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TENSOR FIELDS AND CONNECTIONS ON A CROSS-SECTION

IN THE TANGENT BUNDLE OF ORDER r

BY CHORNG-SHI HOUH AND SHIGERU ISHIHARA

§ 0. Introduction.

Let M be an ^-dimensional differentiable manifold and Tr(M) the tangent bundle
of order r over M, ri^l being an integer [1], [3], [4]. The prolongations of tensor
fields and connections given in the differentiable manifold M to its tangent bundle
of order r have been studied in [1J, [2], [3] [4], [7], [8] and [9]. If V is a vector
field given in M, V determines a cross-section in Tr(M). For the cases r=l and
r=2, Yano [7] and Tani [5] have studied, on the cross-section determined by a
vector field F, the behavior of the prolongations of tensor fields and connections
in M to T(M) (i.e., Ά(M)) and Γa(M), respectively. The purpose of this paper is
to study, on the cross-section determined by a vector field V, the behavior of the
prolongations of these geometric objects in M to Tr(M) ( r^ l ) .

In §1 we summarize the results and properties we need concerning the pro-
longations of tensor fields and connections in M to Tr(M). Proofs of the statements
in §1 can be found in [1], [2], [3], [4] and [8]. In § 2 we study the cross-section
determined in Tr(M) by a given vector field V in M In § 3 we study the behavior
of prolongations of tensor fields on the cross-section. In §4 we study the prolon-
gations of connections given in M to Tr{M) along the cross-section and some of
their properties.

We assume in the squel that the manifolds, functions, tensor fields and con-
nections under consideration are all of differentiability of class C°°. Several kinds
of indices are used as follows: The indices λ, μ, v, • ••, s, t, u, ••• run through the
range 0,1, 2, ••• r; the indices h, i, j , k, m, ••• run through the range 1, 2, ••• n.
Double indices like {v)h are used, where O^i^r, l^h^n. The indices Λ, B, C, •••
run through the range (1)1, (1)2, •••, (l)n, (2)1, •••, (2)n, •••, (r)l, •••, (r)n. For a given
function / on M, the notation / ( 0 ) is sometimes substituted by f° for simplicity.
Summation notation Σ J β l with respect to h> i, j , k, m, ••• (=1, 2, ••• n) is omitted
while summation notation with respect to λ, μ, v, •••, s, t, u •••, from 0 to r, will be
kept. For example,

ΣΣ Σ (
s=0 7i=l \S

Σ (r)xv^Bωh will be written in £ ( r )χs

vFjxhBωh.
7i=l \S / s=0 \S /

For differentiable manifold N, we denote by ζΓq(N) the space of all tensor
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TENSOR FIELDS AND CONNECTIONS ON A CROSS-SECTION 235

fields of type (p, q), i.e., of contravariant degree p and covariant degree q (p, q^
and put

§1. Prolongations of tensor fields and connections to Tr(M).

Let R be the real line. Tr(M) is the set of all r-jets Jp(F) determined by a
mapping F: R->M such that F(0)=P. We denote by πr: Tr(M)->M the bundle
projection, i.e., πr(Jp(F)) = P. We shall denote πr simply by π if there is no con-
fusion. Let {U,xh} be a coordinate neighborhood of M at P. If we take an r-jet
ΓV{F) belonging to π~\U) and put

where F has the local expression xh=Fh(t), tzR, in U such that P=F(0), then the
r-jet /p(F) is expressed in a unique way by the set (yωh) (v=0, 1, •••, r; /z=l,
•••, ή), (ymh) = {xh) being the coordinates of P in £Λ Thus a system of coordinates
few/ι) is introduced in the open set π~\U) of Tr(M). We now call (ywh) the co-
ordinates induced in π~ι(U) from {U, xh}, or simply the induced coordinates in
π~\U). We sometimes denote the induced coordinates by (yA) (see §0). Thus
Tr(M) is a differentiable manifold of (r+ϊ)n dimensions.

