TENSOR FIELDS AND CONNECTIONS ON A CROSS-SECTION IN THE TANGENT BUNDLE OF ORDER r

By Chorng-Shi Houh and Shigeru Ishihara

§ 0. Introduction.

Let M be an n-dimensional differentiable manifold and $T_{r}(M)$ the tangent bundle of order r over $M, r \geqq 1$ being an integer [1], [3], [4]. The prolongations of tensor fields and connections given in the differentiable manifold M to its tangent bundle of order r have been studied in [1], [2], [3] [4], [7], [8] and [9]. If V is a vector field given in M, V determines a cross-section in $T_{r}(M)$. For the cases $r=1$ and $r=2$, Yano [7] and Tani [5] have studied, on the cross-section determined by a vector field V, the behavior of the prolongations of tensor fields and connections in M to $T(M)$ (i.e., $T_{1}(M)$) and $T_{2}(M)$, respectively. The purpose of this paper is to study, on the cross-section determined by a vector field V, the behavior of the prolongations of these geometric objects in M to $T_{r}(M)(r \geqq 1)$.

In $\S 1$ we summarize the results and properties we need concerning the prolongations of tensor fields and connections in M to $T_{r}(M)$. Proofs of the statements in $\S 1$ can be found in [1], [2], [3], [4] and [8]. In $\S 2$ we study the cross-section determined in $T_{r}(M)$ by a given vector field V in M. In $\S 3$ we study the behavior of prolongations of tensor fields on the cross-section. In $\S 4$ we study the prolongations of connections given in M to $T_{r}(M)$ along the cross-section and some of their properties.

We assume in the squel that the manifolds, functions, tensor fields and connections under consideration are all of differentiability of class C^{∞}. Several kinds of indices are used as follows: The indices $\lambda, \mu, \nu, \cdots, s, t, u, \cdots$ run through the range $0,1,2, \cdots r$; the indices h, i, j, k, m, \cdots run through the range $1,2, \cdots n$. Double indices like $(\nu) h$ are used, where $0 \leqq \nu \leqq r, 1 \leqq h \leqq n$. The indices A, B, C, \cdots run through the range (1)1, (1)2, $\cdots,(1) n,(2) 1, \cdots,(2) n, \cdots,(r) 1, \cdots,(r) n$. For a given function f on M, the notation $f^{(0)}$ is sometimes substituted by f^{0} for simplicity. Summation notation $\sum_{\imath=1}^{n}$ with respect to $h, i, j, k, m, \cdots(=1,2, \cdots n)$ is omitted while summation notation with respect to $\lambda, \mu, \nu, \cdots, s, t, u \cdots$, from 0 to r, will be kept. For example,

$$
\sum_{s=0}^{r} \sum_{n=1}^{n}\binom{r}{s} \mathcal{L}_{V}^{s} \nabla_{j} x^{h} B_{(s) h} \quad \text { will be written in } \sum_{s=0}^{r}\binom{r}{s} \mathcal{L}_{V}^{s} \nabla_{j} x^{h} B_{(s) h} .
$$

For differentiable manifold N, we denote by $\mathscr{I}_{q}^{p}(N)$ the space of all tensor
fields of type (p, q), i.e., of contravariant degree p and covariant degree $q(p, q \geqq 0)$ and put

$$
\mathscr{I}(N)=\sum_{p, q} \mathscr{I}_{p}^{q}(N) .
$$

§ 1. Prolongations of tensor fields and connections to $\boldsymbol{T}_{\boldsymbol{r}}(\boldsymbol{M})$.

Let R be the real line. $T_{r}(M)$ is the set of all r-jets $J_{p}^{r}(F)$ determined by a mapping $F: R \rightarrow M$ such that $F(0)=P$. We denote by $\pi_{r}: T_{r}(M) \rightarrow M$ the bundle projection, i.e., $\pi_{r}\left(J_{p}^{r}(F)\right)=P$. We shall denote π_{r} simply by π if there is no confusion. Let $\left\{U, x^{h}\right\}$ be a coordinate neighborhood of M at P. If we take an r-jet $J_{p}^{r}(F)$ belonging to $\pi^{-1}(U)$ and put

$$
\begin{equation*}
y^{(\nu) h}=\frac{1}{\nu!} \frac{d^{\nu} F^{n}(0)}{d t^{\nu}}, \tag{1.1}
\end{equation*}
$$

where F has the local expression $x^{h}=F^{h}(t), t \in R$, in U such that $P=F(0)$, then the r-jet $J_{p}^{r}(F)$ is expressed in a unique way by the set $\left(y^{(\nu) h}\right)(\nu=0,1, \cdots, r ; h=1$, $\cdots, n),\left(y^{(0) h}\right)=\left(x^{h}\right)$ being the coordinates of P in U. Thus a system of coordinates $\left(y^{(\nu) h}\right)$ is introduced in the open set $\pi^{-1}(U)$ of $T_{r}(M)$. We now call $\left(y^{(\nu) h}\right)$ the coordinates induced in $\pi^{-1}(U)$ from $\left\{U, x^{h}\right\}$, or simply the induced coordinates in $\pi^{-1}(U)$. We sometimes denote the induced coordinates by $\left(y^{4}\right)$ (see §0). Thus $T_{r}(M)$ is a differentiable manifold of $(r+1) n$ dimensions.

For $\lambda=0,1, \cdots, r$, we define the λ-lift $f^{(\lambda)}$ of a function f in M to $T_{r}(M)$ by

$$
\begin{equation*}
f^{(\lambda)}\left(J_{p}^{r}(F)\right)=\frac{1}{\lambda!}\left[\frac{d^{2}(f \circ F)}{d t^{\lambda}}\right]_{0}, \tag{1.2}
\end{equation*}
$$

$F: R \rightarrow M$ being an arbitrary mapping such that $P=F(0)$. The λ-lift $f^{(\lambda)}$ of f is well defined in $T_{r}(M)$, i.e., the value $f^{(\lambda)}\left(J_{p}^{r}(F)\right)$ is independent of the choice of $F: R \rightarrow M$. Clearly, $f^{0}=f \circ \pi\left(f^{0}=f^{(0)}\right.$, see $\left.\S 0\right)$. For the sake of convenience, we define that $f^{(\lambda)}=0$ for any negative integer λ. For the lifts of two functions f and g to $T_{r}(M)$, we have the following formula:

$$
\begin{equation*}
(f \circ g)^{(\lambda)}=\sum_{\mu=0}^{\lambda} f^{(\mu)} g^{(\lambda-\mu)} . \tag{1.3}
\end{equation*}
$$

Let X be a vector field in M with components X^{h} in a coordinate neighborhood $\left\{U, x^{r}\right\}$. We defined the λ-lift of X to $T_{r}(M)$, denoted by $X^{(\lambda)}$, to be the vector field \tilde{X} which locally has components \tilde{X}^{A} in the open set $\pi^{-1}(U)$ such that

$$
\begin{equation*}
\tilde{X}^{(\nu) h}=\left(X^{h}\right)^{(\mu+\lambda-r)} \tag{1.4}
\end{equation*}
$$

relative to the induced coordinates $\left.\left(y^{A}\right)=\left(y^{(\nu)}\right)_{h}\right)$ in $\pi^{-1}(U)$, where the right-hand side of (1.4) denotes the $(\nu+\lambda-r)$-lift of the local function X^{h}. \tilde{X} or $X^{(\lambda)}$ actually determines globally a vector field in $T_{r}(M)$ (use (1.10)). For the λ-lifts of vector
fields, we have the following formulas:

$$
\begin{align*}
X^{(\lambda)} f^{(\mu)} & =(X f)^{(\lambda+\mu-r)}, \quad f \in \mathscr{I}_{0}^{0}(M), \quad X \in \mathscr{I}_{0}^{1}(M) ; \tag{1.5}\\
& \frac{\partial}{\partial y^{(\lambda) i}}=\left(\frac{\partial}{\partial x^{i}}\right)^{(r-\lambda)} ; \tag{1.6}\\
& \frac{\partial f^{(\lambda)}}{\partial y^{(\mu) \imath}}=\left(\frac{\partial f}{\partial x^{i}}\right)^{(\lambda-\mu)}, \quad f \in \mathscr{I}_{0}^{0}(M) ; \tag{1.7}
\end{align*}
$$

$$
\begin{equation*}
(f X)^{(\lambda)}=\sum_{\mu=0}^{\lambda} f^{(\mu)} X^{(\lambda-\mu)}, \quad f \in \mathscr{I}_{0}^{0}(M), \quad X \in \mathscr{I}_{0}^{1}(M) ; \tag{1.8}
\end{equation*}
$$

$$
\begin{equation*}
\left[X^{(\lambda)}, Y^{(\mu)}\right]=[X, Y]^{(\alpha+\mu-r)}, \quad X, Y \in \mathscr{I}_{0}^{1}(M) \tag{1.9}
\end{equation*}
$$

