ON BASIC DOMAINS OF EXTREMAL FUNCTIONS

Ву Макото Ѕакаі

1. Introduction.

Let $P_{1W}(z;\zeta)$ (or $P_{0W}(z;\zeta)$) be the unique function with the smallest (or largest, resp.) real part of the coefficient a=a(F) among all univalent functions F(z) on a plane domain W which are normalized by

(1)
$$F(z) = \begin{cases} \frac{1}{z - \zeta} + a(z - \zeta) + \cdots & \text{about } \zeta \neq \infty, \\ z + \frac{a}{z} + \cdots & \text{about } \zeta = \infty. \end{cases}$$

The extremal properties of the functions $M_W(z;\zeta)=(1/2)(P_{0_W}(z;\zeta)-P_{1_W}(z;\zeta))$ and $N_W(z;\zeta)=(1/2)(P_{0_W}(z;\zeta)+P_{1_W}(z;\zeta))$ are well-known. For instance, $N_W(z;\zeta)$ is the unique function with the largest outer area among all univalent functions F(z) on a plane domain which are normalized by (1), and $M_W^*(z;\zeta)=M_W(z;\zeta)/M_W'(\zeta;\zeta)$ is the unique function with the smallest inner area among all analytic functions f(z) on a plane domain $W \notin O_{AD}$ for which $f'(\zeta)=1$ (cf. Sario-Oikawa [3]).

In the present paper we shall show:

THEOREM 1. The following conditions are equivalent:

- (a) $M_W(z;\zeta)$ is univalent for some $\zeta \in W$.
- (b) For some $\zeta \in W$, the complement of the image domain of $N_W(z;\zeta)$ consists of a closed disk of positive radius and a relatively closed set with zero area.
- (c) W is conformally equivalent to $\{|z|<1\}-E$, where E is a set satisfying $E \cap K \in N_D$ for every compact subset K of $\{|z|<1\}$.

THEOREM 2. The following conditions are equivalent:

- (a) $M_W(z;\zeta)$ is linear for some $\zeta \in W$.
- (b) $N_W(z;\zeta)$ is linear for every $\zeta \in W$. (i.e.

$$N_{W}(z\,;\,\zeta) = \left\{ egin{array}{ll} rac{1}{z\!-\!\zeta} & (\zeta\!st\!\infty), \ z & (\zeta\!=\!\infty) \end{array}
ight.$$

Received May 17, 1971.

for every $\zeta \in W$.)

- (c) W is either
 - (i) a disk Δ (in the wider sense) less a relatively closed set E satisfying $E \cap K \in N_D$ for every compact subset K of Δ ,

or

(ii) of class O_{AD} .

Weaker versions of theorem 2 were previously proved by Ozawa [2] and Suita [7]. Let W be a plane domain and let $L^2(W)$ be the class of analytic functions on W possessing a single-valued indefinite integral with a finite Dirichlet integral. We denote by $K_W(z;\zeta)$ Bergman's kernel function on a plane domain W and set

$$\Gamma_{W}(z;\zeta) = \frac{1}{\pi^{2}} \iint_{W^{c}} \frac{1}{(t-z)^{2} (t-\zeta)^{2}} du dv \qquad (t=u+iv)$$

The problem of seeking the eigen values of the integral equation

$$f(z) = \lambda \int \int_{W} (K_{W}(z;\zeta) - \Gamma_{W}(z;\zeta)) f(\zeta) d\xi d\eta \qquad (f \in L^{2}(W), \zeta = \xi + i\eta)$$

is called the Fredholm eigen value problem for W (cf. Schiffer [5], [6] and Ozawa [2]). Ozawa [2] showed that if all spectra of the Fredholm eigen value problem for W are equal to zero and the area of the complement of W is equal to zero, then W is of class O_{AD} . Suita [7] showed that $N_W(z;\zeta)$ is linear for all $\zeta \in W$ if and only if all spectra of the Fredholm eigen value problem for W are equal to zero, and showed that if all spectra of the Fredholm eigen value problem for W are equal to zero and there exists a continuum as an isolated boundary, then this continuum is a circle and the remaining components are of class N_D . A necessary and sufficient condition for all spectra of the Fredholm eigen value problem for W to be equal to zero is given by theorem 2.

2. Proof of theorem 1.

A compact set E in the plane is called an extremal set of vertical (or horizontal) slits if E° is a domain such that

$$P_{1_{E}c}(z;\infty)\equiv z$$

(or

$$P_{^{0}E^{\mathrm{c}}}(z;\infty)\equiv z,$$

resp.). The complement of the image of $P_{1w}(z;\zeta)$ (or $P_{0w}(z;\zeta)$) is an extremal set of vertical (or horizontal, resp.) slits.