For ^ = 0 , 1 , •••, r, we define the Λ-ftjft /"> of a function / in M to Tr(M) by

F : i?->M being an arbitrary mapping such that P=F(0). The Mift f^ of /
is well defined in Γr(M), i.e., the value fσ\Jr

v(F)) is independent of the choice
of F: R^M. Clearly, f°=f°π (f°=fw, see §0). For the sake of convenience,
we define that fw=0 for any negative integer λ. For the lifts of two functions
/ and g to Tr(M), we have the following formula:

(1.3) (fogy»=Σfvψ*-"\
μ = 0

Let X be a vector field in M with components Xh in a coordinate neighbor-
hood {U,xh}.^ We defined the λ-lift of X toJΓr(M), denoted by X w , to be the
vector field X which locally has components XA in the open set π~\U) such that

(1.4) χwh^χhyv+χ-n

relative to the induced coordinates (yA) = (yCv\) in n-\U), where the right-hand
side of (1. 4) denotes the (\>+λ—r)Λ\ίt of the local function Xh. X or X«> actually
determines globally a vector field in Tr{M) (use (1.10)). For the Λ-lifts of vector
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fields, we have the following formulas:

(1.5) X^f^ = (X/Yλ+μ-r\ /€£Γί(M),

(1.6) ^ _ = ( ^ _ y ^ ;

(1.7)

(1. 8) ( W = Σ fwχ«-'\ / € £rS(M), Xe £Γί(M);

(1. 9) [X«\ Y<μ>] = [X, Yγ^-r\

Let {U, xh) and {J7', Λ?Λ'} be two intersecting coordinate neighborhoods of M
and the coordinate transformation in UΓ\Uf be given by

Then, if (yA) = (yωh) and (yA'*> = (ywh') are the induced coordinates in π-~\U) and
π^iZJ') respectively, the transformation of induced coordinates in π-\UnU')
=π~1(U)Ππ~1(U/) has the Jacobian matrix of the form

( L 1 0 )

Let a 1-form ω have the local expression ω=ωidxί in a coordinate neighbor-
hood {U,xh}. Then in π~ι(U) we denote by £# the local 1-form defined by

(1.11) ώu^ΣωPdy"-™

relative to the induced coordinates (y°°h) in π~\U). This actually determines
globally a 1-form in Tr(M), which is called the λ-lift of ω and denoted by ωw

(use (1.10)). For the Λ-lifts of ω, we have the following formulas:

(1. 12) ω

(1.13)

(1. 14)
μ=Q

The above operations of taking lifts are linear mapping £Π(M)-+£ΓS(Tr(M)),
£ri(Λf)~*£ri(Γr(M)) and £r?(Λ0-»2Ί°(Γr(M)) respectively. They have the properties
(1. 3), (1. 8) and (1.14) respectively. Thus we can now define, for any element K
of 3%(M), its Λ-lift Kw (λ=0,l, », r), which belongs to SΓ?(Tr(M)) in such a way
that the correspondence K—>KW defines a linear mapping £Γ?(M)
which is characterized by the properties
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for any S, TG£(M) and Λ=0,1, •••, r. The tensor field K™ thus defined is called
the λ-lift of the tensor field K in M to 7V(M). For the Λ-lifts of tensor fields, we
have the following formulas:

(l. 15) κ«\x[μ\ •••, xφ)=(K(xh •••, xq)y+q<μ-r>, K£ζr%(M), x x

(1. 16) XxwK^ = (XχKyλ+μ-r\ XQ £Γί

(1.17)

(1.18)

ω and π being arbitrary differential forms of arbitrary order in M, where
denotes the Lie derivation with respect to a vector field X.

Next we shall give local expressions of lifts of tensor fields of special type in
M to Tr(M) relative to the induced coordinates (yΛ) = (y<iv:>h). Let X be a vector
field with local components Xth in M. Then Xw in Tr(M) has local components
of the form

0

0
(1.19)

the lifts of a 1-form ω with local expression ω=ωidxί in M have local components
of the form

the Λ-lift of a tensor field Fζ<3\(M) with local components F*i in M to Γr(Λf) has
local components of the form

Γ 0

0

(1. 21)

0

0

0

(Ff)(0:)

0

0

0

0

o η
0

0

0

0

and the Λ-lift of a tensor field g
has local components of the form

^phyx-2-) ... (^)C0) 0 ... 0

with local components ςjμ in M to
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(1. 22)