Let $\left\{U, x^{h}\right\}$ and $\left\{U^{\prime}, x^{h^{\prime}}\right\}$ be two intersecting coordinate neighborhoods of M and the coordinate transformation in $U \cap U^{\prime}$ be given by

$$
x^{h^{\prime}}=x^{h^{\prime}}\left(x^{k}\right)
$$

Then, if $\left(y^{4}\right)=\left(y^{(\nu) h}\right)$ and $\left(y^{\left.A^{\prime}\right)}=\left(y^{(\nu) h^{\prime}}\right)\right.$ are the induced coordinates in $\pi^{-1}(U)$ and $\pi^{-1}\left(U^{\prime}\right)$ respectively, the transformation of induced coordinates in $\pi^{-1}\left(U \cap U^{\prime}\right)$ $=\pi^{-1}(U) \cap \pi^{-1}\left(U^{\prime}\right)$ has the Jacobian matrix of the form

$$
\begin{equation*}
\left(\frac{\partial y^{A^{\prime}}}{\partial y^{4}}\right)=\left(\frac{\partial y^{(\nu) h^{\prime}}}{\partial y^{\left(\mu^{\prime}\right)}}\right)=\left(\left(\frac{\partial x^{h^{\prime}}}{\partial x^{h}}\right)^{\left(\nu-\mu^{\mu}\right)}\right) \tag{1.10}
\end{equation*}
$$

Let a 1 -form ω have the local expression $\omega=\omega_{i} d x^{i}$ in a coordinate neighborhood $\left\{U, x^{h}\right\}$. Then in $\pi^{-1}(U)$ we denote by $\tilde{\omega}_{U}$ the local 1 -form defined by

$$
\begin{equation*}
\tilde{\omega}_{U}=\sum_{\mu=0}^{\lambda} \omega_{i}^{(\mu)} d y^{(\lambda-\mu) i} \tag{1.11}
\end{equation*}
$$

relative to the induced coordinates $\left(y^{(\nu) h}\right)$ in $\pi^{-1}(U)$. This actually determines globally a 1 -form in $T_{r}(M)$, which is called the λ-lift of ω and denoted by $\omega^{(2)}$ (use (1.10)). For the λ-lifts of ω, we have the following formulas:

$$
\begin{equation*}
\omega^{(\lambda)}\left(X^{(\mu)}\right)=(\omega(X))^{(\alpha+\mu-r)}, \quad \omega \in \mathscr{T}_{1}^{0}(M), \quad X \in \mathscr{I}_{0}^{1}(M) ; \tag{1.12}
\end{equation*}
$$

$$
\begin{equation*}
d y^{(\lambda) \imath}=\left(d x^{i}\right)^{(\lambda)} \tag{1.13}
\end{equation*}
$$

$$
\begin{equation*}
(f \omega)^{(\lambda)}=\sum_{\mu=0}^{\lambda} f^{(\mu)} \omega^{(\lambda-\mu)}, \quad f \in \mathscr{I}_{0}^{0}(M), \quad \omega \in \mathscr{I}_{1}^{0}(M) \tag{1.14}
\end{equation*}
$$

The above operations of taking lifts are linear mapping $\mathscr{I}_{0}^{0}(M) \rightarrow \mathscr{I}_{0}^{0}\left(T_{r}(M)\right)$, $\mathscr{I}_{0}^{1}(M) \rightarrow \mathscr{I}_{0}^{1}\left(T_{r}(M)\right)$ and $\mathscr{T}_{1}^{0}(M) \rightarrow \mathscr{I}_{1}^{0}\left(T_{r}(M)\right)$ respectively. They have the properties (1.3), (1.8) and (1.14) respectively. Thus we can now define, for any element K of $\mathscr{L}_{q}^{p}(M)$, its λ-lift $K^{(\lambda)}(\lambda=0,1, \cdots, r)$, which belongs to $\mathscr{I}_{q}^{p}\left(T_{r}(M)\right)$ in such a way that the correspondence $K \rightarrow K^{(\lambda)}$ defines a linear mapping $\mathscr{I}_{q}^{p}(M) \rightarrow \mathscr{I}_{q}^{p}\left(T_{r}((M))\right.$ which is characterized by the properties

$$
(S \otimes T)^{(\lambda)}=\sum_{\mu=0}^{\lambda} S^{(\mu)} \otimes T^{(\lambda-\mu)}
$$

for any $S, T \in \mathscr{T}(M)$ and $\lambda=0,1, \cdots, r$. The tensor field $K^{(\lambda)}$ thus defined is called the λ-lift of the tensor field K in M to $T_{r}(M)$. For the λ-lifts of tensor fields, we have the following formulas:
(1. 15) $\quad K^{(\lambda)}\left(X_{1}^{(\mu)}, \cdots, X_{q}^{(\mu)}\right)=\left(K\left(X_{1}, \cdots, X_{q}\right)\right)^{\lambda+q(\mu-r)}, \quad K \in \mathscr{I}_{q}^{p}(M), X_{1} \cdots, X_{q} \in \mathscr{I}_{0}^{1}(M)$;

$$
\begin{equation*}
(\omega \wedge \pi)^{(\lambda)}=\sum_{\mu=0}^{\lambda} \omega^{(\mu)} \wedge \pi^{(\lambda-\mu)} ; \tag{1.17}
\end{equation*}
$$

$$
\begin{equation*}
\mathcal{L}_{X^{(\lambda)}} K^{(\mu)}=\left(\mathcal{L}_{X} K\right)^{\left(\lambda+\mu_{-r}\right)}, \quad X \in \mathscr{I}_{0}^{1}(M), \quad K \in \mathscr{I}(M) ; \tag{1.16}
\end{equation*}
$$

$$
\begin{equation*}
d \omega)^{(\lambda)}=d \omega^{(\lambda)}, \tag{1.18}
\end{equation*}
$$

ω and π being arbitrary differential forms of arbitrary order in M, where \mathcal{L}_{X} denotes the Lie derivation with respect to a vector field X.

Next we shall give local expressions of lifts of tensor fields of special type in M to $T_{r}(M)$ relative to the induced coordinates $\left(y^{A}\right)=\left(y^{(\nu) h}\right)$. Let X be a vector field with local components X^{h} in M. Then $X^{(\lambda)}$ in $T_{r}(M)$ has local components of the form

$$
X^{(\lambda)}:\left[\begin{array}{c}
0 \tag{1.19}\\
\vdots \\
0 \\
\left(X^{h}\right)^{0} \\
\vdots \\
\left(X^{h}\right)^{(\lambda-1)} \\
\left(X^{h}\right)^{(\lambda)}
\end{array}\right]
$$

the lifts of a 1 -form ω with local expression $\omega=\omega_{i} d x^{i}$ in M have local components of the form

$$
\begin{equation*}
\omega^{(i)}=\left(\omega_{i}^{(\lambda)}, \omega_{i}^{(\alpha-1)}, \cdots, \omega_{i}^{(1)}, \omega_{i}^{(0)}, 0, \cdots, 0\right) ; \tag{1.20}
\end{equation*}
$$

the λ-lift of a tensor field $F \in \mathscr{I}_{1}^{1}(M)$ with local components F_{\imath}^{h} in M to $T_{r}(M)$ has local components of the form
(1. 21) $\quad F^{(\lambda)}:\left[\begin{array}{cccccccc}0 & & 0 & & 0 & \cdots & \cdots & 0 \\ & \cdots & & \cdots & & \cdots & \cdots & 0 \\ 0 & 0 & & 0 & \cdots & \cdots & 0 \\ \left(F_{2}^{h}\right)^{(0)} & 0 & 0 & \cdots & \cdots & 0 \\ \left(F_{\imath}^{h}\right)^{(1)} & \left(F_{2}^{h}\right)^{(0)} & 0 & \cdots & \cdots & 0 \\ \cdots & \cdots & \cdots & \cdots & \\ \left(F_{\imath}^{h}\right)^{(\lambda)} & \left(F_{2}^{h}\right)^{(\lambda-1)} & \left(F_{2}^{h}\right)^{(\lambda-2)} & \cdots & \left(F_{2}^{h}\right)^{(0)} & 0 & \cdots & 0\end{array}\right]$
and the λ-lift of a tensor field $g \in \mathscr{I}_{2}^{0}(M)$ with local components $g_{j i}$ in M to $T_{r}(M)$ has local components of the form

$$
g^{(\lambda)}:\left[\begin{array}{cccccc}
\left(g_{j i}\right)^{(\lambda)} & \left(g_{j i} i^{(\lambda-1)}\right. & \cdots & \left(g_{j i}\right)^{(1)} & \left(g_{j i}\right)^{(1)} & 0 \cdots 0 \tag{1.22}\\
\left(g_{j i}\right)^{(\lambda-1)} & \left(g_{j i}\right)^{(\lambda-2)} & \cdots & \left(g_{j i}\right)^{(0)} & 0 & 0 \cdots 0 \\
\cdots & \cdots & & \cdots & & \cdots \\
\left(g_{j i}\right)^{(0)} & 0 & \cdots & \cdots & \cdots & 0 \\
0 & 0 & \cdots & \cdots & \cdots & 0 \\
\cdots & & \cdots & \cdots & \cdots & \cdots \\
0 & 0 & \cdots & \cdots & \cdots & 0
\end{array}\right]
$$

relative to the induced coordinates in $\pi^{-1}(U)$.
Finally, we consider lifts of affine connections. Let ∇ be an affine conection in M with components $\Gamma_{j i}^{h}$ in $\left\{U, x^{h}\right\}$. We now introduce in $\pi^{-1}(U)$ affine connection ∇_{U}^{*} with components $\tilde{\Gamma}_{C_{B}}^{A}$ relative to the induced coordinates $\left(y^{4}\right)$ such that

$$
\begin{equation*}
\tilde{\Gamma}_{C B}^{A}=\left(I_{j i}^{h}\right)^{\left.(1-\mu-)^{2}\right)} \tag{1.23}
\end{equation*}
$$

for $A=(\lambda) h, B=(\mu) i$ and $C=(\nu) j$. According to (1.10) and (1.23), ∇_{U}^{*} actually determines globally an affine connection ∇^{*} in $T_{r}(M)$ which is called the lift of the affine connection $\bar{\nabla}$ and denoted also by ∇^{*}. We have the following properties of ∇^{*} :

$$
\begin{array}{rlrl}
\nabla_{X}^{*}(\lambda) K^{(\mu)} & =\left(\nabla_{X} K\right)^{(\alpha+\mu-r)}, & X \in \mathscr{I}_{0}^{1}(M), & K \in \mathscr{I}(M) ; \\
\mathcal{L}_{X^{(\alpha)}} \nabla^{*} & =\left(\mathcal{L}_{X} \nabla\right)^{(\lambda)}, & X \in \mathscr{I}_{0}^{1}(M) . \tag{1.25}
\end{array}
$$

§ 2. Cross-section determined by a vector field.

