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ON BASIC DOMAINS OF EXTREMAL FUNCTIONS

By MaAkoTo SAKAl

1. Introduction.

Let Piylz; ) (or Poylz; £)) be the unique function with the smallest (or
largest, resp.) real part of the coefficient e¢=a(F) among all univalent functions
F(z) on a plane domain W which are normalized by

2-]:C +a(z—E)+--- about {3xoco,
(1) Fa=1" .
Z+?+"' about (=co.

The extremal properties of the functions My (z; {)=(1/2)(Poy(z; )—Pip{z; {)) and
Ny(z; O)=1/2)(Poy(z; )+ Piy(z; {)) are well-known. For instance, Nw(z; () is the
unique function with the largest outer area among all univalent functions F(z) on
a plane domain which are normalized by (1), and Mg(z; {)=Mw(z; O)IM}H(; L) is
the unique function with the smallest inner area among all analytic functions f(z)
on a plane domain W¢O,p for which f/()=1 (cf. Sario-Oikawa [3]).

In the present paper we shall show:

THEOREM 1. The following conditions are equivalent:
(a) Mw(z;Q) is univalent for some {eW.
(b) For some LeW, the complement of the image domain of Nw(z; () con-

sists of a closed disk of positive radius and a relatively closed set with
zero area.

(c) W is conformally equivalent to {|z|<1}—E, where E is a set satisfying
ENKeNp for every compact subset K of {|z|<1}.

THEOREM 2. The following conditions are equivalent:
(a) Mw(z;Q) is linear for some {eW.
(b) Nw(z; Q) is linear for every LeW. (i.e.
L (C2r00)
Nw(z; 0= 1{ z2—C ’
4 =)
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for every L eW.)
(c) W is either
(i) a disk 4 (in the wider sense) less a relatively closed set E satisfying
ENKeNp for every compact subset K of 4,

or
(i) of class Oup.

Weaker versions of theorem 2 were previously proved by Ozawa [2] and
Suita [7]. Let W be a plane domain and let LW) be the class of analytic
functions on W possessing a single-valued indefinite integral with a finite
Dirichlet integral. We denote by Kw(z;{) Bergman’s kernel function on a plane
domain W and set

. _i_ 1 . .
I'w(z; Q)= - Sgwcm(t—z)zmz dudv (t=u+iv)

The problem of seeking the eigen values of the integral equation
F@=1\{ (Knle; O-Twle; S Q ety (FeLXW), L=t+in)

is called the Fredholm eigen value problem for W (cf. Schiffer [5], [6] and Ozawa
[2]). Ozawa [2] showed that if all spectra of the Fredholm eigen value problem
for W are equal to zero and the area of the complement of W is equal to zero,
then W is of class O4p. Suita [7] showed that Nw(z;{) is linear for all {eW if
and only if all spectra of the Fredholm eigen value problem for W are equal to
zero, and showed that if all spectra of the Fredholm eigen value problem for W
are equal to zero and there exists a continuum as an isolated boundary, then this
continuum is a circle and the remaining components are of class Np. A necessary
and sufficient condition for all spectra of the Fredholm eigen value problem for
W to be equal to zero is given by theorem 2.

2. Proof of theorem 1.

A compact set £ in the plane is called an extremal set of vertical (or hori-
zontal) slits if £° is a domain such that

Piye(z; 00)=2

(or
POEC(Z; OO)EZ;

resp.). The complement of the image of Pi,(z;() (or Poy(z; ) is an extremal
set of vertical (or horizontal, resp.) slits.

LeMMmA 1. Let E be an extremal set of wvertical slits in the z(=x+iy)-plane
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andlet U be a simply connected domain such that ECU. If a 1-1 mapping ¢ of U
into the w(=u-+iw)-plane is of class C¥U) and satisfies ouloy=0 on U, then the
image o(E) of E is an extremal set of vertical slits.

Proof. Let VOFE be a simply connected domain whose boundary oV is a
simple closed smooth curve. QOikawa [1] showed that £ is an extremal set of ver-
tical slits if and only if

(2) SS E;idxdy

v-r 0y

for every heC'BD(V —FE) which vanishes identically on aV, where C'BD(®) is the
class of bounded C!-functions with a finite Dirichet integral on 2. Since E is an
extremal set of vertical slits, (2) is valid for some V such that Vc U. It is suffi-
cient to show that

SS O udn=0
WPy O

for every HeC'BD(p(V)—¢(E)) which vanishes identically on a(p(V)). Since
ou/oy=0 on U we have dz/dv=0 on ¢(U). Hence we have

D, v) _ ou ov
D(z,y)  ox dy’

D(@,y) _ 9z oy

D(u,v)  ou v’

( oz >< oy ) ou v _
o C)\ov %)%z ay
Therefore we have 9{(0y/dv-¢)(0u/dx)(0v/dy)}/dy=0 on U. The function (Heg){(dy/dv-e)

-(0u/ox)(@v[dy)} is of class C'BD(V —E) and vanishes identically on aV. We as-
sume without loss of generality that D(«, v)/D(z, y)>0 on U, and we have

0§ o ()2 2 o
] ) S ) )

oH
= — dud ed.
SS¢(V) —uE) OV - e

and

LemMMA 2. Let W be a subdomain of a domain W’. Equality My(C; {)
=Mpy(C; &) holds for some LeW if and only if W —W is a set satisfying (W'—W)
NKeNp for every compact subset K of W'.