0

o

0

0

•0

•0

0

0

oJ

relative to the induced coordinates in π-\U).
Finally, we consider lifts of affine connections. Let F be an affine conection

in M with components Γ% in {U, xh). We now introduce in π~\U) affine connec-
tion F$ with components Γ%B relative to the induced coordinates (yA) such that

(1.23) r$B=(r%γλ-μ-><

for A = (X)h, B={μ)i and C=(v)j. According to (1.10) and (1. 23), F$ actually de-
termines globally an affine connection F* in Tr(M) which is called the lift of the
affine connection F and denoted also by F*. "We have the following properties
of F*:

(1. 24) FxwK^ = (FxKyλ+μ~r\

(1.25) XχwF* = UχFyλ\

§2. Cross-section determined by a vector field.

Suppose F be a vector field in M with components V1 relative to {U, xh}.
Denote by F: I-+M the orbit of V passing through a point p in M such that
F(0)=p} where / is an interval ( — ε, e), ε being some positive number. We denote
the r-jet Jp{F) by γv{p) Then the correspondence p-^γv(P) defines a mapping
γv: M-*Tr(M) such that π°γv is the identity mapping of M. Thus γv: M->Tr(M)
is a cross-section in Tr(M). We call the submanifold γv{M) imbedded in Tr(M) the
cross-section determined by the vector field F. If {U, xh) is a coordinate neighbor-
hood of My the cross-section γv(M) is expressed locally in π-\U) by equations

y"l) = -

yW-.

(2.1)

dFh(0)
dt V {χZ)'

1 dΨhφ) _ 1
2! dt2 "" 2

1 dΨh(0) __ 1
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dtv

with respect to the induced coordinates.
Let / be a function on M, we have

along γv(M). A simple calculation yields that along the cross-section yγ{M)

holds, where Xλ

v=Xv{X\'ιf) for λ>l.
According to (2.1), the submanifold γv(M) is locolly expressed by a system of

equations y^h=y^\χ^) such that

(2.3)

with respect to the induced coordinates (yΛ) = (yωh) in π~\U). Let us put

(2.4) Bfm=dίy

A(xh).

Then we have along γv(M) n local vector fields Bv»i, B^^ •••, ĉo)w which are
tangent to the cross-section. Their components with respect to the induced co-
ordinate (y°°h) are

(2.4)

For an element X of £ΓJ((M) with local components X1, we denote by
the vector field with components

BfmX\ i.e. 5 ( 0 ) ^ ^ 5 ^ , ^ ^ - ,
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which is defined globally along γv(M) by virtue of (1.10). For any point σ of
γr(M), the mapping BWp: Tp(M)—Tσ(Tr(M)) {σ=γv{p)) defined by BWp(XP) = (BwX)a
is nothing but the differential (γv)P of the cross-section mapping γv\ M—*Tr{M).
Thus Bco)p(Tp(Δί)) is the tangent space of the cross-section γv(M) at the point

Along the cross-section γv(M), for each integer v such that O^v^r—1, we
consider n local vector fields BMu BM2f •••, BMn which have respectively compo-
nents of the form

0

(2.5)

r—v

and n local vector fields j?<r)i, #002, --, B^n which have respectively components
of the form

(2.6)

r 0 Ί

0

relative to the induced coordinates (yΔ). Again we denote by B^X the vector
field with components Bi)3X

j, i.e., B^X=Bfv)3X
jdldyA. These vector fields are de-

fined globally along γv(M). For any point σ of γv(M), the mappings BMp: TV{M))
-+Tσ(Tr(M)) (σ=γr(p)) are defined as follows:

The mappings BMp, including ^=0, are isomorphisms of TP(M) into Tσ(Tr(M)).
The (r+l)n vector fields B^j (O^v^r, l^j^ή) form a local family of

frames along γv(M), which we shall call adapted frames of γv{M). The n vector
fields Bw)3 span at each point σ of γv(M) the tangent plane Tσ(γv(M)) of the cross-
section γv(M).

For any element X of 3Ί(M) with local components X*, we denote by B^X
the vector field with components

I*MtΛ , I.e. ίSωΛ — ίίMtΛ -Γ-T .

§3. Prolongations of tensor fields in the cross-section.