Lemma 1. Let E be an extremal set of vertical slits in the z(=x+iy)-plane

andlet U be a simply connected domain such that $E \subset U$. If a 1-1 mapping φ of U into the w(=u+iv)-plane is of class $C^2(U)$ and satisfies $\partial u/\partial y=0$ on U, then the image $\varphi(E)$ of E is an extremal set of vertical slits.

Proof. Let $V \supset E$ be a simply connected domain whose boundary ∂V is a simple closed smooth curve. Oikawa [1] showed that E is an extremal set of vertical slits if and only if

$$(2) \qquad \qquad \iint_{V-E} \frac{\partial h}{\partial y} dx dy = 0$$

for every $h \in C^1BD(\bar{V} - E)$ which vanishes identically on ∂V , where $C^1BD(\Omega)$ is the class of bounded C^1 -functions with a finite Dirichet integral on Ω . Since E is an extremal set of vertical slits, (2) is valid for some V such that $\bar{V} \subset U$. It is sufficient to show that

$$\iint_{\varphi(Y)-\varphi(E)} \frac{\partial H}{\partial v} du dv = 0$$

for every $H \in C^1BD(\varphi(V) - \varphi(E))$ which vanishes identically on $\partial(\varphi(V))$. Since $\partial u/\partial y = 0$ on U we have $\partial x/\partial v = 0$ on $\varphi(U)$. Hence we have

$$\frac{D(u,v)}{D(x,y)} = \frac{\partial u}{\partial x} \frac{\partial v}{\partial y},$$

$$\frac{D(x, y)}{D(u, v)} = \frac{\partial x}{\partial u} \frac{\partial y}{\partial v},$$

and

$$\left(\frac{\partial x}{\partial u} \circ \varphi\right) \left(\frac{\partial y}{\partial v} \circ \varphi\right) \frac{\partial u}{\partial x} \frac{\partial v}{\partial y} = 1.$$

Therefore we have $\partial \{(\partial y/\partial v \circ \varphi)(\partial u/\partial x)(\partial v/\partial y)\}/\partial y = 0$ on U. The function $(H \circ \varphi)\{(\partial y/\partial v \circ \varphi) \cdot (\partial u/\partial x)(\partial v/\partial y)\}$ is of class $C^1BD(\bar{V}-E)$ and vanishes identically on ∂V . We assume without loss of generality that D(u,v)/D(x,y)>0 on U, and we have

$$\begin{split} 0 &= \int\!\!\int_{V-E} \frac{\partial}{\partial y} \bigg[(H \circ \varphi) \Big\{ \bigg(\frac{\partial y}{\partial v} \circ \varphi \bigg) \frac{\partial u}{\partial v} \, \frac{\partial v}{\partial y} \Big\} \bigg] \, dx dy \\ &= \int\!\!\int_{V-E} \bigg\{ \frac{\partial (H \circ \varphi)}{\partial x} \bigg(\frac{\partial x}{\partial x} \circ \varphi \bigg) + \frac{\partial (H \circ \varphi)}{\partial y} \bigg(\frac{\partial y}{\partial v} \circ \varphi \bigg) \Big\} \frac{D(u, v)}{D(x, y)} \, dx dy \\ &= \int\!\!\int_{v(Y)-v(E)} \frac{\partial H}{\partial v} \, du dv. \end{split} \qquad \text{q.e.d.}$$

Lemma 2. Let W be a subdomain of a domain W'. Equality $M'_W(\zeta;\zeta) = M'_{W'}(\zeta;\zeta)$ holds for some $\zeta \in W$ if and only if W' - W is a set satisfying $(W' - W) \cap K \in N_D$ for every compact subset K of W'.

Proof. If $M'_{W}(\zeta;\zeta)=M'_{W'}(\zeta;\zeta)=0$ for some $\zeta \in W$, then the assertion is evident.

