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TENSOR FIELDS AND CONNECTIONS ON A CROSS-SECTION
IN THE TANGENT BUNDLE OF ORDER r

By CHORNG-SHI HOUH AND SHIGERU ISHIHARA

§0. Introduction.

Let M be an n-dimensional differentiable manifold and 7,(M) the tangent bundle
of order » over M, r=1 being an integer [1], [3], [4]. The prolongations of tensor
fields and connections given in the differentiable manifold M to its tangent bundle
of order » have been studied in [1], [2], [3] [4], [7], [8] and [9]. If V is a vector
field given in M, V determines a cross-section in T,(M). For the cases =1 and
r=2, Yano [7] and Tani [5] have studied, on the cross-section determined by a
vector field V, the behavior of the prolongations of tensor fields and connections
in M to T(M) (i.e., Ty(M)) and T,(M), respectively. The purpose of this paper is
to study, on the cross-section determined by a vector field V, the behavior of the
prolongations of these geometric objects in M to T,.(M) (r=1).

In §1 we summarize the results and properties we need concerning the pro-
longations of tensor fields and connections in M to T(M). Proofs of the statements
in §1 can be found in [1], [2], [3], [4] and [8]. In §2 we study the cross-section
determined in T.(M) by a given vector field V in M. In §3 we study the behavior
of prolongations of tensor fields on the cross-section. In §4 we study the prolon-
gations of connections given in M to T,(M) along the cross-section and some of
their properties.

We assume in the squel that the manifolds, functions, tensor fields and con-
nections under consideration are all of differentiability of class C*. Several kinds
of indices are used as follows: The indices 2, g, v, -, S, £, %, --- run through the
range 0,1, 2, --- r; the indices 4, i, j, &, m, --- run through the range 1, 2, .- #n.
Double indices like (v)% are used, where 0=v=7, 1=4=n. The indices A, B, C, -
run through the range (1)1, 1)2, ---, W)n, 2)1, ---, 2)n, ++-, )1, --+, @*)m. For a given
function f on M, the notation f is sometimes substituted by f° for simplicity.
Summation notation };7., with respect to 4, i, 7, &, m, --- (=1, 2, --- ») is omitted
while summation notation with respect to 2, g, v, -+, s, ¢, % ---, from 0 to 7, will be
kept. For example,

< i )I%ijhB(s)n.

DS <Z ),C;V,th(m will be written in 33 (7
§=0 h=1 p

§=0

For differentiable manifold N, we denote by g2%(N) the space of all tensor

Received May 17, 1971.
234



TENSOR FIELDS AND CONNECTIONS ON A CROSS-SECTION 235

fields of type (2, g), ie., of contravariant degree p and covariant degree g (p, ¢=0)
and put

EI(N)=T)ZEIE_T%(N).

§1. Prolongations of tensor fields and connections to 7.(M).

Let R be the real line. 7,(M) is the set of all r-jets J5(F) determined by a
mapping F: R—M such that F(0)=P. We denote by =,: T-(M)—M the bundle
projection, i.e., 7, (J5(F))=P. We shall denote =, simply by = if there is no con-
fusion. Let {U, 2"} be a coordinate neighborhood of M at P. If we take an 7-jet
Jo(F) belonging to =~Y(U) and put

oo L &FHO)
L1 S I

where F has the local expression x"=F™t), teR, in U such that P=F(0), then the
r-jet J5(F) is expressed in a unique way by the set (y®*) (v=0,1, .-, 7; A=1,
wy ), (YO =(z") being the coordinates of P in U. Thus a system of coordinates
(y®*) is introduced in the open set z=X(U) of T,(M). We now call (y**) the co-
ordinates induced in z~(U) from {U, 2"}, or simply the induced coordinates in
=~} (U). We sometimes denote the induced coordinates by (y4) (see §0). Thus
T.(M) is a differentiable manifold of (r41)% dimensions.