Proof. 1If My(C; Q)=Mpy(¢;{)=0 for some €W, then the assertion is evident.
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Assume My (L; O)=My.(£;£)>0 for some {eW. To see that W/—W is a set men-
tioned above, it is sufficient to show that for every aeW’—W there exists a
neighborhood V' of @ such that E=V N(W’—W) is of class Np. We set w,=u,+iv,
=P,y(2; 0, b,=P,p.(a; ) (v=0,1) and ¢=Py.P:i;}. Then we have 0u;(uo, v0)/0%o
=Re ¢'(wo)=Re Piy,.(2; O)|Piy (25 £)>0 for every woePoy,(W’). Hence a mapping

&2 (tho, Do) ——> (s, ©)=(21(t4o, ¥o), V:i(Re by, 1))

is a 1-1 mapping of class C? on some neighborhood U, of b,. Let V, be a neighbor-
hocd of b, such that V,c U,. We set V=P }(V,) and E=VNW’—W). From the
assumption we have Sw,—z({)=Sw.(), where Sy.({) is the span of W’ at {. Hence
Py _52;0)=Py.(2;8) (v=0,1). This shows that Py, (E) (or P,(E)) is an ex-
tremal set of horizontal (or vertical, resp.) slits. Since ov/0u,=0 on U, and du/dv,=0
on ¢(lh), from lemma 1 we have that ¢(Po,.(E))=(¢°¢ )(Piy(E)) is an extremal
set of horizontal and vertical slits. This implies that (¢oPyy,.)(E) is of class Np.

Since ¢oPoy, is a 1-1 mapping of class C? on Py;}(Us), E is also of class Np. The

converse is evident. qg.e.d.

(a) implies (c). Let W, be the image domain of Mj(z; ), and set M¥
=M;$,(w; 0). Assume that MF is univalent. Then the composite function Mj - M3,
has the smallest inner area among all analytic functions f(z) on W for which
f/(©)=1, and hence it is equal to M;5. Therefore M¥ is the identity function on W.
Let fsp be a function with the smallest supremum of absolute modulus among
all bounded univalent functions f(z) on W for which f/(¢)=1. Then the outer
boundary of the image domain of fsz is a circle whose center is the origin, and
fsp is a function with the smallest inner area among all univalent functions f(z)
on W for which f’({)=1. Since M is univalent, fsp is equal to M;5. By lemma
2, we have W,=4—F where 4 is a disk and E is a set satisfying ENnKeNp for
every compact subset K of 4. q.ed.

(c) implies (b). Let 4 be an open disk. Then N,(z;{) is linear for every
Led. So the assertion is evident.

(b) implies (a). Assume that (b) holds and let ¢ be the center of the closed
disk. Then F(z)=1/{Nw(z;{)—c} is univalent on W and satisfies F/({)=1. Let
A;(f) be tha inner area associated with an analytic function f(z) on W, and let
A.(9) be the outer area associated with a univalent function ¢(z) on W which are
normalized by (1). Then we have A;(F)-ANw)=x2 From the well-known iden-
tity A; (M%) Ae(Nw)=n?, we have A;(F)=A;(M%¥). Hence M3 is equal to F and
is univalent. q.ed.

3. Proof of theorem 2.
We show first the following lemmas:

LeEMMA 3. Let W be a subdomain of a domain W’. If the area of W/ — W is
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equal to zero and Nw(z; L) (or Mw(z; ) can be extended analytically onto W', then
My (2; O)=Mw(z; ), Nwl(z;)=Nw(z;{) on W, and W' —W is a set satisfying
(W'—W)NKeNp for every compact subset K of W'.

Proof. If W is of class O4p, then the assertion is evident. We a ssume that
W is not of class Oup. If WcC W', then we have A(ME)=A(M#) and A(Nw)
=A(Nw.). Assume the area of W/—W is equal to zero and Ny (or My) can
be extended analytically onto W’. Then we have ANw)=ANw.) (or A(M3%)
=AM, resp.). From the identity A;(M*)-A(N)=x=", we have A Nw)=A(Nw)
and A;(M3%)=AM¥). The assertion follows from lemma 2. q.ed.