Suppose V be a vector field in M with components V^{i} relative to $\left\{U, x^{h}\right\}$. Denote by $F: I \rightarrow M$ the orbit of V passing through a point p in M such that $F(0)=p$, where I is an interval $(-\varepsilon, \varepsilon), \varepsilon$ being some positive number. We denote the r-jet $J_{p}^{r}(F)$ by $\gamma_{v}(p)$. Then the correspondence $p \rightarrow \gamma_{\nu}(p)$ defines a mapping $\gamma_{V}: M \rightarrow T_{r}(M)$ such that $\pi_{\circ} \gamma_{V}$ is the identity mapping of M. Thus $\gamma_{\gamma}: M \rightarrow T_{r}(M)$ is a cross-section in $T_{r}(M)$. We call the submanifold $\gamma_{V}(M)$ imbedded in $T_{r}(M)$ the cross-section determined by the vector field V. If $\left\{U, x^{h}\right\}$ is a coordinate neighborhood of M, the cross-section $\gamma_{v}(M)$ is expressed locally in $\pi^{-1}(U)$ by equations

$$
\begin{aligned}
& y^{(0)}=x^{h}=F^{h}(0), \\
& y^{(1)}=\frac{d F^{h}(0)}{d t} V^{h}\left(x^{i}\right), \\
& y^{(2)}=\frac{1}{2!} \frac{d^{2} F^{h}(0)}{d t^{2}}=\frac{1}{2} V^{k} \partial_{k} V^{h},
\end{aligned}
$$

$$
\begin{equation*}
y^{(3)}=\frac{1}{3!} \frac{d^{3} F^{h}(0)}{d t^{3}}=\frac{1}{3!} V^{k}\left(V^{m} \partial_{k} \partial_{m} V^{h}+\partial_{k} V^{m} \partial_{m} V^{h}\right) \tag{2.1}
\end{equation*}
$$

$$
y^{(\nu)}=\frac{1}{\nu!}=\frac{d^{\nu} F^{h}(0)}{d t^{\nu}}
$$

with respect to the induced coordinates.
Let f be a function on M, we have

$$
\begin{aligned}
f^{0}(& \left.=f^{(0)}\right)=f \\
f^{(1)} & =\frac{d}{d t}(f \circ F)=\partial_{i} f \cdot y^{(1) i}=V^{i} \partial_{i} f=\left(\mathcal{L}_{V} f\right)^{0}
\end{aligned}
$$

along $\gamma_{V}(M)$. A simple calculation yields that along the cross-section $\gamma_{V}(M)$

$$
f^{(\lambda)}=\frac{1}{\lambda!} \mathcal{L}_{V}^{\lambda} f
$$

holds, where $\mathcal{L}_{V}^{\lambda}=\mathcal{L}_{V}\left(\mathcal{L}_{\lambda}^{\lambda-1} f\right)$ for $\lambda>1$.
According to (2.1), the submanifold $\gamma_{V}(M)$ is locolly expressed by a system of equations $y^{(\mu) h}=y^{(\nu) h}\left(x^{i}\right)$ such that

$$
\begin{align*}
& y^{(0) h}\left(x^{i}\right)=x^{h}, \\
& y^{(1) h}\left(x^{i}\right)=V^{h}=\left(V^{h}\right)^{0}, \\
& y^{(2) h}\left(x^{i}\right)=\frac{1}{2} V^{k} \partial_{k} V^{h}=\frac{1}{2}\left(V^{h}\right)^{(1)}, \tag{2.3}\\
& \cdots \cdots \cdots \cdots \cdots \cdots \cdots \cdots \cdots \\
& y^{(r) h}\left(x^{i}\right)=\frac{1}{r}\left(V^{h}\right)^{(r-1)}
\end{align*}
$$

with respect to the induced coordinates $\left(y^{A}\right)=\left(y^{(\nu) h}\right)$ in $\pi^{-1}(U)$. Let us put

$$
\begin{equation*}
B_{(0) \imath}^{A}=\partial_{i} y^{A}\left(x^{h}\right) \tag{2.4}
\end{equation*}
$$

Then we have along $\gamma_{V}(M) n$ local vector fields $B_{(0) 1}, B_{(0) 2}, \cdots, B_{(0) n}$ which are tangent to the cross-section. Their components with respect to the induced coordinate $\left(y^{(\nu) h}\right)$ are

$$
B_{(0)_{j}}=\left[\begin{array}{c}
\delta_{j}^{h} \tag{2.4}\\
\partial_{j}^{j} V^{h} \\
\frac{1}{2} \partial_{j}\left(V^{h}\right)^{(1)} \\
\vdots \\
\frac{1}{r} \partial_{j}\left(V^{h}\right)^{(r-1)}
\end{array}\right]
$$

For an element X of $\mathscr{I}_{0}^{1}\left((M)\right.$ with local components X^{i}, we denote by $B_{(0)} X$ the vector field with components

$$
B_{(0) i}^{A} X^{i}, \quad \text { i.e. } \quad B_{(0)} X=B_{(0) i}^{A} X^{i} \frac{\partial}{\partial y^{A}}
$$

which is defined globally along $\gamma_{\nu}(M)$ by virtue of (1.10). For any point σ of $\gamma_{\nu}(M)$, the mapping $B_{(0) p}: T_{p}(M) \rightarrow T_{\sigma}\left(T_{r}(M)\right)\left(\sigma=\gamma_{v}(p)\right)$ defined by $B_{(0) p}\left(X_{p}\right)=\left(B_{(0)} X\right)_{\sigma}$ is nothing but the differential $\left(\gamma_{V}\right)_{p}$ of the cross-section mapping $\gamma_{V}: M \rightarrow T_{r}(M)$. Thus $B_{(0) p}\left(T_{p}(M)\right)$ is the tangent space of the cross-section $\gamma_{v}(M)$ at the point $\sigma=\gamma_{v}(p)$.

Along the cross-section $\gamma_{\nu}(M)$, for each integer ν such that $0 \leqq \nu \leqq r-1$, we consider n local vector fields $B_{(\nu) 1}, B_{(\nu) 2}, \cdots, B_{(\nu) n}$ which have respectively components of the form

$$
\left(B_{(\nu) j}^{A}\right)=\left[\begin{array}{c}
0 \tag{2.5}\\
\vdots \\
\dot{\delta}_{j}^{h} \\
\partial_{j} V^{h} \\
\frac{1}{2} \partial_{j}\left(V^{h}\right)^{(1)} \\
\vdots \\
\frac{1}{r-\nu} \partial_{j}\left(V^{h}\right)^{(r-\nu-1)}
\end{array}\right]
$$

and n local vector fields $B_{(r) 1}, B_{(r) 2}, \cdots, B_{(r) n}$ which have respectively components of the form

$$
\left(B_{(r) j}^{A}\right)=\left[\begin{array}{c}
0 \tag{2.6}\\
\vdots \\
0 \\
\delta_{3}^{h}
\end{array}\right]
$$

relative to the induced coordinates $\left(y^{A}\right)$. Again we denote by $B_{(\nu)} X$ the vector field with components $B_{(\nu) J}^{A} X^{j}$, i.e., $B_{(\nu)} X=B_{(\nu) 3}^{A} X^{j} \partial / \partial y^{4}$. These vector fields are defined globally along $\gamma_{\nu}(M)$. For any point σ of $\gamma_{\nu}(M)$, the mappings $B_{(\nu) p}: T_{p}(M)$) $\rightarrow T_{\sigma}\left(T_{r}(M)\right)\left(\sigma=\gamma_{V}(p)\right)$ are defined as follows:

$$
B_{(\nu) p}\left(X_{p}\right)=\left(B_{(\nu)} X\right)_{\sigma} \quad X \in \mathscr{I}_{0}^{1}(M)
$$

The mappings $B_{(\nu) p}$, including $\nu=0$, are isomorphisms of $T_{p}(M)$ into $T_{o}\left(T_{r}(M)\right.$).
The $(r+1) n$ vector fields $B_{(\nu)} \quad(0 \leqq \nu \leqq r, 1 \leqq j \leqq n)$ form a local family of frames along $\gamma_{V}(M)$, which we shall call adapted frames of $\gamma_{V}(M)$. The n vector fields $B_{(0)}$, span at each point σ of $\gamma_{\nu}(M)$ the tangent plane $T_{\sigma}\left(\gamma_{\nu}(M)\right)$ of the crosssection $\gamma_{V}(M)$.

