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ON BASIC DOMAINS OF EXTREMAL FUNCTIONS

BY MAKOTO SAKAI

1. Introduction.

Let Piw{z; ζ) (or Pow(z; ζ)) be the unique function with the smallest (or
largest, resp.) real part of the coefficient a=a(F) among all univalent functions
F(z) on a plane domain W which are normalized by

+a(z-ζ) + — about ζ^co,

(1)
i n

about ζ=oo.

The extremal properties of the functions Mw(z; ζ) = ( l / 2 ) ( P 0 ^ ; ζ)-Plw(z; ζ)) and
Nw(z; ζ) = (ll2χP0w(z; ζ)+Plw(z] ζ)) are well-known. For instance, Nw(z\ζ) is the
unique function with the largest outer area among all univalent functions F(z) on
a plane domain which are normalized by (1), and M$(z\ ζ)=Mw(z; ζ)/M^(ζ; ζ) is
the unique function with the smallest inner area among all analytic functions f(z)
on a plane domain W$OAD for which / / ( ζ ) = l (cf. Sario-Oikawa [3]).

In the present paper we shall show:

THEOREM 1. The following conditions are equivalent'.

( a ) Mw(z ζ) is univalent for some ζeW.

(b) For some ζ e W, the complement of the image domain of Nw(z ζ) con-
sists of a closed disk of positive radius and a relatively closed set with
zero area.

( c ) W is conformally equivalent to {\z\<l}—E, where E is a set satisfying

D for every compact subset K of

THEOREM 2. The following conditions are equivalent:

( a ) Mw(z ζ) is linear for some ζeW.

(b) Nw(z ζ) is linear for every ζeW. (i.e.

Nw(z;Q= z-ζ
I z (ζ=oo)
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for every ζeW.)

( c) W is either

(i) a disk Δ {in the wider sense) less a relatively closed set E satisfying

EΓΪKGND for every compact subset K of Δ,
or

(ii) of class OAD

Weaker versions of theorem 2 were previously proved by Ozawa [2] and
Suita [7]. Let i f be a plane domain and let L\W) be the class of analytic
functions on W possessing a single-valued indefinite integral with a finite
Dirichlet integral. We denote by Kw(z ζ) Bergman's kernel function on a plane
domain W and set

Γw{z; Q = jr

The problem of seeking the eigen values of the integral equation

(Kw(z Q-/V(z ζ))/(ζ) dξdv (feL\W), ζ=
W

is called the Fredholm eigen value problem for W (cf. Schiffer [5], [6] and Ozawa
[2]). Ozawa [2] showed that if all spectra of the Fredholm eigen value problem
for W are equal to zero and the area of the complement of W is equal to zero,
then W is of class OAD> Suita [7] showed that Nw(z ζ) is linear for all ζ € W if
and only if all spectra of the Fredholm eigen value problem for W are equal to
zero, and showed that if all spectra of the Fredholm eigen value problem for W
are equal to zero and there exists a continuum as an isolated boundary, then this
continuum is a circle and the remaining components are of class ND. A necessary
and sufficient condition for all spectra of the Fredholm eigen value problem for
W to be equal to zero is given by theorem 2.

2. Proof of theorem 1.

A compact set E in the plane is called an extremal set of vertical (or hori-
zontal) slits if Ec is a domain such that

PiEc(z; oo)=z

(or

resp.). The complement of the image of Plw(z;ζ) (or P0w(z;ζ)) is an extremal
set of vertical (or horizontal, resp.) slits.

LEMMA 1. Let E be an extremal set of vertical slits in the z(=x+iy)-plane
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andlet U be a simply connected domain such that Ed U. If a 1-1 mapping ψ of U
into the w(—u-\-iv)'plane is of class C2{U) and satisfies du/dy=0 on U, then the
image φ(E) of E is an extremal set of vertical slits.

Proof. Let VZDE be a simply connected domain whose boundary 9 7 is a
simple closed smooth curve. Oikawa [1] showed that E is an extremal set of ver-
tical slits if and only if

( 2 )

for every h^CxBΌiy'—E) which vanishes identically on 3V, where CιBD(Ω) is the
class of bounded C1 -functions with a finite Dirichet integral on Ω. Since E is an
extremal set of vertical slits, (2) is valid for some V such that VdU. It is suffi-
cient to show that

——dudv=0

for every HzCιBD{φ{V)-φ{E)) which vanishes identically on d(φ(V)). Since
du/dy=0 on U we have dx/dv=0 on φ(U). Hence we have

D(u, v)

D(x, y)

D(x, y)

du
dx

dx
du

dv
dy'

dy

dv'

' dx \( dy \dudv
I -^—°Ψ 11 *̂ —°(p )~z—^— = 1.

D(u, v)

and

ldx_
\du γ)\dv 'rj dx dy

Therefore we have d{(dyldvoφ)(duldx)(dvldy)}ldy=0 on U. The function (H°φ){(dyldv°φ)
•(du/dx)(dvldy)} is of class C^ BDiV—E) and vanishes identically on dV. We as-
sume without loss of generality that D(u, v)/D(x, y)>0 on U, and we have

0=\\ -x- {H-φ)\[-^-oφ\—- —~\ \dxdy
)jv~Edy[_ [\dv T) dv dy j J

- i S .