For 2=0,1, ---, r, we define the A-/ift f of a function f in M to T,.(M) by

1.2 o= L,

F. R—M being an arbitrary mapping such that P=F(0). The 2a-lift f® of f
is well defined in T(M), i.e., the value fF®(JHF)) is independent of the choice
of F: R—M. Clearly, f'=fox (f'=f®, see §0). For the sake of convenience,
we define that f® =0 for any negative integer 2. For the lifts of two functions
J and ¢ to T,(M), we have the following formula:

(1. 3) (fog)® = é‘lof(mg(k#)'

Let X be a vector field in M with components X* in a coordinate neighbor-
hood {U, z"}. We defined the a-/ift of X to T:(M), denoted by X, to be the
vector field X which locally has components X4 in the open set z~'(U) such that

(1. 4) XN(P)h:(Xh>(v-l'l—r)

relative to the induced coordinates (y4)=(y*s) in =~'(U), where the right-hand
side of (1.4) denotes the (v-+1—r)-lift of the local function X*. X or X actually
determines globally a vector field in T7(M) (use (1.10)). For the 2-lifts of vector
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fields, we have the following formulas:

1.5) XOFO=(Xf)aren,  feqqM),  XeTiM)
a 3 \o»

(1.6) dy@i = ('ﬁ?) ;
af(l) af Q-# 0 .

.7 =) feaion;

.8) (XY= fOXGP,  feqM),  XegiM)
2=0

.9) [X, YOI=[X, Y]or=n,  X,YeqyM)

Let {U, "} and {U’, z*'} be two intersecting coordinate neighborhoods of M
and the coordinate transformation in U N U’ be given by

V' =z ().

Then, if (y4)=(y®*) and (y4?=(y®") are the induced coordinates in =~*(U) and
a~}(U’) respectively, the transformation of induced coordinates in =~*UnU’)
=z"Y(U)Nz"%(U’) has the Jacobian matrix of the form

ayA' ay(v)h’ _ axh' -
@10 ()= Gion)=((5) )
Let a 1-form o have the local expression w=w;dx* in a coordinate neighbor-
hood {U, z*}. Then in =~}(U) we denote by &y the local 1-form defined by
a

1.11) @y= Y o dyt-1i

#=0

relative to the induced coordinates (y®?") in z~}(U). This actually determines
globally a 1-form in T{(M), which is called the A-lift of » and denoted by w®
(use (1.10)). For the A-lifts of w, we have the following formulas:

(€. 12) OPX®)=(@X)),  weTAM),  XeTYM);

(1.13) dy@®v=(dz?)® ;

(1.14) (fo)® = é F®uGm feqAM),  weTAM).
#=0

The above operations of taking lifts are linear mapping gYM)— TYT(M)),
TJYM)— gNT(M)) and TYM)— GYT.(M)) respectively. They have the properties
(1. 3), (1. 8) and (1. 14) respectively. Thus we can now define, for any element K
of gYM), its 2-lift K® (2=0,1, ---, ), which belongs to g% 7T(M)) in such a way
that the correspondence K—K® defines a linear mapping GUM)— IUT(M))
which is characterized by the properties
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2

(S@T)(X) = Z S ®T(1—l‘)

#=0

for any S, Te g (M) and 2=0, 1, ---,». The tensor field K® thus defined is called
the 2-fift of the tensor field K in M to T(M). For the i-lifts of tensor fields, we
have the following formulas:

(1.15)  KD(X®, -+, XP)=(K(Xy, -, X)), KeT{M), X -, Xye TYM);

(1. 16) LxoK®=(LrK)3+ D, XeqyM), Keg(M);
1.17) (wNAT)® = ZI: @™ AgG—";

#=0
(1. 18) dw)P=do™®,

o and = being arbitrary differential forms of arbitrary order in M, where Lx
denotes the Lie derivation with respect to a vector field X.
Next we shall give local expressions of lifts of tensor fields of special type in
M to T,(M) relative to the induced coordinates (y4)=(y®"). Let X be a vector
field with local components X”* in M. Then X® in T,(M) has local components
of the form
0

0
(1.19) X | (X

( Xin)cz-n
oL

the lifts of a 1-form » with local expression w=w;dz* in M have local components
of the form