For any element X of $\mathscr{I}_{0}^{1}(M)$ with local components X^{i}, we denote by $B_{(\nu)} X$ the vector field with components

$$
B_{(\nu) 2}^{A} X^{i}, \quad \text { i.e. } \quad B_{(\nu)} X=B_{(\nu) 2}^{A} X^{i} \frac{\partial}{\partial y^{4}} .
$$

§ 3. Prolongations of tensor fields in the cross-section.

Suppose X is a given vector field in M. We consider along $\gamma_{r}(M)$ the λ-lift $X^{(\lambda)}$ of X. We shall describe $X^{(\lambda)}$ with respect to the adapted frames $B_{(0),}$ of
$\gamma_{V}(M)$. The result is as follows:
Proposition 3.1. Along $\gamma_{V}(M)$ the λ-lift $X^{(\lambda)}$ of X is written in

$$
\begin{align*}
X^{(\lambda)}= & \sum_{\nu=0}^{\lambda} \frac{1}{\nu!} B_{(r-\lambda+r)} \mathcal{L}_{V}^{\nu} X \\
= & B_{(r-\lambda)} X+B_{(r-\lambda+1)} \mathcal{L}_{V} X+\frac{1}{2!} B_{(r-\lambda+2)} \mathcal{L}_{V}^{2} X+\cdots \tag{3.1}\\
& +\frac{1}{(\lambda-1)!} B_{(r-1)} \mathcal{L}_{V}^{\lambda}-1 X+\frac{1}{\lambda!} B_{(r)} \mathcal{L}_{V}^{\lambda} X .
\end{align*}
$$

Proof. By (1.19), $X^{(\lambda)}$ has the form

$$
X^{(\lambda)}=\sum_{\nu=0}^{\lambda}\left(X^{h}\right)^{(\nu)} \frac{\partial}{\partial y^{(r-\lambda+\nu) h}}
$$

with respect to the natural frame $\left\{\partial / \partial y^{A}\right\}$.
We first calculate $\left(X^{h}\right)^{(\nu)}$ along $\gamma_{V}(M)$ as follows:

$$
\begin{aligned}
\left(X^{h}\right)^{(0)} & =X^{h} ; \\
\left(X^{h}\right)^{(1)} & =V^{j} \partial_{j} X^{h}=X^{i} \partial_{i} V^{h}+\mathcal{L}_{V} X^{h} ; \\
\left(X^{h}\right)^{(2)} & =\frac{1}{2} V^{j} \partial_{j}\left(\left(X^{h}\right)^{(1)}\right) \\
& =\frac{1}{2} V^{k} \partial_{k}\left(\mathcal{L}_{V} X^{h}+X^{j} \partial_{j} V^{h}\right) \\
& =\frac{1}{2}\left(\mathcal{L}_{V}^{2} X^{h}+\partial_{j} V^{h} \mathcal{L}_{V} X^{j}+V^{k} \partial_{k} X^{j} \partial_{j} V^{h}+V^{k} X^{j} \partial_{k} \partial_{\jmath} V^{h}\right) \\
& =\frac{1}{2}\left[\mathcal{L}_{V}^{2} X^{h}+\partial_{j} V^{h} \mathcal{L}_{V} X^{j}+\partial_{j} V^{h}\left(\mathcal{L}_{V} X^{j}+X^{k} \partial_{k} V^{j}\right)+V^{k} X^{j} \partial_{k} \partial_{\jmath} V^{h}\right] \\
& =\frac{1}{2} \mathcal{L}_{V}^{2} X^{h}+\partial_{j} V^{h} \mathcal{L}_{V} X^{j}+\frac{1}{2} X^{k}\left(\partial_{j} V^{h} \partial_{k} V^{j}+V^{j} \partial_{j} \partial_{k} V^{h}\right) \\
& =\frac{1}{2} X^{j} \partial_{j}\left(V^{h}\right)^{(1)}+\partial_{j} V^{h} \mathcal{L}_{V} X^{j}+\frac{1}{2} \mathcal{L}_{V}^{2} X^{h} .
\end{aligned}
$$

By induction, we have the following formulas:
(3. 2)

$$
\begin{aligned}
\left(X^{h}\right)= & \frac{1}{\nu} X^{j} \partial_{j}\left(V^{h}\right)^{(\nu-1)}+\frac{1}{\nu-1}\left(\mathcal{L}_{V} X^{j}\right) \partial_{j}\left(V^{h}\right)^{(\nu-2)} \\
& +\frac{1}{2!(\nu-2)}\left(\mathcal{L}_{V}^{2} X^{j}\right) \partial_{j}\left(V^{h}\right)^{(\nu-3)}+\cdots
\end{aligned}
$$

$$
+\frac{1}{\mu!(\nu-\mu)}\left(\mathcal{L}_{V}^{\mu} X^{j}\right) \partial_{j}\left(V^{h}\right)^{\left(\nu-\mu_{-1}\right)}+\cdots
$$

$$
+\frac{1}{(\nu-1)!}\left(\mathcal{L}_{V}^{\nu-1} X^{j}\right) \partial_{j} V^{h}+\frac{1}{\nu!} \mathcal{L}_{V}^{\nu} X^{h}
$$

Thus (3.1) follows from (1.19), (2.5) and (3.2).
Let ω be an element of $\mathscr{T}_{i}^{0}(M)$ with local expression $\omega=\omega_{i} d x^{i}$. Then, by (1.20), $\omega^{(2)}$ has components of the form

$$
\omega^{(\lambda)}=\left(\omega_{i}^{(2)}, \omega_{i}^{(2-1)}, \cdots, \omega_{i}^{(1)}, \omega_{i}^{0}, 0, \cdots, 0\right)
$$

with respect to the natural coframe $\left\{d y^{4}\right\}$. Along the cross-section $\gamma_{V}(M)$, let the coframes dual to the adapted frames $\left\{B_{(\nu) j}\right\}$ be $\left\{B^{(\nu) j}\right\}$. We denote by $B^{(\nu)} \omega$ the 1 -form with components $B_{A}^{(2)]} \omega_{j}$ with respect to the coframes $\left\{d y^{A}\right\}$. Then we have

Proposition 3.2. Along $\gamma_{v}(M)$ the λ-lifts $\omega^{(\lambda)}$ of ω are written in

$$
\begin{align*}
\omega^{(\lambda)}= & \frac{1}{\lambda!} B^{(0)} \mathcal{L}_{V}^{\lambda} \omega+\frac{1}{(\lambda-1)!} B^{(1)} \mathcal{L}_{V}^{\lambda-1} \omega+\cdots \\
& +\frac{1}{2!} B^{(\lambda-2)} \mathcal{L}_{V}^{2} \omega+B^{(\lambda-1)} \mathcal{L}_{V} \omega+B^{(\lambda)} \omega \tag{3.3}
\end{align*}
$$

Proof. By (1.12) we have

$$
\omega^{(\lambda)}\left(X^{(\nu)}\right)=(\omega(X))^{(\lambda+\nu-r)}
$$

and by (2.2)

$$
\begin{aligned}
(\omega(X))^{(\lambda+\nu-r)} & =\left(\omega_{i} X^{i}\right)^{(\lambda+\nu-r)}=\frac{1}{(\lambda+\nu-r)!} \mathcal{L}_{V}^{\lambda+\nu-r}\left(\omega_{i} X^{i}\right) \\
& =\frac{1}{(\lambda+\nu-r)!} \sum_{\mu=0}^{\lambda+\nu-r}\binom{\lambda+\nu-r}{\mu}\left(\mathcal{L}_{V}^{\lambda+\nu-r-\mu} \omega_{i}\right)\left(\mathcal{L}_{V}^{\mu} X^{i}\right) \\
& =\sum_{\mu=0}^{\lambda+\nu-r} \frac{1}{(\lambda+\nu-r-\mu)!\mu!}\left(\mathcal{L}_{V}^{\lambda+\nu-r-\mu} \omega_{i}\right)\left(\mathcal{L}_{V}^{\mu} X^{i}\right)
\end{aligned}
$$

where $\left({ }^{\lambda+\nu-r}\right)$ denotes the binomial coefficient.
On the other hand, with respect to the coframes $\left\{B^{(\nu)} j\right\}$, we consider a 1 -form $\bar{\omega}^{(\lambda)}$ defined by

$$
\bar{\omega}^{(\lambda)}=\sum_{\mu=0}^{\lambda} \frac{1}{(\lambda-\mu)!} B^{(\mu) \imath} \mathcal{L}_{V}^{2-\mu} \omega_{i} .
$$

Then by (3.2) we have

$$
\bar{\omega}^{(\lambda)} X^{(\nu)}=\sum_{\mu=0}^{\lambda-r+\nu} \frac{1}{(\lambda-r+\nu-\mu)!\mu!}\left(\mathcal{L}_{V}^{\mu} X^{i}\right)\left(\mathcal{L}_{V}^{\lambda+\nu-r-\mu} \omega_{i}\right) .
$$

Since X is arbitrary in the above formulas, the formula (3.3) follows from $\omega^{(\lambda)} X^{(\nu)}=\bar{\omega}^{(\lambda)} X^{(\nu)}$.