Suppose X is a given vector field in M. We consider along γv(M) the Λ-lift
of X We shall describe Xw with respect to the adapted frames BWj of
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γv(M). The result is as follows:

PROPOSITION 3.1. Along γv(M) the λ-lift Xw of X is written in

1

Proof. By (1.19), X«> has the form

with respect to the natural frame {d/dyA}.

We first calculate (XΛ)(ι° along γv(M) as follows:

\ FΛ+ VkX'dkd3 V
h)

Δ

-5- \X\Xh+dj VhXrXJ+d3 V\XvX
j+X"dk V*) + V'X'dό, Vh]

Δ

^-xk(dj vhdkv
j+ Ψdβk

Δ

By induction, we have the following formulas:

(3.2)

μl(v—μ)
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Thus (3.1) follows from (1.19), (2. 5) and (3. 2).

Let ω be an element of ζΓl(M) with local expression ω=ωidxi. Then, by
(1. 20), o)w has components of the form

ω^ = (ωγ\ ωV-v, - , ω?, ω,β, 0, •••, 0)

with respect to the natural coframe {dyΛ}. Along the cross-section γv(M), let the
coframes dual to the adapted frames {BMJ} be {Bwj}. We denote by Z?°°ω the
1-form with components B(2)Jωj with respect to the coframes {dyA}. Then we have

PROPOSITION 3. 2. Along γv{M) the λ-lifts ω™ of ω are written in

(3. 3)

Proof. By (1.12) we have

ω

and by (2. 2)

-r)! ,ti V

where (^ "7") denotes the binomial coefficient.

On the other hand, with respect to the coframes {B^J}, we consider a 1-form
ωσ:> defined by

Then by (3. 2) we have

λ-r+υ

ajwχω= 2 -
μ = 0

Since X is arbitrary in the above formulas, the formula (3.3) follows from
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Now we shall write down the λ-lifts of tensor fields of special type in M with
respect to the adapted frame. For an element h of 2\{M) with local components
hij, we have

(3.4)

1
yiji'"

hi,

0
0

hj O O

0 - 0

0

0

0

0

0 0

and, for an element F of £Π(M) with local components F?t

0 0

(3.5)

0

XvFϊ

0
0

F?

XvF?

oη

0
0
0

0

0 0 - 0

?t Ft

h 0 - 0

For an element S of

(3.6)

with local component S$, we have

1

=0 if

In §2 we have shown that for the mapping γv: M->γv(M)f γ'v(X)=BC0)X for
any X in £Γί(M). ^C 0): T(M)->T((γ'v(M)) is a linear isomorphism. Let 55} be the
inverse of this linear isomorphism Z?C(». Then i?^1: T(γv(M))-*T(M). The dual
map (BS)* of B«) sends £r;(M) to £Π(rr(M)). (̂ ΓoD* is nothing but B<°>. We now
denote 5 ( 0 ) also by 7-̂ , i.e., ^((y)=5(0)ίy for ω€£Γί(M). Then we can extend the
mapping ^'r to a linear mapping ^ : £Γ(M)-*£Γ(τ F(Λί)) by setting
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for arbitrary tensor fields P, Q in M.

Now we shall define an operation, denoted by #, in 3(Tr(M)) as follows;

If Ze£ΠCΓr(M)), X = ΣUXwB,υH, then X*=X^BimzZ\(γv(M))\

If ώ is a tensor field of type (0,1) in Tr(M) defined along γr(M)t then

If h is a tensor field of type (0, 2) in Tr(M) defined along τv(M), then

If ί* is a tensor field of type (1,1) in Tr(M) such that, for any vector field A

tangent to γv{M) Pλ is also tangent to γv(M), then F*(BWX) = F(BWX);

If S is a tensor field of type (1, 2) in Tr(M) such that, for any vector fields

A, B tangent to γr(M), B(Ά, B) is also tangent to γv(M), then

In the above definitions the relations are supposed to hold for arbitrary elements

X and Y in £Γί(M). We sometimes call h\ F* and S* respectively the tensor fields

induced in γv{M) from h, F and S.
For the operation #, we have the following propositions by (3.1), (3.3)

and (3. 4):

PROPOSITION 3.3. ( a ) For any X in £ΓJ(M), (X™)*=0 if λ=0, 1, •••, r - 1 .
X c r ) z's tangent to γv{M), if and only if XvX=0, and in this case X^ = y'γX.