Assume $M'_{w'}(\zeta;\zeta)=M'_{w'}(\zeta;\zeta)>0$ for some $\zeta \in W$. To see that W'-W is a set mentioned above, it is sufficient to show that for every $a \in W'-W$ there exists a neighborhood V of a such that $E=\bar{V} \cap (W'-W)$ is of class N_D . We set $w_{\nu}=u_{\nu}+iv_{\nu}=P_{\nu W'}(z;\zeta)$, $b_{\nu}=P_{\nu W'}(a;\zeta)$ ($\nu=0,1$) and $\varphi=P_{1W'}\circ P_{1W'}^{-1}$. Then we have $\partial u_1(u_0,v_0)/\partial u_0=\operatorname{Re}\varphi'(w_0)=\operatorname{Re}P'_{1W'}(z;\zeta)/P'_{0W'}(z;\zeta)>0$ for every $w_0\in P_{0W'}(W')$. Hence a mapping

$$\phi: (u_0, v_0) \longmapsto (u, v) = (u_1(u_0, v_0), v_1(\text{Re } b_0, v_0))$$

is a 1-1 mapping of class C^2 on some neighborhood U_0 of b_0 . Let V_0 be a neighborhood of b_0 such that $\overline{V}_0 \subset U_0$. We set $V = P_{0_W}^{-1}(V_0)$ and $E = \overline{V} \cap W' - W$). From the assumption we have $S_{W'-E}(\zeta) = S_{W'}(\zeta)$, where $S_{W'}(\zeta)$ is the span of W' at ζ . Hence $P_{v_{W'-E}}(z;\zeta) = P_{v_{W'}}(z;\zeta)$ (v=0,1). This shows that $P_{0_{W'}}(E)$ (or $P_{1_{W'}}(E)$) is an extremal set of horizontal (or vertical, resp.) slits. Since $\partial v / \partial u_0 = 0$ on U_0 and $\partial u / \partial v_1 = 0$ on $\varphi(U_0)$, from lemma 1 we have that $\varphi(P_{0_{W'}}(E)) = (\varphi \circ \varphi^{-1})(P_{1_{W'}}(E))$ is an extremal set of horizontal and vertical slits. This implies that $(\varphi \circ P_{0_{W'}})(E)$ is of class N_D . Since $\varphi \circ P_{0_{W'}}$ is a 1-1 mapping of class C^2 on $P_{0_{W'}}^{-1}(U_0)$, E is also of class N_D . The converse is evident.

- (a) implies (c). Let W_1 be the image domain of $M_W^*(z;\zeta)$, and set $M_1^* = M_{W_1}^*(w;0)$. Assume that M_W^* is univalent. Then the composite function $M_1^* \circ M_W^*$ has the smallest inner area among all analytic functions f(z) on W for which $f'(\zeta)=1$, and hence it is equal to M_W^* . Therefore M_1^* is the identity function on W. Let f_{SB} be a function with the smallest supremum of absolute modulus among all bounded univalent functions f(z) on W for which $f'(\zeta)=1$. Then the outer boundary of the image domain of f_{SB} is a circle whose center is the origin, and f_{SB} is a function with the smallest inner area among all univalent functions f(z) on W for which $f'(\zeta)=1$. Since M_W^* is univalent, f_{SB} is equal to M_W^* . By lemma 2, we have $W_1=A-E$ where A is a disk and E is a set satisfying $E\cap K\in N_D$ for every compact subset K of A.
- (c) implies (b). Let Δ be an open disk. Then $N_{\Delta}(z;\zeta)$ is linear for every $\zeta \in \Delta$. So the assertion is evident.
- (b) implies (a). Assume that (b) holds and let c be the center of the closed disk. Then $F(z)=1/\{N_W(z;\zeta)-c\}$ is univalent on W and satisfies $F'(\zeta)=1$. Let $A_i(f)$ be the inner area associated with an analytic function f(z) on W, and let $A_e(g)$ be the outer area associated with a univalent function g(z) on W which are normalized by (1). Then we have $A_i(F)\cdot A_e(N_W)=\pi^2$. From the well-known identity $A_i(M_W^*)\cdot A_e(N_W)=\pi^2$, we have $A_i(F)=A_i(M_W^*)$. Hence M_W^* is equal to F and is univalent.

3. Proof of theorem 2.

We show first the following lemmas:

Lemma 3. Let W be a subdomain of a domain W'. If the area of W'-W is

equal to zero and $N_W(z;\zeta)$ (or $M_W(z;\zeta)$) can be extended analytically onto W', then $M_{W'}(z;\zeta)=M_W(z;\zeta)$, $N_{W'}(z;\zeta)=N_W(z;\zeta)$ on W, and W'-W is a set satisfying $(W'-W)\cap K\in N_D$ for every compact subset K of W'.

Proof. If W is of class O_{AD} , then the assertion is evident. We a ssume that W is not of class O_{AD} . If $W \subset W'$, then we have $A_i(M_W^*) \leq A_i(M_W^*)$ and $A_e(N_W) \geq A_e(N_{W'})$. Assume the area of W' - W is equal to zero and N_W (or M_W) can be extended analytically onto W'. Then we have $A_e(N_W) = A_e(N_{W'})$ (or $A_i(M_W^*) = A_i(M_W^*)$, resp.). From the identity $A_i(M^*) \cdot A_e(N) = \pi^2$, we have $A_e(N_W) = A_e(N_{W'})$ and $A_i(M_W^*) = A_i(M_W^*)$. The assertion follows from lemma 2. q.e.d.

