X, JY) = -g{φjzJ) Y, IX)

Proof. Differentiating

(2.8) g{J{X\Y)=-g{XJ{Y))

covariantly, we have

\ Y)+g(I(FzX)f Y)+g(J(X), VZY)

Thus, using (2.8) in the above, we have (2. 6).

On the other hand, by (2.6)

o(tfjzJ)XJY) = -g{X, (VJZJ)JY)

=g{XJ(VjZJ)Y)=-g{(PjZJ)YJX\

which proves (2.7).

Making use of (2.6) and (2.7), we can rewrite (2. 5) as follows:

zJ) Y, Z)=g((FxJ) Y,Z)-± {g((FxJ) F, Z) -g{VJXR F), JZ)}

, Y),Z)+gφj(JXJY),Z)}

= \g{*O{VJ){X,Y),Z).

Thus, if the connection V is a /-connection, we have

This shows that, if there exists a metric /-connection whose torsion tensor is pro-
portional to the Nijenhuis tensor, then the almost Hermitian manifold must be
an almost *O-manifold.

Conversely, in an almost *O-manifold, we consider the connection defined by
(2.2). Then this is a metric /-connection whose torsion tensor is proportional to
the Nijenhuis tensor. Thus we get
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THEOREM 2. 3. In order that an almost Hermitian manifold M is an almost
*O-manifold it is necessary and sufficient that there exists in M a metric J-connec-
tion whose torsion tensor is proportional to the Nijenhuis tensor.

Since an almost *O-manifold with vanishing Nijenhuis tensor is a Kaehlerian
manifold, as a special case of Theorem 2.3, we have the following well known
result.

COROLLARY 2.4 [5]. In order that an almost Hermitian manifold M is a
Kaehlerian manifold it is necessary and sufficient that there exists in M a sym-
metric metric /-connection.

3. Metric /-connection in S 6 as an almost Tachibana manifold.

We take a seven dimensional Euclidean space E1 and consider it as the space
of pure imaginary parts of Cayley numbers. In such E7 we consider a hyper-
sphere S6. Then, it is well known that the S6 is an almost Tachibana mani-
fold, which is not Kaehlerian. The almost Tachibana structure on S6 has been
studied by Fukami and Ishihara [1]. They introduced on S6 a metric /-connection
defined by

(3.1) PxY=FxY+-^(PjYJ)X.

In the following, we shall show that this connection is identical with the con-
nection introduced by (2.2).

The torsion tensor S(X, Y) of the connection defined by (3.1) is given by

2S(X, Y) = PχY-PγX-[X, Y]
(3.2)

On the other hand, using (2.6), we get

N(X, Y)=J

(3 3)
=VχJ(JY) - PYKJX)+(tχf) Y-(PJYJ)X.

Since Sc is an almost Tachibana manifold, substituting JY in (1.4) for Y, we
have

and

Thus, in an almost Tachibana manifold, we get

(3.4) N(X,Y)=2{{PJKJ)Y-(PjγJ)X),
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Comparing (3.2) and (3.4), we find

(3.5) S(X,Y)=jN(X,Y).

The connection V being metric /-connection, this relation, together with theorem

2.3, shows that V is identical with the connection introduced by (2.2).
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