(b) For any ω in £ΓΪ(M), {ω^ = ̂ γvUvω)} ^ = 0 , 1 , - , r .

( c) For any h in 21(M), (AC2)) =-jjTFUirA), Λ=0,1, - , r.

COROLLARY. Let g be a Riemannian metric in M. Then (g0)* is a Riemmannian
metric in γγ{M) and γv is an isometry with respect to g in M and gc0)* in γv(M).

Let F be a (1,1) tensor field defined along γv(M). If T0(γv(M)), σ£γv(M)f is
invariant by the action of the tensor F, the cross-section γv(M) is said to be in-
variant by F.

From (3. 5), we have

for any vector field X in M Thus we have
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PROPOSITION 3. 4. For F€ ζΓ\(M), the cross-section γv{M) is invariant by Fcn if
and only ifXv F=0. In this case (F c r ) )*=/ F F holds. The lifts F^ (λ=0,1, •••, r-1)
do not leave γv(M) invariant unless F= 0.

PROPOSITION 3.5 If F is an almost complex structure in M such that XvF=0,
then (Fc r ))* is an almost complex structur in γv{M).

If (g, F) is an almost Hermitian structure in M and XγF—Q holds, then

Thus we have

PROPOSITION 3. 6. Suppose that there is given an almost Hermitian structure
(g, F) in M. If XVF=O, then ((gc0))*, (Fcr))*) is an almost Hermitian structure
in γv(M).

By (3. 6), we have for any S€£Γi(M)

Thus we have
PROPOSITION 3. 7. If SeζTKM), the vector field S^(BmXf BWY) is tangent to

γv(M) for arbitrary X,Y of £Γ1(M), if and only if XvS=0, and in this case (S(r))*
=rίrS. The vector fields SW(BWX, BWY) (0<λ<r) are not tangent to γv{M)
unless S=0.

Let F be a tensor of type (1,1) in M and NF its Nijenhuis tensor. Then it
is easy to check that XvFi=0 implies £v{NFyij=§ Thus we have

COROLLARY 1. Let F be an element of £Γ1(M) such that XvF=0, then
(NFy

n(BwX, BWY) is tangent to γv(M) for arbitaary elements X and Y of 3Ί(M).
In this case ((NFy

r>y=r'vNF.

COROLLARY 2. If a complex structure F in M satisfies the condition XvF=0,
then (Fcr))* is a complex structure in yγ{M).

§4. Prolongations of affine connections in the cross-section.

Suppose an affine connection V with coefficients Γft is given in M. For a
vector field X with components X1 and a tensor field P of type (1, 2) with compo-
nent Pfi, we have the following formulas [6]:

) - Vj(XvXh)=(XvΓ%)X\
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where Rk/i are components of the curvature tensor of F.
Using the third formula for any tensor field P with local componente Pfy we

have easily

(4. l) xMX»)-FjUΪXh)= Σ (n)uqv-snk)UsvXk),

(4. 2) Γk(XrΓ%)-Fj(XrΓM+Σ
s = l

(4.3) dku^r%)-dj(x^nι)+ Σ

for any positive integer q.
Let F* be the lift of the affine connection V. Then F* is an affine connection

in Tr(M). We shall now prove

r-s I

PROPOSITION 4.1. ?i«»jBωk= Σ —r(-CvHt)0B«+u)h.

Proof. By (1. 24) and (3.1), we have

(4. 4) n™X™ = {VYX)*> = Σ \usvFγXh)°Bωh.
s=o SI

On the other hand, we have

\s=o S

(4. 4/
r 1 r 1Σ A-UvXynωn+ Σ -τ-γ%(χsvXhrBωk.

s=o SI s=o SI

For any σ£γv(M) there is a vector field Y in M with initial condition F = YJdldxJ,
χvY=0, •••, J ^ F = 0 at p=π(σ). Then Y^ = YWWj at σ. Taking the coefficients
of F * in right-hand sides of (4. 4) and (4. 4/, we have

Σ
s=0

Hence we have

Σ ^rUvX^n^B™^ Σ 4ϊ(XrF]X
lι-dJXvX'ι)<'Bωn

«=o Si 6=o Si

= Σ -V
o Si
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where we have used (4.1). Since X is arbitrary, we may compare the coefficients
of (Xky°\ (XvXkY°\ (X2

vX
ky°\ - i n the equation above and have

(4. 5) F%WJBωk= Σ^τUvΓ%)0Bcs+u,h
W=0 til

which is to be proved.