(1. 20) 0P =(0?, 0¢ P, -+, 0P, &P, 0, ---, 0);

the A-lift of a tensor field Fegi(M) with local components F* in M to 7,(M) has
local components of the form

o 0 0 0
0
0 0 0 0
(L. 21) Fo: | (H©® 0 0
(IS (FH© 0 0
L (F’:)(l) (FIZL)(R—I) (FIZ.)(Z—Z) (F{LL)(O) O O B

and the A-lift of a tensor field ge Ty M) with local components g¢;; in M to T,.(M)
has local components of the form
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((g)® (@) = (9P (g0 00
(@) (gs) 32 - (gj0)® 0 00
(1. 22) 9P | (gs0)® 0 0
0 0 vee N cee 0

0 0 0

~

relative to the induced coordinates in ==*(U).

Finally, we consider lifts of affine connections. Let F be an affine conection
in M with components I'%; in {U, z*}. We now introduce in z~}(U) affine connec-
tion F¥% with components 4, relative to the induced coordinates (y4) such that

(1.23) Fgp= (I

for A=)k, B=(p)i and C=(v)j. According to (1.10) and (1.23), F} actually de-
termines globally an affine connection /* in 7,(M) which is called the lift of the
affine connection V and denoted also by F*. We have the following properties
of F*:

(1. 24) VEoK® =FxK)*=",  XeJyM), Keg (M),

(1. 25) Lxal*=(LxV)®, XegyM).

§2. Cross-section determined by a vector field.

Suppose V' be a vector field in M with components V* relative to {U, z"}.
Denote by F: I—M the orbit of V passing through a point p in M such that
F(0)=p, where [ is an interval (—e, ¢), ¢ being some positive number. We denote
the 7-jet JH(F) by rv(p). Then the correspondence p— yy(p) defines a mapping
rv: M—T,(M) such that zeyy is the identity mapping of M. Thus yy: M—T.(M)
is a cross-section in 77(M). We call the submanifold yy(M) imbedded in T,(M) the
cross-section determined by the vector field V. If {U, z*} is a coordinate neighbor-
hood of M, the cross-section yy(M) is expressed locally in z=*(U) by equations

YO =gt =FH0),

R,
-y(l) — g.f‘dt(ﬂ Vh(xi),
1 dFvo) 1
D__— T N Tk 13
o vO=gr e gV wVh
’ _ 1 aFv0) 1

st g =31V (V70 V0 V0 V"),
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Jo L 4TQ
v! dar

with respect to the induced coordinates.
Let f be a function on M, we have

FA=F®)=1,
d ) A
FO =2 (foP)=0uf y®i=Viouf =(Lrf)
along yy(M). A simple calculation yields that along the cross-section yy(M)
1
fO=— Lhf

holds, where _£%=_r»(L£31f) for 2>1.
According to (2. 1), the submanifold y»(M) is locolly expressed by a system of
equations y®Wr=y®"(x?) such that

yOHa)=a?,
YO = V=V,
@.3) y®h(ah) = % Vo, V’L=%( v,

y(r)h(xi) p— l( Vh) -1
4

with respect to the induced coordinates (y4)=(y®*) in z~*(U). Let us put
2. 4) By, =0;y4(z™).

Then we have along yy(M) n local vector fields Bey1, Bwe *++y Bwyn Which are
tangent to the cross-section. Their components with respect to the induced co-
ordinate (y®?") are

o 7
olyr

1
2.4 Buw,=| 30VH®

1 oo
(VM |

For an element X of gL((M) with local components X%, we denote by B X
the vector field with components

i . 0
B XY, ie. BoX=B§H: Xt P
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which is defined globally along yp(M) by virtue of (1.10). For any point ¢ of
yv(M), the mapping Byt Tp(M)—T(TAM)) (c=7v(p)) defined by B »(Xp)=(BwX),
is nothing but the differential (yv), of the cross-section mapping yy: M—T(M).
Thus Buw(Tp(M)) is the tangent space of the cross-section 7»(M) at the point

o=rv(p).