Lemma 4. Let μ be a finite complex Baire measure with a compact support K such that the interior K° of K is empty and the complement K° of K is connected, and let n be a natural number. If the integral

$$\int_{K} \frac{1}{(z-\zeta)^n} \, d\mu(z)$$

is identically zero for every $\zeta \in K^c$, then $\mu = 0$.

Proof. Let r be a positive number such that $K \subset \{|z| < r\}$, and let f be a polynomial. Then we have

$$\begin{split} \int_{\mathcal{K}} f^{(n-1)}(z) \, d\mu(z) &= \int_{\mathcal{K}} \left\{ \frac{(n-1)!}{2\pi i} \int_{\{|\zeta| = r\}} \frac{f(\zeta)}{(\zeta - z)^n} \, d\zeta \right\} d\mu(z) \\ &= \frac{(-1)^n (n-1)!}{2\pi i} \int_{\{|\zeta| = r\}} \left\{ \int_{\mathcal{K}} \frac{1}{(z - \zeta)^n} \, d\mu(z) \right\} f(\zeta) \, d\zeta \\ &= 0. \end{split}$$

Since K° is empty and K° is connected, every continuous function on K can be approximated uniformly on K by polynomials. Hence for every continuous function g on K we have

$$\int_{K} g(z) \, d\mu(z) = 0.$$

By the Riesz representation theorem we have $\mu=0$.

q.e.d.

- (a) implies (c). If M_W is a constant, then the constant is equal to zero and W is of class O_{AD} . Therefore the assertion follows from theorem 1.
- (c) implies (b). Let Δ be an open disk. Then $N_d(z;\zeta)$ is linear for every $\zeta \in \Delta$. Hence the assertion is evident.
- (b) implies (a). Assume that $N_W(z;\zeta)$ is linear for every $\zeta \in W$. Then for every linear transformation L(z), $N_{L(W)}(z;\zeta)$ is linear for every $\zeta \in L(W)$. Therefore in the following we assume that
 - (i) \overline{W} is compact if W has an exterior point,

and

(ii) W^c is compact if W has no exterior point.

Proof of the case (i). $(-1/\pi)N_{W}'(z;\zeta)$ is the unique function analytic on $W-\{\zeta\}$ and satisfying

(iii)
$$\lim_{\tau \to 0} \iint_{W - \{|z - \zeta| \le r\}} \left\{ F'(z) \cdot -\frac{1}{\pi} N'_{W}(z; \zeta) \right\} dx dy = 0$$

for every $F \in AD(W)$, having a pole at ζ with the principal part $1/\{\pi(z-\zeta)^2\}$ if $\zeta \neq \infty$ and z^2/π if $\zeta = \infty$, and possessing a single-valued indefinite integral with a finite Dirichlet integral outside of a neighborhood of ζ . (In the case $\infty \in W$, the integral of (3) is to be taken over $W-\{\infty\}$.) (cf. Schiffer [4] and Sario-Oikawa [3]). Since \overline{W} is compact, the formula (3) is valid for F(z)=z. Hence we have

$$\lim_{r \to 0} \iint_{W - \{|z - \zeta| \le r\}} \frac{1}{(z - \zeta)^2} dx dy = 0$$

for every $\zeta \in W$. For every open disk Δ and Δ' such that $\bar{\Delta} \subset \Delta'$, we have

$$\iint_{A'-A} \frac{1}{(z-\zeta)^2} \, dx dy = 0$$

for every $\zeta \in \mathcal{A}$. Hence for a fixed open disk \mathcal{A}_0 such that $\overline{\mathcal{A}}_0 \subset W$ we have

$$\int \int_{W-J_0} \frac{1}{(z-\zeta)^2} \, dx dy = 0$$

for every $\zeta \in \mathcal{\Delta}_0$. Let $\mathcal{\Delta}_1$ be a bounded open disk such that $W \subset \mathcal{\Delta}_1$, then we have

for every $\zeta \in \mathcal{J}_0$. We denote by Γ the connected component of $\bar{J}_1 - W$ which contains the boundary of \mathcal{J}_1 , and set $E = \bar{J}_1 - W - \Gamma$ and $W' = W \cup E$. Let $\{W_n\}$ be a canonical exhaustion of W and denote by Ω_n the simply connected bounded domain whose boundary is the outer boundary of W_n . Set $E_n = E \cap \Omega_n$. Then E_n and $\bar{J}_1 - W - E_n$ are compact. From (4) we have