Now we shall write down the λ-lifts of tensor fields of special type in M with respect to the adapted frame. For an element h of $\mathscr{I}_{2}^{0}(M)$ with local components $h_{i j}$, we have
(3.4) $\quad h^{(x)}$:

$$
h^{(\lambda)}:\left[\begin{array}{cccccc}
\frac{1}{\lambda!} \mathcal{L}_{V}^{2} h_{j i} & \frac{1}{(\lambda-1)!} \mathcal{L}_{V}^{2-1} h_{j i} \cdots \frac{1}{2!} \mathcal{L}_{V}^{2} h_{j i} & \mathcal{L}_{V} h_{j i} & h_{i j} & 0 \cdots & 0 \\
\frac{1}{(\lambda-1)!} \mathcal{L}_{V}^{\lambda-1} h_{j i} & \frac{1}{(\lambda-1)!} \mathcal{L}_{V}^{2-2} h_{j i} \cdots & \mathcal{L}_{V} h_{j i} & h_{i j} & 0 & \cdots \\
\cdots & \cdots & \cdots & \cdots & \\
\frac{1}{2!} \mathcal{L}_{V}^{2} h_{j i} & \mathcal{L}_{V} h_{j i} & \cdots & \cdots & 0 \\
\mathcal{L}_{V} h_{j i} & h_{i j} & \cdots & \cdots & 0 \\
h_{i j} & 0 & \cdots & \cdots & 0 \\
0 & \cdots & \cdots & \cdots & 0 \\
\cdots & \cdots & \cdots & \cdots & \cdots \\
0 & 0 & \cdots & \cdots & 0
\end{array}\right]
$$

and, for an element F of $\mathscr{I}_{1}^{1}(M)$ with local components F_{i}^{h},

$$
F^{(\lambda)}:\left[\begin{array}{ccccc}
0 & 0 & \cdots & \cdots & 0 \tag{3.5}\\
\cdots & \cdots & \cdots & \cdots & \\
0 & 0 & \cdots & \cdots & 0 \\
F_{i}^{h} & 0 & \cdots & \cdots & 0 \\
\mathcal{L}_{V} F_{\imath}^{h} & F_{\imath}^{h} & \cdots & \cdots & 0 \\
\frac{1}{2!} \mathcal{L}_{V}^{2} F_{\imath}^{h} & \mathcal{L}_{V} F_{i}^{h} & \cdots & \cdots & 0 \\
\cdots & \cdots & \cdots & \cdots & \\
\frac{1}{(\lambda-1)!} \mathcal{L}_{V}^{\lambda-1} F_{\imath}^{h} \cdots \frac{1}{(\lambda-2)!} \mathcal{L}_{V}^{\ell-2} F_{i}^{h} \cdots & F_{i}^{h} & 0 & 0 \cdots & 0 \\
\frac{1}{\lambda!} \mathcal{L}_{V}^{\lambda} F_{i}^{h} & \cdots \frac{1}{(\lambda-1)!} \mathcal{L}_{V}^{\lambda-1} F_{\imath}^{h} \cdots & \mathcal{L}_{V} F_{\imath}^{h} & F_{\imath}^{h} & 0 \cdots
\end{array}\right]
$$

For an element S of $\mathscr{L}_{2}^{1}(M)$ with local component $S_{j i}^{h}$, we have

$$
\begin{align*}
\left(S^{(\lambda)}\right)_{\nu(j) \omega(k)}{ }^{\mu(i)} & =\frac{1}{(\lambda+\mu-r-\nu-\omega)!} \mathcal{L}_{V}^{\lambda+\mu-r-\nu-\omega} S_{j k}^{i} \\
& =0 \quad \text { if } \lambda+\mu<r+\nu+\omega . \tag{3.6}
\end{align*}
$$

In $\S 2$ we have shown that for the mapping $\gamma_{V}: M \rightarrow \gamma_{V}(M), \gamma_{V}^{\prime}(X)=B_{(0)} X$ for any X in $\mathscr{I}_{0}^{1}(M)$. $B_{(0)}: T(M) \rightarrow T\left(\left(\gamma_{V}^{\prime}(M)\right)\right.$ is a linear isomorphism. Let $B_{(0)}^{-1}$ be the inverse of this linear isomorphism $B_{(0)}$. Then $B_{(0)}^{-1}: T\left(\gamma_{V}(M)\right) \rightarrow T(M)$. The dual $\operatorname{map}\left(B_{(0)}^{-1}\right)^{*}$ of $B_{(0)}^{-1}$ sends $\mathscr{I}_{1}^{0}(M)$ to $\mathscr{I}_{1}^{0}\left(\gamma_{V}(M)\right)$. $\left(B_{(0)}^{-1}\right)^{*}$ is nothing but $B^{(0)}$. We now denote $B^{(0)}$ also by γ_{V}^{\prime}, i.e., $\gamma_{V}^{\prime}(\omega)=B^{(0)} \omega$ for $\omega \in \mathscr{L}_{1}^{0}(M)$. Then we can extend the mapping γ_{V}^{\prime} to a linear mapping $\gamma_{V}^{\prime}: \mathscr{I}(M) \rightarrow \mathscr{I}\left(\gamma_{V}(M)\right)$ by setting

$$
\gamma_{V}^{\prime}(P \otimes Q)=\gamma_{v}^{\prime}(P) \otimes \gamma_{v}^{\prime}(Q)
$$

for arbitrary tensor fields P, Q in M.
Now we shall define an operation, denoted by \#, in $\mathscr{I}\left(T_{r}(M)\right)$ as follows:
If $\tilde{X} \in \mathscr{I}_{0}^{1}\left(T_{r}(M)\right), \tilde{X}=\sum_{v=0}^{r} \tilde{X}^{(\nu) i} B_{(\nu) i}$, then $\quad \tilde{X}^{*}=\tilde{X}^{(0) i} B_{(0) i} \in \mathscr{I}_{0}^{1}\left(\gamma_{V}(M)\right)$;
If $\tilde{\omega}$ is a tensor field of type $(0,1)$ in $T_{r}(M)$ defined along $\gamma_{\nu}(M)$, then

$$
\tilde{\omega}^{\sharp}\left(B_{(0)} X\right)=\tilde{\omega}\left(B_{(0)} X\right) ;
$$

If \tilde{h} is a tensor field of type $(0,2)$ in $T_{r}(M)$ defined along $\gamma_{v}(M)$, then

$$
\tilde{h}^{\sharp}\left(B_{(0)} X, B_{(0)} Y\right)=\tilde{h}\left(B_{(0)} X, B_{(0)} Y\right) ;
$$

If \tilde{F} is a tensor field of type $(1,1)$ in $T_{r}(M)$ such that, for any vector field \tilde{A} tangent to $\gamma_{V}(M) \tilde{F} \tilde{A}$ is also tangent to $\gamma_{V}(M)$, then $\quad F^{*}\left(B_{(0)} X\right)=\tilde{F}\left(B_{(0)} X\right)$;

If \tilde{S} is a tensor field of type (1,2) in $T_{r}(M)$ such that, for any vector fields \tilde{A}, \tilde{B} tangent to $\gamma_{\nu}(M), \tilde{B}(\tilde{A}, \tilde{B})$ is also tangent to $\gamma_{\nu}(M)$, then

$$
\tilde{S}^{4}\left(B_{(0)} X, B_{(0)} Y\right)=\widetilde{S}\left(B_{(0)} X, B_{(0)} Y\right) .
$$

In the above definitions the relations are supposed to hold for arbitrary elements X and Y in $\mathscr{I}_{0}^{1}(M)$. We sometimes call $\tilde{h}^{\sharp}, \tilde{F}^{\ddagger}$ and \tilde{S}^{\ddagger} respectively the tensor fields induced in $\gamma_{v}(M)$ from h, F and S.

For the operation \#, we have the following propositions by (3.1), (3.3) and (3. 4):

Proposition 3.3. (a) For any X in $\mathscr{I}_{0}^{1}(M),\left(X^{(\lambda)}\right)^{\sharp}=0$ if $\lambda=0,1, \cdots, r-1$. $X^{(r)}$ is tangent to $\gamma_{V}(M)$, if and only if $\mathcal{L}_{V} X=0$, and in this case $X^{(r)}=\gamma_{V}^{\prime} X$.
(b) For any ω in $\mathscr{T}_{1}^{0}(M),\left(\omega^{(\lambda)}\right)^{:}=\frac{1}{\lambda!} \gamma_{V}^{\prime}\left(\mathcal{L}_{V}^{\lambda} \omega\right), \quad \lambda=0,1, \cdots, \gamma$.
(c) For any h in $\mathscr{L}_{2}^{0}(M),\left(h^{(\lambda)}\right)^{\sharp}=\frac{1}{\lambda!} r_{V}^{\prime}\left(\mathcal{L}_{V}^{e} h\right), \quad \lambda=0,1, \cdots, r$.

$$
\left(h^{0}\right)^{\ddagger}\left(B_{(0)} X, B_{(0)} Y\right)=(h(X, Y))^{0} .
$$

Corollary. Let g be a Riemannian metric in M. Then $\left(g^{0}\right)^{\sharp}$ is a Riemmannian metric in $\gamma_{V}(M)$ and γ_{V} is an isometry with respect to g in M and $g^{(0) \geqslant}$ in $\gamma_{v}(M)$.