Along the cross-section yy(M), for each integer » such that 0=v=r—1, we
consider # local vector fields By, Buys -+ Bayn Which have respectively compo-
nents of the form

r0 )
&
o;Vr
(2- 5) (Bf%)j)= _;_a],( Vh)(l)
1 ‘a (Vh)(r—v—l)
L r—y 7 J

and # local vector fields Buyi, Bayz, -+, Beyn Which have respectively components
of the form

0
2.6) BoI=|
%

relative to the induced coordinates (y4). Again we denote by B(,X the vector
field with components B¢, X7, ie., B, X=B4%,X’6/oy4. These vector fields are de-
fined globally along y»(M). For any point ¢ of yy(M), the mappings Buyp: To(M))
—T(T{M)) (c=yv(p)) are defined as follows:

B o(Xp)=(BuwX), XegyM).

The mappings B,p, including v=0, are isomorphisms of T (M) into T,(T,(M)).
The (r+1)n vector fields By, (0=v=7, 1=j=#x) form a local family of
frames along yy(M), which we shall call edapted frames of yy(M). The n vector
fields By, span at each point o of yy(M) the tangent plane T.(;»(M)) of the cross-
section pyp(M).
For any element X of M) with local components X% we denote by B, X

the vector field with components
0

Bg')in; ie. B(u)X= Bg')inag/_A‘

§3. Prolongations of tensor fields in the cross-section.

Suppose X is a given vector field in M. We consider along (M) the a-lift
X® of X, We shall describe X with respect to the adapted frames By, of
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7v(M). The result is as follows:
ProrosiTioN 3.1. Along yv(M) the 2-lift X® of X is written in

i1
X = Z TB(r-—Hr)aE;’X

=0
1
3.1 =B(r—x)X'l"B(r—x+1)afVX+““‘B(r—1+2)I%’X'l‘"‘
(2 1),B<r—1)£v 1X-i‘ B(r).J:'VX
Proof. By (1.19), X has the form
2 L own g
X¢ %—-E}(X )(v)W

with respect to the natural frame {9/0y4}.
We first calculate (X*)® along yv(M) as follows:
CORES S
(XD =Vig, X=X, V"+_ Ly X"

(Xm)® =5 V79;(XM)®)

= —;— Vo Ly X+ X0, V)

= %(«f XM 40,V Ly X+ V9, X70, Vi + V*XI0:0, V')

= UL X0,V Ly X040, VN Ly X0+ X0, V) + VX100, V7

=%ﬂ X040,V Ly X0+ X460, VA VI+ Ve V™)

=%Xfa,~( YR 1, V”,L’VXf+%,L‘§,X’*.

By induction, we have the following formulas:
(XM= 1 Xfa,»( VoD 4 __1-_ (LyX9)o,(Vr)e-D

3Ty LAV 4

3.2

l(y ) (JVXj)aj( Vh)(v—ll ~-1) o
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1 1
+ '(V—_‘I)—I(I?IXj)ath‘l’ HI%X"-

Thus (3. 1) follows from (1. 19), (2. 5) and (3. 2).

Let w be an element of gYM) with local expression w=w;dz!. Then, by
(1. 20), ™ has components of the form

— 2. 2—-1 1
(D(D—(@ )’ (05; )’ B (05: )’ (l)g, O) R 0)

with respect to the natural coframe {dy4}. Along the cross-section yy(M), let the
coframes dual to the adapted frames {By;} be {B®J}. We denote by B®w the
1-form with components B$?w, with respect to the coframes {dy4}. Then we have

ProrosiTioN 3. 2. Along yv(M) the A-lifts ' of o are written in

1 1
3.3) 0= BO Ly ot oy BOLy et
+%B”‘Z),C%a)+B“‘1’°£’Va)+B(*)w.