$$(5) \qquad \qquad \iint_{\mathbb{R}_{-}} \frac{1}{(z-\zeta)^2} dx dy = -\iint_{\mathbb{A}_{-}W-\mathbb{R}_{-}} \frac{1}{(z-\zeta)^2} dx dy$$

for every $\zeta \in \Delta_0$. The function

$$h_n(\zeta) = \int \int_{E_n} \frac{1}{(z - \zeta)^2} dx dy$$

is analytic outside of E_n and satisfies $h_n(\infty)=0$. By (5) $h_n(\zeta)$ can be extended analytically onto E_n . Therefore $h_n(\zeta)$ is identically zero, and consequently the area of E is equal to zero. From lemma $3 N_{W'}(z;\zeta)$ is also linear and E is a set satisfying $E \cap K \in N_D$ for every compact subset K of W'. Since W' is simply connected, from theorem 1 we know that the image domain of $N_{W'}(z;\zeta)$ is a disk (in the wider sense), and hence W' is a disk. Therefore $M_W(z;\zeta)=M_{W'}(z;\zeta)$ is linear.

Proof of the case (ii). We show that if W has no exterior point and if $N_W(z;\zeta)$ is linear for every $\zeta \in W$, then W° is of class N_D . Assume that W° is not of class N_D . Then there exist two bounded open disks \mathcal{L}_1 and \mathcal{L}_2 such that $\bar{\mathcal{L}}_1 \cap \bar{\mathcal{L}}_2 = \phi$, $\bar{\mathcal{L}}_1 \cap W^\circ \notin N_D$ and $\bar{\mathcal{L}}_2 \cap W^\circ \notin N_D$. Let \mathcal{L}_3 be a bounded open disk such that $\bar{\mathcal{L}}_1 \subset \mathcal{L}_3$ and $\bar{\mathcal{L}}_2 \subset (\bar{\mathcal{L}}_3)^\circ$. Let $\{W_n\}$ be a canonical exhaustion of $\mathcal{L}_3 - W^\circ$ and denote by \mathcal{L}_n the simply connected bounded domain whose boundary is the outer boundary of W_n . Set $E_n = W^\circ \cap \mathcal{L}_n$. Using the same argument in the case (i) with respect to a nonconstant function $F \in AD((\bar{\mathcal{L}}_2 \cap W^\circ)^\circ)$, we have

$$\int \int_{E_n} \frac{\overline{F'(z)}}{(z-\zeta)^2} dx dy = -\int \int_{W-J_3} \frac{\overline{F'(z)}}{(z-\zeta)^2} dx dy$$

$$-\int \int_{J_3 \cap (W^c-E_n)} \frac{\overline{F'(z)}}{(z-\zeta)^2} dx dy$$

for every $\zeta \in \Delta_3 \cap W$, and hence

$$\iint_{E_n} \frac{\overline{F'(z)}}{(z-\zeta)^2} \, dx dy = 0$$

for every $\zeta \in E_n^c$. From lemma 4 the area of E_n is equal to zero. Therefore the area of $\Delta_3 \cap W^c$ is equal to zero and from lemma 3 we know that $\bar{\Delta}_1 \cap W^c$ is of class N_D . This is a contradiction.

REMARK. Let F be a subset of W which has at least one accumulating point in W. Assume that $N_W(z;\zeta)$ is linear for every $\zeta \in F$. Then (5) and (6) are valid for every $\zeta \in F$, and hence the same consequence follows from the unicity theorem.

REFERENCES

- [1] Oikawa, K., Minimal slit regions and linear operator method. Kōdai Math. Sem. Rep. 17 (1965), 187-190.
- [2] Ozawa, M., Fredholm eigen value problem for general domains. Kōdai Math. Sem. Rep. 12 (1960), 38-44.
- [3] SARIO, L., AND K. OIKAWA, Capacity functions. Springer-Verlag, Berlin (1969).
- [4] Schiffer, M., The kernel function of an orthonormal system. Duke Math. J. 13 (1946), 529-539.

- [5] Schiffer, M., The Fredholm eigen values of plane domains. Pacific J. Math. 7 (1957), 1187-1225.
- [6] —, Fredholm eigen values of multiply-connected domains. Pacific J. Math. 9 (1959), 211-269.
- [7] Suita, N., On Fredholm eigen value problem for plane domains. Kōdai Math. Sem. Rep. 13 (1961), 109-112.

DEPARTMENT OF MATHEMATICS,
TOKYO INSTITUTE OF TECHNOLOGY.