Let \tilde{F} be a (1,1) tensor field defined along $\gamma_{V}(M)$. If $T_{0}\left(\gamma_{V}(M)\right), \sigma \in \gamma_{V}(M)$, is invariant by the action of the tensor F, the cross-section $\gamma_{V}(M)$ is said to be invariant by F.

From (3. 5), we have

$$
\begin{aligned}
F^{(\nu)}\left(B_{(0)} X\right)= & B_{(r-\nu)}(F X)+B_{(r-\nu+1)}\left(\left(\mathcal{L}_{V} F\right) X\right)+\frac{1}{2!} B_{(r-\nu+2)}\left(\left(\mathcal{L}_{V}^{2} F\right) X\right) \\
& +\frac{1}{\mu!} B_{(r-\nu+\mu)}\left(\left(\mathcal{L}_{V}^{u} F\right) X\right)+\cdots+\frac{1}{\nu!} B_{(r)}\left(\left(\mathcal{L}_{V}^{\nu} F\right) X\right)
\end{aligned}
$$

for any vector field X in M. Thus we have

Proposition 3. 4. For $F \in \mathscr{T}_{1}^{1}(M)$, the cross-section $\gamma_{V}(M)$ is invariant by $F^{(r)}$ if and only if $\mathcal{L}_{V} F=0$. In this case $\left(F^{(r)}\right)^{\sharp}=\gamma_{V}^{\prime} F$ holds. The lifts $F^{(\lambda)}(\lambda=0,1, \cdots, r-1)$ do not leave $\gamma_{V}(M)$ invariant unless $F=0$.

Proposition 3.5 If F is an almost complex structure in M such that $\mathcal{L}_{V} F=0$, then $\left(F^{(r)}\right)^{\#}$ is an almost complex structur in $\gamma_{V}(M)$.

If (g, F) is an almost Hermitian structure in M and $\mathcal{L}_{V} F=0$ holds, then

$$
\begin{aligned}
\left(g^{0}\right)^{\sharp}\left(\left(F^{(r)}\right)^{\sharp} B_{(0)} X,\left(F^{(r)}\right)^{\sharp} B_{(0)} Y\right) & =\left(\gamma_{V}^{\prime} g\right)\left(\left(\gamma_{V}^{\prime} F\right) B_{(0)} X,\left(\gamma_{V}^{\prime} F\right) B_{(0)} Y\right) \\
& =(g(F X, F Y))^{0} .
\end{aligned}
$$

Thus we have
Proposition 3.6. Suppose that there is given an almost Hermitian structure (g, F) in M. If $\mathcal{L}_{V} F=0$, then $\left(\left(g^{(0)}\right)^{\#},\left(F^{(r)}\right)^{\#}\right)$ is an almost Hermitian structure in $\gamma_{V}(M)$.

By (3. 6), we have for any $S \in \mathscr{I}_{2}^{1}(M)$

$$
\begin{aligned}
S^{(\lambda)}\left(B_{(0)} X, B_{(0)} Y\right)= & B_{(r-\lambda)}(S(X, Y))+B_{(r-\lambda+1)}\left(\left(\mathcal{L}_{V} S\right)(X, Y)\right) \\
& +\frac{1}{2!} B_{(r-\lambda+2)}\left(\left(\mathcal{L}_{V}^{2} S\right)(X, Y)\right)+\cdots+\frac{1}{\lambda!} B_{(r)}\left(\left(\mathcal{L}_{V}^{\lambda} S\right)(X, Y)\right)
\end{aligned}
$$

Thus we have
Proposition 3. 7. If $S \in \mathscr{L}_{2}^{1}(M)$, the vector field $S^{(r)}\left(B_{(0)} X, B_{(0)} Y\right)$ is tangent to $\gamma_{v}(M)$ for arbitrary X, Y of $\mathscr{I}_{2}^{1}(M)$, if and only if $\mathcal{L}_{V} S=0$, and in this case $\left(S^{(r)}\right)^{\ddagger}$ $=\gamma_{V}^{\prime} S$. The vector fields $S^{(\lambda)}\left(B_{(0)} X, B_{(0)} Y\right)(0<\lambda<r)$ are not tangent to $\gamma_{V}(M)$ unless $S=0$.

Let F be a tensor of type $(1,1)$ in M and N_{F} its Nijenh is tensor. Then it is easy to check that $\mathcal{L}_{V} F_{i}^{j}=0$ implies $\mathcal{L}_{V}\left(N_{F}\right)_{i j}^{h}=0$. Thus we have

Corollary 1. Let F be an element of $\mathscr{I}_{1}^{1}(M)$ such that $\mathcal{L}_{V} F=0$, then $\left(N_{F}\right)^{(r)}\left(B_{(0)} X, B_{(0)} Y\right)$ is tangent to $\gamma_{V}(M)$ for arbitaary elements X and Y of $\mathscr{I}_{0}^{1}(M)$. In this case $\left(\left(N_{F}\right)^{(r)}\right)^{\sharp}=\gamma_{V}^{\prime} N_{F}$.

Corollary 2. If a complex structure F in M satisfies the condition $\mathcal{L}_{V} F=0$, then $\left(F^{(r)}\right)^{\#}$ is a complex structure in $\gamma_{v}(M)$.

§4. Prolongations of affine connections in the cross-section.

Suppose an affine connection ∇ with coefficients $\Gamma_{j i}^{h}$ is given in M. For a vector field X with components X^{i} and a tensor field P of type (1,2) with component $P_{j i}^{h}$, we have the following formulas [6]:

$$
\begin{aligned}
\mathcal{L}_{V}\left(\nabla_{\jmath} X^{h}\right)-\nabla_{j}\left(\mathcal{L}_{V} X^{h}\right) & =\left(\mathcal{L}_{V} \Gamma_{j i}^{h}\right) X^{i} \\
\nabla_{k}\left(\mathcal{L}_{V} \Gamma_{j i}^{h}\right)-\left(\nabla_{j}\left(\mathcal{L}^{\Delta} \Gamma_{k i}^{h}\right)\right. & =\mathcal{L}_{V} R_{k j i}^{h}
\end{aligned}
$$

$$
\mathcal{L}_{V}\left(\nabla_{k} P_{\imath j}^{h}\right)-\nabla_{k}\left(\mathcal{L}_{V} P_{\imath j}^{h}\right)=\left(\mathcal{L}_{V} \Gamma_{k m}^{h}\right) P_{\imath_{j}}^{m}-\left(\mathcal{L}_{V} \Gamma_{k j}^{m}\right) P_{m i}^{h}-\left(\mathcal{L}_{V} \Gamma_{k j}^{m}\right) P_{\imath m}^{h},
$$

where $R_{k j_{i}}^{h}$ are components of the curvature tensor of ∇.
Using the third formula for any tensor field P with local componente $P_{j_{i}}$, we have easily

$$
\begin{align*}
& \text { (4. 1) } \mathcal{L}_{V}^{q}\left(\nabla_{j} X^{h}\right)-\nabla_{j}\left(\mathcal{L}_{V}^{q} X^{h}\right)=\sum_{s=0}^{q-1}\binom{n}{s}\left(\mathcal{L}_{V}^{q-s} \Gamma_{j k}^{h}\right)\left(\mathcal{L}_{V}^{s} X^{k}\right), \tag{4.1}\\
& \text { (4. 2) } \nabla_{k}\left(\mathcal{L}_{V}^{q} \Gamma_{j i}^{h}\right)-\nabla_{j}\left(\mathcal{L}_{V}^{q} \Gamma_{k i}^{h}\right)+\sum_{s=1}^{q-1}\binom{q}{s}\left[\left(\mathcal{L}_{V}^{q-s} \Gamma_{j i}^{m}\right)\left(\mathcal{L}_{V}^{s} \Gamma_{k m}^{h}\right)-\left(\mathcal{L}_{V}^{q-s} \Gamma_{k i}^{m}\right)\left(\mathcal{L}_{V}^{s} \Gamma_{j m}^{h}\right)\right]=\mathcal{L}_{V}^{q} R_{k j i}^{h} \tag{4.2}\\
& \text { (4. 3) } \partial_{k}\left(\mathcal{L}_{V}^{q} \Gamma_{j i}^{h}\right)-\partial_{j}\left(\mathcal{L}_{V}^{q} \Gamma_{k i}^{h}\right)+\sum_{s=0}^{q-1}\binom{q}{s}\left[\left(\mathcal{L}_{V}^{q-s} \Gamma_{j i}^{m}\right)\left(\mathcal{L}_{V}^{s} \Gamma_{k m}^{h}\right)-\left(\mathcal{L}_{V}^{q-s} \Gamma_{k i}^{m}\right)\left(\mathcal{L}_{V}^{s} \Gamma_{j m}^{h}\right)\right]=\mathcal{L}_{V}^{q} R_{k j i}^{h}
\end{align*}
$$ for any positive integer q.