Putting

(4.6) 'F*Bωι=F$WjBωi-(Γ%γBωh,

then we have

Ψ*Bωι= Σ ~Ura°Bc + «) f t , s=0,1, -.., r-1;
u=l til

(4.7)
'F*B<rH=0.

Thus we have now

PROPOSITION 4. 2. The cross-section γv(M) is totally geodesic in Tr{M) with re-
spect to the connection F* if and only if the vector field V is infinitesimal affine
transformation in M with respect to V, i.e., XvΓ%=0.

For any X of ζΓl(M) we get, from (4. 6),

(X

and then

So, for any Ye3Ί(M), we get

(4.8) Γ%co,Y(BwX)=Bw(

Thus Bt<»(PγX) is the tangent component to γv{M) of F%wγ(BCo-)X)f according to
(4. 7). We can now define an affine connection F* in γv(M) by the equation

(4.9) Fico)rSco)-X:=Bco)(ΓrX).

We then have some propositions concerning FK

PROPOSITION 4. 3. For an element h of £Π(M) and an element Z of 3l(M),
we have

(4.10) FiC0)*AC0)l=(F,A)<°> .

Especially, let g be a Riemannian metric in M and F the Riemannian connection
determined by g in M, then the connection F* induced in γv(M) from F is the
Riemannian connection determined by the induced metric gc0)* of γv{M).

Proof First we have
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By Proposition 3. 3 (c) and (4. 9), we get

\FB^zBwX, Bto>Y

, FZY))\

On the other hand, we have

(Zh(X, Y)y = ((Pzh)(XY)γ + (h(FzX, Y))° + (h(X, FZY))\

Thus, we have

, Y))°-(h(FzX, Y))°-(h(X, FZY))O

which implies (4.10) because X and Y are arbitrary.
For the case h=g, Fzg=O implies F%co}Zg^*=O. It is also clear by (4.9) that

if F is without torsion, so is F*. Hence Proposition 4. 3 is proved.

Let an element F of £Γί(M) satisfy χvF=0. Then, for any vector field A tan-
gent to γv(M), by Proposition 3. 4, F^Ά is also tangent to γv(M). We can then
define an element F c r ) * of ζ[\(γv{M)) by

(4.11)

PROPOSITION 4. 4. />/ F Z?̂  an element of £\(M) satisfying XvF=0, then

( a ) (F*BwZ(F^)*XBϋX)=BW((FZF)X), X} Zt £Π(M);

(b) // FF=0 in My then FΨ^*=Q in γv{M)\

( c ) // (g, F) is a Kdhlerian structure in M, so is (g^°\ F ( r )*) in γv(M).

Proof. We have only to prove (a). By use of (4. 9), we have

(4.12) ^ ( o ) z ( F

On the other hand, since F™(BWX) is tangent to γv(M), we get
=BwFv\BwX). Using (4. 9), (3. 5) and the fact XvF=0, we have

(4.13)

=BWFZ(FX).

Noticing that F^\BWFZX)=F^(BWFZX)} from (4.12) and (4.13), we have
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=BM((PzF)X),

since B<n(FFzX)=Fm(BmPzX).

Finally, we shall calculate the curvature tensor of F* along the cross-section

γv(M). By (4. 5), we have

=0 SI

= Σ •\\*(-Cv%γωh+UV%/Σ ,
s=0 SI L w=0 U\

s=o 5! L u=o

and hence

= Σ -W
s=o SI

Σ (
o\U

Now, by (4. 3), have

s=o

Thus we have, for the curvature tensor R* of F*,

(4.14)
5 = 0 ^ i

As a direct consequence of (4.14), we have

PROPOSITION 4. 5. For arbitrary elements X and Y of ζΓl(M), the curvature
transformation R*(B((»X, B^Y) leaves the tangent space of γv(M) invariant at
each point if and only if XvRkA=0. In this case R**=γ'vR.
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