I dx \ , d(Hoφ) I dy \}D(u,v)

dx \ dx Ύj dy V dp r! \ D{x, y)

dH , , .
-r— dudv. q.e.d.

, dv

LEMMA 2. Let W be a subdomain of a domain W. Equality Mw(ζ; 0
Jy,(ζ ζ) holds for some ζzW if and only if Wf-W is a set satisfying (W'-W)

D for every compact subset K of W.

Proof. If M£(ζ; ζ)=M£,(ζ; ζ) = 0 for some ζGW, then the assertion is evident.
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Assume M£(ζ; ζ)=Λf^(C; ζ)>0 for some ζ€TF. To see that W'-W is a set men-
tioned above, it is sufficient to show that for every aeW'—W there exists a
neighborhood V of a such that E= V Π ( W — W) is of class iVo. We set wv=uv+ivv

= P*w'(z'> Of bv=Pvw,(a;ζ) (v=0,1) and ^ = P i ^ , ° P i ^ . Then we have duetto, vo)lduo

= Reφ'(wo) = ReP'lw,(z; QIPίw,(z;ζ)>0 for every WOQPQW,(W') Hence a mapping

is a 1-1 mapping of class C2 on some neighborhood f/Ό of b0. Let Fo be a neighbor-

hood of Z>0 such that F o cί/ O . We set F = P 0 ^ ( F 0 ) and £ = F Π TP'-TF). From the

assumption we have S^'-JB(C)=S^/(C), where Sw>(0 is the s P a n of Wf at ζ. Hence

P ^ _ ^ ; O = P ^ ( 2 ' ; C ) 0=0,1). This shows that PQW,{E) (or Piw,{E)) is an ex-

tremal set of horizontal (or vertical, resp.) slits. Since dv/duo=O on Uo and dz//3#i=0

on φ(Uo)y from lemma 1 we have that φ{PQw,{E)) = {φoφ-1){Plwt{E)) is an extremal

set of horizontal and vertical slits. This implies that (Φ°PQW,){E) is of class ND.

Since ψ°Pow, is a 1-1 mapping of class C2 on Po^K^o), E is also of class ND. The

converse is evident. q.e.d.

( a ) implies (c) . Let W\ be the image domain of M$(z ζ), and set Mf
=M^(ίί; ; 0). Assume that M$ is univalent. Then the composite function Mf°M^
has the smallest inner area among all analytic functions f(z) on W for which
/ / ( ζ ) = l , and hence it is equal to M$. Therefore Λf? is the identity function on W.
Let fsB be a function with the smallest supremum of absolute modulus among
all bounded univalent functions f(z) on W for which / / ( ζ ) = l . Then the outer
boundary of the image domain of fSβ is a circle whose center is the origin, and
fsB is a function with the smallest inner area among all univalent functions f{z)
on W for which /'(ζ) = l. Since M$ is univalent, /VB is equal to M#. By lemma
2, we have Wi=Δ—E where Δ is a disk and E is a set satisfying EΓΪKGND for
every compact subset K of J. q.e.d.

( c ) implies (b) . Let Δ be an open disk. Then NΔ[z ζ) is linear for every
ζ€J. So the assertion is evident.

(b ) implies (a) . Assume that (b ) holds and let c be the center of the closed
disk. Then F(z)=ll{Nw(z\ζ)-c} is univalent on Vi and satisfies F/(ζ)=l. Let
Ai(f) be th9 inner area associated with an analytic function /(z) on W, and let
Λe(g) be the outer area associated with a univalent function g(z) on W which are
normalized by (1). Then we have Aι(F) Ae(Nw) = π2. From the well-known iden-
tity Ai(M$)-Ae(Nw)=π2, we have Ai{F)=Ai{M%). Hence M% is equal to F and
is univalent. q.e.d.

3. Proof of theorem 2.

We show first the following lemmas:

LEMMA 3. Let W be a subdomain of a domain W'. If the area of W— W is
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equal to zero and Nw{z ζ) {or Mw{z', ζ)) can be extended analytically onto W, then
Mw,{z\ζ) = Mw{z\ζ\ Nw<{z;ζ)=Nw{z;ζ) on Wy and W'-W is a set satisfying
{Wf— W)ΠKeND for every compact subset K of W.

Proof If W is of class OAD, then the assertion is evident. We a ssume that
W is not of class OAD. If WcW, then we have Ai(M#)^Ai(M&) and Ae{Nw)
^Ae{Nw<)' Assume the area of W'—W is equal to zero and Nw (or Mw) can
be extended analytically onto W. Then we have Ae{Nw)=Ae{Nw<) (or At(M%)
=Ai{M$,), resp.). From the identity Ai{M*) Ae{N)=π2, we have Ae{Nw)=Ae{Nw>)
and Ai{M$)=Ai{M$,). The assertion follows from lemma 2. q.e.d.