Let ∇^{*} be the lift of the affine connection ∇. Then ∇^{*} is an affine connection in $T_{r}(M)$. We shall now prove

PROPOSItion 4.1. $\quad \nabla_{B(0) j}^{*} B_{(s) k}=\sum_{u=0}^{r-s} \frac{1}{u!}\left(\mathcal{L}_{V}^{u} \Gamma_{j k}^{h}\right)^{0} B_{(s+u) h}$.
Proof. By (1.24) and (3.1), we have

$$
\begin{equation*}
\nabla_{\boldsymbol{Y}(r)}^{*} X^{(r)}=\left(\nabla_{Y} X\right)^{(r)}=\sum_{s=0}^{r} \frac{1}{s!}\left(\mathcal{L}_{V}^{s} \nabla_{Y} X^{h}\right)^{0} B_{(s) h} \tag{4.4}
\end{equation*}
$$

On the other hand, we have
$(4.4)^{\prime}$

$$
\nabla_{\boldsymbol{Y}(r)}^{*} X^{(r)}=\nabla_{\boldsymbol{Y}(r)}^{*}\left(\sum_{s=0}^{r}-\frac{1}{s!}\left(\mathcal{L}_{V}^{s} X^{h}\right)^{0} B_{(s) n}\right)
$$

$$
=\sum_{s=0}^{r} \frac{1}{s!}\left(\mathcal{L}_{V}^{s} X^{h}\right)^{0} V_{\boldsymbol{Y}}^{*}(s) h+\sum_{s=0}^{r} \frac{1}{s!} Y^{i} \partial_{i}\left(\mathcal{L}_{V}^{s} X^{h}\right)^{0} B_{(s) h}
$$

For any $\sigma \epsilon_{V}(M)$ there is a vector field Y in M with initial condition $Y=Y^{j} \partial / \partial x^{j}$, $\mathcal{L}_{V} Y=0, \cdots, \mathcal{L}_{V}^{r} Y=0$ at $p=\pi(\sigma)$. Then $Y^{(r)}=Y^{j} B_{(0),}$ at σ. Taking the coefficients of Y^{j} in right-hand sides of (4.4) and (4.4)', we have

$$
\sum_{s=0}^{r} \frac{1}{s!}\left(\mathcal{L}_{V}^{s} \nabla_{j} X^{h}\right)^{0} B_{(s) h}=\sum_{s=0}^{r}\left(\mathcal{L}_{V}^{s} X^{h}\right)^{0} V_{B}^{*}(0) j B_{(s) h}+\sum_{s=0}^{r} \frac{1}{s!}\left(\partial_{j} \mathcal{L}_{V}^{s} X^{h}\right)^{0} B_{(s) h} .
$$

Hence we have

$$
\begin{aligned}
\sum_{s=0}^{r} \frac{1}{s!}\left(\mathcal{L}_{V}^{s} X^{h}\right)^{0} \nabla_{B}^{*}(0) j & B_{(s) h}
\end{aligned}=\sum_{s=0}^{r} \frac{1}{s!}\left(\mathcal{L}_{V}^{s} \nabla_{j} X^{h}-\partial_{j} \mathcal{L}_{V}^{s} X^{h}\right)^{0} B_{(s) h} .
$$

where we have used (4.1). Since X is arbitrary, we may compare the coefficients of $\left(X^{k}\right)^{(0)},\left(\mathcal{L}_{V} X^{k}\right)^{(0)},\left(\mathcal{L}_{V}^{2} X^{k}\right)^{(0)}, \cdots$ in the equation above and have

$$
\begin{equation*}
\nabla_{B(0) j}^{*} B_{(s) k}=\sum_{u=0}^{r-s} \frac{1}{u!}\left(\mathcal{L}_{V}^{u} \Gamma_{j k}^{h}\right)^{0} B_{(s+u) h} \tag{4.5}
\end{equation*}
$$

which is to be proved.
Putting

$$
\begin{equation*}
{ }^{\prime} \nabla_{j}^{*} B_{(s) i}=\nabla_{B(0) j}^{*} B_{(s) i}-\left(\Gamma_{j i}^{h}\right)^{0} B_{(s) h}, \tag{4.6}
\end{equation*}
$$

then we have

$$
\Gamma_{j}^{*} B_{(s) 2}=\sum_{u=1}^{r-s} \frac{1}{u!}\left(\mathcal{L}_{V}^{u} \Gamma_{j i}^{h}\right)^{0} B_{(s+u) h}, \quad s=0,1, \cdots, r-1 ;
$$

$$
\begin{equation*}
\nabla_{j}^{*} B_{(r) i}=0 \tag{4.7}
\end{equation*}
$$

Thus we have now
Proposition 4. 2. The cross-section $\gamma_{V}(M)$ is totally geodesic in $T_{r}(M)$ with respect to the connection ∇^{*} if and only if the vector field V is infinitesimal affine transformation in M with respect to V, i.e., $\mathcal{L}_{V} \Gamma_{j i}^{h}=0$.

For any X of $\mathscr{I}_{0}^{1}(M)$ we get, from (4.6),

$$
\left(X^{k}\right)^{0} \nabla_{j}^{*} B_{(0) 2}=\left(X^{i}\right)^{0} \nabla_{B(0) j}^{*} B_{(0) i}-\left(X^{i}\right)^{0}\left(\Gamma_{j i}^{h}\right)^{0} B_{(0) h}
$$

and then

$$
\nabla_{\boldsymbol{B}(0) j}^{*}\left(B_{(0)} X\right)=\left(\nabla_{J} X^{h}\right)^{0} B_{(0) h}+\left(X^{h}\right)^{0} \nabla_{J}^{*} B_{(0) h} .
$$

So, for any $Y \in \mathscr{I}_{0}^{1}(M)$, we get

$$
\begin{equation*}
\nabla_{B(0) Y}^{*}\left(B_{(0)} X\right)=B_{(0)}\left(\nabla_{Y} X\right)+\left(X^{h}\right)^{0}\left(Y^{j}\right)^{0} \nabla_{5}^{*} B_{(0) h} . \tag{4.8}
\end{equation*}
$$

Thus $B_{(0)}\left(\nabla_{Y} X\right)$ is the tangent component to $\gamma_{V}(M)$ of $\nabla_{B(0) Y}^{*}\left(B_{(0)} X\right)$, according to (4.7). We can now define an affine connection Γ^{*} in $\gamma_{V}(M)$ by the equation

$$
\begin{equation*}
\nabla_{B(0) Y}^{*} B_{(0)}^{*} X=B_{(0)}\left(\nabla_{Y} X\right) . \tag{4.9}
\end{equation*}
$$

We then have some propositions concerning V^{*}.
Proposition 4.3. For an element h of $\mathscr{I}_{2}^{0}(M)$ and an element Z of $\mathscr{I}_{0}^{1}(M)$, we have

$$
\begin{equation*}
\nabla_{B(0)}^{*} h^{(0) \ddagger}=\left(\nabla_{z} h\right)^{(0) \sharp} . \tag{4.10}
\end{equation*}
$$

Especially, let g be a Riemannian metric in M and ∇ the Riemannian connection determined by g in M, then the connection ∇^{\sharp} induced in $\gamma_{V}(M)$ from ∇ is the Riemannian connection determined by the induced metric $g^{(0) \approx}$ of $\gamma_{V}(M)$.

Proof. First we have

$$
\begin{aligned}
\left(B_{(0)} Z\right)\left(h^{(0) \ddagger}\left(B_{(0)} X, B_{(0)} Y\right)\right)= & \nabla_{B_{(0)}^{*} Z}\left(h^{(0) *}\left(B_{(0)} X, B_{(0)} Y\right)\right) \\
= & \left(\nabla_{B(0)}^{*} z h^{(0) \sharp}\right)\left(B_{(0)} X, B_{(0)} Y\right) \\
& +h^{(0) \ddagger}\left(\nabla_{B(0)}^{*} Z B_{(0)} X, B_{(0)} Y\right) \\
& +h^{(0) \ddagger}\left(B_{(0)} X, \nabla_{B(0)}^{*} Z B_{(0)} Y\right)
\end{aligned}
$$

By Proposition 3.3 (c) and (4.9), we get

$$
\begin{gathered}
h_{(0)}^{*}\left(B_{(0)} X, B_{(0)} Y\right)=(h(X, Y))^{0}, h^{(0) *}\left(\nabla_{B(0)}^{*} Z B_{(0)} X, B_{(0)} Y\right)=\left(h\left(\nabla_{Z} X, Y\right)\right)^{0}, \\
h^{(0) *}\left(B_{(0)} X, \nabla_{B_{(0)}^{*} Z} B_{(0)} Y\right)=\left(h\left(X, \nabla_{Z} Y\right)\right)^{0} .
\end{gathered}
$$

On the other hand, we have

$$
(Z h(X, Y))^{0}=\left(\left(\nabla_{Z} h\right)(X Y)\right)^{0}+\left(h\left(\nabla_{Z} X, Y\right)\right)^{0}+\left(h\left(X, \nabla_{Z} Y\right)\right)^{0} .
$$

Thus, we have

$$
\begin{aligned}
\nabla_{B_{(0)} z}^{*} h^{(0) \ddagger}\left(B_{(0)} X, B_{(0)} Y\right)= & (Z h(X, Y))^{0}-\left(h\left(\nabla_{Z} X, Y\right)\right)^{0}-\left(h\left(X, \nabla_{Z} Y\right)\right)_{0} \\
& =\left(\left(\nabla_{Z} h\right)(X, Y)\right)^{0}=\left(\nabla_{Z} h\right)^{(0) \star}\left(B_{(0)} X, B_{(0)} Y\right),
\end{aligned}
$$

which implies (4.10) because X and Y are arbitrary.
For the case $h=g, \nabla_{Z} g=0$ implies $\nabla_{B_{(0)}^{*} Z}^{*} g^{(0) \xi}=0$. It is also clear by (4.9) that if ∇ is without torsion, so is ∇^{\ddagger}. Hence Proposition 4.3 is proved.