LemMA 4. Let p be a finite complex Baire measure with a compact support K
such that the interior K° of K is empty and the complement K¢ of K is connected,
and let n be a natural number. If the integral

) g

is identically zero for every {eK°, then p=0.

Proof. Let r be a positive number such that Kc{|z|<r}, and let f be a poly-
nomial. Then we have

(n=1)! S RioN

[ reo@ana={ | # (1an) G2 e

- (;D%’;L_ﬁ S{ICI=¢}{ SK (0" dy(z)}f(C) *
=0.

Since K° is empty and K° is connected, every continuous function on K can be
approximated uniformly on K by polynomials. Hence for every continuous func-
tion ¢ on K we have

| o@dua=0.

By the Riesz representation theorem we have u=0. qg.ed.

(a) implies (c). If My is a constant, then the constant is equal to zero and
W is of class Oup. Therefore the assertion follows from theorem 1.

(c) implies (b). Let 4 be an open disk. Then Ny(z;{) is linear for every
L ed. Hence the assertion is evident.

(b) implies (a). Assume that Ny(z;{) is linear for every {eW. Then for
every linear transformation L(z), Nraw»(z; () is linear for every {eL(W). There-
fore in the following we assume that

(i) W is compact if W has an exterior point,
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and
(ii) We is compact if W has no exterior point.

Proof of the case (i). (—1/x)Nj(z;¢) is the unique function analytic on
W—{¢} and satisfying

(iid) lim SS {F'(z).—lN,;,(z; o) dudy=
-0 w—{lz —=C|=r} T

for every Fe AD(W), having a pole at { with the principal part 1/{z(z—{)?} if

o0 and 2z if {=oo, and possessing a single-valued indefinite integral with

a finite Dirichlet integral outside of a neighborhood of ¢. (In the case coeW,

the integral of (3) is to be taken over W—{oo).) (cf. Schiffer [4] and Sario-

Oikawa [3]). Since W is compact, the formula (3) is valid for F(z)=z. Hence
we have

lim ————dzdy=0

0 SSW—(Iz—CIsr} (z—0)?

for every {eW. For every open disk 4 and 4’ such that 4c4’, we have

SSA’—J (Z C)Z dxdy 0

for every {ed. Hence for a fixed open disk 4, such that 4, c W we have

SSW—JO (z— 1C)2 dndy=

for every {ed,. Let 4, be a bounded open disk such that Wc4,, then we have

(4) dzxdy=0

SSAl—W (z—=0)*

for every {ed,. We denote by I" the connected component of 4,— W which con-
tains the boundary of 4, and set E=4,—~W—I" and W/'=WUE. Let {W,} be a
canonical exhaustion of W and denote by £, the simply connected bounded domain

whose boundary is the outer boundary of W,. Set E,=FEN2, Then E, and
j,— W—E, are compact. From (4) we have

() San (z—0) dedy= SSM—W E, (z 1C)2 dndy

for every {ed,. The function

halQ)= SS e c>2 ey
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is analytic outside of E, and satisfies %,(c0)=0. By (5) %4.({) can be extended
analytically onto E,. Therefore 4,(() is identically zero, and consequently the
area of £ is equal to zero. From lemma 3 Nyw.(z;{) is also linear and £ is a
set satisfying ENKeNp for every compact subset K of W’. Since W’ is simply
connected, from theorem 1 we know that the image domain of Nw.(z;{) is a disk
(in the wider sense), and hence W’ is a disk. Therefore Mw(z;)=Mw. (2; )
is linear.

Proof of the case (ii). We show that if W has no exterior point and if
Nw(z;€) is linear for every {eW, then W¢ is of class Np. Assume that We° is
not of class Np. Then there exist two bounded open disks 4, and 4, such that
d:nNdy=¢, ;N We¢Np and 4, N We¢Np. Let 4, be a bounded open disk such
that 4,c4; and 4,c(d;)¢. Let {W,) be a canonical exhaustion of 4;— We¢ and
denote by £, the simply connected bounded domain whose boundary is the outer
boudary of W,. Set E,=Wcn2, Using the same argument in the case (i) with
respect to a nonconstant function Fe AD((d, N W¢)), we have

— SS F') dzdy

43N (We—Ep) (z—¢)*

(6)

for every {ed;N W, and hence

I

for every {eFE;. From lemma 4 the area of E, is equal to zero. Therefore the
area of 4; N W* is equal to zero and from lemma 3 we know that 4, N We° is of
class Np. This is a contradiction. q.ed.

ReEMARK. Let F be a subset of W which has at least one accumulating point
in W. Assume that Ny(z;{) is linear for every (eF. Then (5) and (6) are
valid for every {eF, and hence the same consequence follows from the unicity
theorem.
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