LEMMA 4. Let μ be a finite complex Baire measure with a compact support K
such that the interior K° of K is empty and the complement Kc of K is connected,
and let n be a natural number. If the integral

is identically zero for every ζ€i£~c, then μ=0.

Proof Let r be a positive number such that Xc{|z |<r}, and let / be a poly-
nomial. Then we have

J{|ζ|=r} (ζ — Z)n

\ \ vy nndμ{z
J{|ζ|=r}lJjr \z—Qr

= κ :
Δπi

=0.

Since K° is empty and Kc is connected, every continuous function on K can be
approximated uniformly on K by polynomials. Hence for every continuous func-
tion g on K we have

[ g(z)dμ(z) = 0.

By the Riesz representation theorem we have μ=0. q.e.d.

( a ) implies (c) . If Mw is a constant, then the constant is equal to zero and
W is of class OAD. Therefore the assertion follows from theorem 1.

(c) implies (b) . Let Δ be an open disk. Then NΔ{z ζ) is linear for every
ζ e J . Hence the assertion is evident.

(b) implies (a) . Assume that Nw{z ζ) is linear for every ζ € W. Then for
every linear transformation L{z), NL(wϊ(z\ζ) is linear for every ζ€L{W). There-
fore in the following we assume that

( i ) W is compact if W has an exterior point,
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and

(ii) Wc is compact if W has no exterior point.

Proof of the case ( i) . (—l/π)Nw(z;ζ) is the unique function analytic on
W— {ζ} and satisfying

(iii) lim \\ F'(z) - —Λ£(* ζ) dxdy=O
r-*0 JJW-{\z-ζ\^r} [ π I

for every FGAD(W), having a pole at ζ with the principal part ll{π(z—ζ)2} if
ζ^oo and z2/π if ζ=oo, and possessing a single-valued indefinite integral with
a finite Dirichlet integral outside of a neighborhood of ζ. (In the case ooeFP,
the integral of (3) is to be taken over W— {oo}.) (cf. Schiffer [4] and Sario-
Oikawa [3]). Since W is compact, the formula (3) is valid for F(z)=z. Hence
we have

ΓΓ 1lim\\ -7 ^rτ dxdy=0
r-*0 J JW-{\z-ζ\^r} \Z — Q)

for every ζ€TF. For every open disk Δ and Δ' such that Jcz/', we have

[[ * - d x d y = 0
J JJ'—d \Z L,)

for every ζeJ. Hence for a fixed open disk Δo such that ΔodW we have

w-J,, (z-Q*

for every ζeJ0 Let i ] tea bounded open disk such that WcΔi, then we have

(4)

for every ζeJ0. We denote by Γ the connected component of Δλ—W which con-
tains the boundary of Δu and set E=Δλ-W-Γ and W'=WUE. Let {TΓ»} be a
canonical exhaustion of W and denote by i2w the simply connected bounded domain
whose boundary is the outer boundary of Wn> Set En=EnΩn. Then En and
Δι—W—En are compact. From (4) we have

(5)
J JjSn ( ^ —

for every ζ€J0. The function

An(C)=\\ -r—p^
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is analytic outside of En and satisfies Λw(oo)=0. By (5) kn(ζ) can be extended
analytically onto En. Therefore hn(ζ) is identically zero, and consequently the
area of E is equal to zero. From lemma 3 Nw<(z ζ) is also linear and E is a
set satisfying EnKsND for every compact subset K of W. Since W is simply
connected, from theorem 1 we know that the image domain of Nw>(z ζ) is a disk
(in the wider sense), and hence W is a disk. Therefore Mw{z\Q=Mw(z\Q
is linear.

Proof of the case (ii). We show that if W has no exterior point and if
Nw(z ζ) is linear for every ζ € W, then WQ is of class ND. Assume that Wc is
not of class ND. Then there exist two bounded open disks Δx and Δ2 such that
Δ1nΔ2=φ, Δ1Γ)WC$ND and Δ2nWc$ND. Let Δ3 be a bounded open disk such
that i i C J 3 and Δ2a(Δ3)

G. Let {Wn} be a canonical exhaustion of Δ3 — Wc and
denote by Ωn the simply connected bounded domain whose boundary is the outer
boudary of Wn- Set En=WcΓιΩn. Using the same argument in the case ( i ) with
respect to a nonconstant function Fe AD((Δ2 Π Wc)c), we have

(6)

][ w (*-02

for every ζeJ 3n W, and hence

for every ζ € ^ . From lemma 4 the area of £w is equal to zero. Therefore the
area of Δ3 n Wc is equal to zero and from lemma 3 we know that Δx Π Wc is of
class ND. This is a contradiction. q.e.d.

REMARK. Let F be a subset of W which has at least one accumulating point
in W. Assume that Nw(z;ζ) is linear for every ζςF. Then (5) and (6) are
valid for every ζ€F, and hence the same consequence follows from the unicity
theorem.
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