Let an element F of $\mathscr{I}_{1}^{1}(M)$ satisfy $\mathcal{L}_{V} F=0$. Then, for any vector field \tilde{A} tangent to $\gamma_{v}(M)$, by Proposition 3. 4, $F^{(r)} \tilde{A}$ is also tangent to $\gamma_{\nu}(M)$. We can then define an element $F^{(r)}$ of $\mathscr{I}_{1}^{1}\left(\gamma_{V}(M)\right)$ by

$$
\begin{equation*}
F^{(r) \geqslant}\left(B_{(0)} X\right)=F^{(r)}\left(B_{(0)} X\right), \quad X \in \mathscr{I}_{0}^{1}(M) . \tag{4.11}
\end{equation*}
$$

Proposition 4.4. Let F be an element of $\mathscr{T}_{1}^{1}(M)$ satisfying $\mathcal{L}_{V} F=0$, then
(a) $\quad\left(\nabla_{B(0)}^{*} Z\left(F^{(r)}\right)^{\ddagger}\right)\left(B_{0} X\right)=B_{(0)}\left(\left(\nabla_{Z} F\right) X\right), \quad X, Z \in \mathscr{I}_{0}^{1}(M)$;
(b) If $\nabla F=0$ in M, then $\nabla^{\ddagger} F^{(r) \ddagger}=0$ in $\gamma_{V}(M)$;
(c) If (g, F) is a Kählerian structure in M, so is $\left(g^{(0)}, F^{(r)}\right)$ in $\gamma_{V}(M)$.

Proof. We have only to prove (a). By use of (4.9), we have

$$
\begin{equation*}
\left.\Gamma_{B_{(0)}^{*} Z} Z F^{(r) \#}\left(B_{(0)} X\right)\right)=\left(\nabla_{B_{(0)} Z}^{*} F^{(r) \ddagger}\right)\left(B_{(0)} X\right)+F^{(r) \ddagger}\left(B_{(0)} \nabla_{Z} X\right) . \tag{4.12}
\end{equation*}
$$

On the other hand, since $F^{(r)}\left(B_{(0)} X\right)$ is tangent to $\gamma_{\gamma}(M)$, we get $F^{(r)}\left(B_{(0)} X\right)$ $=B_{(0)} F^{(r)}\left(B_{(0)} X\right)$. Using (4.9), (3.5) and the fact $\mathcal{L}_{V} F=0$, we have

$$
\begin{align*}
\nabla_{B(0)}^{*}\left(F^{(r)}\left(B_{(0)} X\right)\right) & =V_{B(0)}^{*} Z\left(F^{(r)}\left(B_{(0)} X\right)\right) \\
& =\nabla_{B(0)}^{*} Z\left(B_{(0)} F X\right) \tag{4.13}\\
& =B_{(0)} \nabla_{Z}(F X) .
\end{align*}
$$

Noticing that $F^{(r, t}\left(B_{(0)} \nabla_{Z} X\right)=F^{(r)}\left(B_{(0)} \nabla_{Z} X\right)$, from (4.12) and (4.13), we have

$$
\begin{aligned}
\nabla_{B_{(0)} z}^{z}\left(F^{(r) *}\right)\left(B_{(0)} X\right) & =B_{(0)} \nabla_{Z}(F X)-F^{(r)}\left(B_{(0)} \nabla_{Z} X\right) \\
& =B_{(0)}\left(\left(\nabla_{Z} F\right) X\right)+B_{(0)}\left(F \nabla_{Z} X\right)-F^{(r)}\left(B_{(0)} \nabla_{Z} X\right) \\
& =B_{(0)}\left(\left(\nabla_{Z} F\right) X\right),
\end{aligned}
$$

since $B_{(0)}\left(F \nabla_{Z} X\right)=F^{(r)}\left(B_{(0)} \nabla_{Z} X\right)$.
Finally, we shall calculate the curvature tensor of ∇^{*} along the cross-section $\gamma_{v}(M)$. By (4. 5), we have

$$
\begin{aligned}
& \nabla_{B(0) k}^{*} \nabla_{B(0) j}^{*} B_{(0))_{2}}=\nabla_{B(0) k}^{*}\left(\sum_{s=0}^{r} \frac{1}{s!}\left(\mathcal{L}_{V}^{s} \Gamma_{j i}^{h}\right)^{0} B_{(s) n}\right) \\
= & \sum_{s=0}^{r} \frac{1}{s!}\left[\partial_{k}\left(\mathcal{L}_{V}^{s} \Gamma_{j i}^{h}\right)^{0} B_{(s) h}+\left(\mathcal{L}_{V}^{s} \Gamma_{j i}^{h}\right)^{0} \sum_{u=0}^{r-s} \frac{1}{u!}\left(\mathcal{L}_{V}^{u} \Gamma_{k h}^{m}\right)^{0} B_{(s+u) m}\right] \\
= & \sum_{s=0}^{r} \frac{1}{s!}\left[\partial_{k}\left(\mathcal{L}_{V}^{s} \Gamma_{j i}^{m}\right)^{0}+\sum_{u=0}^{s}\binom{s}{u}\left(\mathcal{L}_{V}^{u} \Gamma_{j i}^{h}\right)^{0}\left(\mathcal{L}_{V}^{s-u} \Gamma_{k k h}^{m}\right)^{0}\right] B_{(s) m}
\end{aligned}
$$

and hence

$$
\begin{aligned}
& \nabla_{B(0) k}^{*} \nabla_{B(0) j}^{*} B_{(0)}-\nabla_{B(0) j}^{*} \nabla_{B(0) k}^{*} B_{(0) \imath} \\
=\sum_{s=0}^{r} \frac{1}{s!}[& \partial_{k}\left(\mathcal{L}_{V}^{s} \Gamma_{j i}^{m}\right)^{0}-\partial_{j}\left(\mathcal{L}_{V}^{s} \Gamma_{k \imath}^{m}\right)^{0} \\
& \left.\quad+\sum_{u=0}^{s}\binom{s}{u}\left\{\left(\mathcal{L}_{V}^{u} \Gamma_{j i}^{h}\right)^{0}\left(\mathcal{L}_{V}^{s-u} \Gamma_{k h}^{m}\right)^{0}-\left(\mathcal{L}_{V}^{u} \Gamma_{k \imath}^{h}\right)^{0}\left(\mathcal{L}_{V}^{s-u} \Gamma_{j h}^{m}\right)^{0}\right\}\right] B_{(s) m}
\end{aligned}
$$

Now, by (4. 3), have

$$
\nabla_{B(0) k}^{*} \nabla_{B(0) j}^{*} B_{(0) i}-\nabla_{B(0) j}^{*} \nabla_{B(0) k}^{*} B_{(0) \imath}^{*}=\sum_{s=0}^{r} \frac{1}{s!}\left(\mathcal{L}_{V}^{s} R_{\left.\left.x j_{2}\right)^{h}\right)^{0} B_{(s) h} .}\right.
$$

Thus we have, for the curvature tensor R^{*} of ∇^{*},

$$
\begin{equation*}
R^{*}\left(B_{(0) k}, B_{(0) j}\right) B_{(s) \imath}=\sum_{s=0}^{r} \frac{1}{s!}\left(\mathcal{L}_{V}^{s} R_{k j i}^{h}\right)^{0} B_{(s) h} \tag{4.14}
\end{equation*}
$$

As a direct consequence of (4.14), we have
Proposition 4.5. For arbitrary elements X and Y of $\mathscr{T}_{0}^{1}(M)$, the curvature transformation $R^{*}\left(B_{(0)} X, B_{(0)} Y\right)$ leaves the tangent space of $\gamma_{v}(M)$ invariant at each point if and only if $\mathcal{L}_{V} R_{k j i}^{h}=0$. In this case $R^{*:}=\gamma_{V}^{\prime} R$.

Bibliography

[1] Morimoto, A., Prolongations of geometric structures. Lecture Note, Mathematical Institute, Nagoya University (1969).
[2] , Prolongations of G-structures to tangent bundles. Nagoya Math. J. 32 (1968), 67-108.
[3] Morimoto, A., Prolongations of G-structures to tangent bundles of higher order. Nagoya Math. J. 38 (1970), 153-179.
[4] -, Lifting of tensor fields and connections to tangent bundles of higher order. Nagoya Math. J. 40 (1970), 99-120.
[5] Tani, M., Tensor fields and connections in cross-sections in the tangent bundle of order 2. Kōdai Math. Sem. Rep. 21 (1969), 310-325.
[6] Yano, K., The theory of Lie derivatives and its applications. North-Holland Publ. Co., Amsterdam (1957).
[7] Yano, K., Tensor fields and connections on cross-sections in the tangent bundle of a differentiable manifold. Proc. Royal Soc. of Edinburgn 67 (1967), 277-288.
[8] Yano, K., and S. Ishihara, Differential geometry of tangent bundles of order 2. Kōdai Math. Sem. Rep. 20 (1968), 318-354.
[9] Yano, K., and S. Kobayashi, Prolongations of tensor fields and connections to tangent bundle I, II. J. Math. Soc. Japan 18 (1966), 194-210, 236-246.

Wayne State University, and
Tokyo Institute of Technology.