Proof. By (1.12) we have

0P(XO)= (X)) 4
and by (2.2)

(w(X))(2+»—'r) =(w,;Xi)“+"") — ,a_—i—_l‘}l_rTIxVﬂ-r(wiXi)

1 Hy=r a4y .
=m ”go ( ; )(ofé/“""”a)i)(,CﬁX’)

Aty—r 1

= Eo m( Bhvr=t ) L8 X0,

where (**27") denotes the binomial coefficient.

On the other hand, with respect to the coframes {B®7}, we consider a 1-form
@@ defined by

2 1
) (A — ) A—p
[7) ,IZ:=0(2—#)!B * Ly w;.
Then by (3. 2) we have
A—=r+y 1
dPXO= 3

B Aot LR 0.

Since X is arbitrary in the above formulas, the formula (3.3) follows from
WD XD =gd X,
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Now we shall write down the 2-lifts of tensor fields of special type in M with
respect to the adapted frame. For an element %z of JYM) with local components
hij, we have

~

" 1 1 1
T Vi = 1),=f%’ %h"'z—! Yhis Lvhy hiy 00
1 1
- 1),.CV hy - 1),.5’ i Lvhg B 0 =0
3.9 h®: %,C%’hji Lvhji 0
Lvhj i 0
hij 0 0
0 0 0J

and, for an element 7 of (M) with local components F%,

r 0 0 Oﬁ
0 0 0
F? 0 0
.CVth F'Lh 0
3.5  Fo ElT,L’%,F,'L LvF} 0
1 1
iR qogr R B0 0000
1 1
L Tafva,," . TXT)!I%;IFZL IVFZL FZ‘ 0---0 J

For an element S of g}(M) with local component S/, we have

1
(S(Z))v(j)w(k)ll(i) m +l‘—r_,,_a,sjk’
(3. 6)
=0 if 2+p<rivto.

In §2 we have shown that for the mapping ry: M—pv(M), y(X)=BwX for
any X in g¥M). Bwy: T(M)—T((+,(M)) is a linear isomorphism. Let B! be the
inverse of this linear isomorphism Be,. Then Bg: T(yv(M))—T(M). The dual
map (Bgh)* of Bg sends UM) to Tpv(M)). (Bh)* is nothing but B®. We now
denote B®™ also by 7y, ie., 7{w)=B®o for weg¥M). Then we can extend the
mapping r to a linear mapping 73 T(M)— I (yv(M)) by setting
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1(PRQ)=17(P)Q (@)

for arbitrary tensor fields P, @ in M.
Now we shall define an operation, denoted by #, in g (T(M)) as follows:
If Xegy(T.(M), X=37,X®Bey;, then  Xt=X®iBye Tir(M));
If @ is a tensor field of type (0, 1) in 7.(M) defined along y»(M), then

@By X)=d(BwX);
If & is a tensor field of type (0, 2) in T,(M) defined along 7¢(M), then
(BwX, BoY)=h(BwyX, By Y);

If £ is a tensor field of type (1,1) in T(M) such that, for any vector field A
tangent to 7y(M) FA is also tangent to yy(M), then FYBwyX)=FBwX);

If § is a tensor field of type (1, 2) in T(M) such that, for any vector fields
ﬁ, B tangent to yy(M), 5(,71, }§) is also tangent to yy(M), then

S(BwX, BoY)=SBwX, B Y).

In the above definitions the relations are supposed to hold for arbitrary elements
X and Y in gYM). We sometimes call /2, Ftand 8t respectively the fensor fields
induced in yy(M) from k4, F and S.

For the operation #, we have the following propositions by (3.1), 3.3)
and (3. 4):

ProrosiTiON 3.3. (a) For any X in giM), (XP)PE=0 if 2=0,1, .-, r—1.
X™ is tangent to yv(M), if and only if LvX=0, and in this case XV =y, X.

(b) For any o in TUM), (@®F=—rrb(Lha), 1=0,1, 7.

(c) For any b in TM), (KOY=—rih(L¥h), =01, 7.

(¥ BwX, By Y)=((X,Y))"

COROLLARY. Let g be a Riemannian metric in M. Then (¢°)t is @ Riemmannian
metric in yy(M) and yv is an isometry with respect to g in M and g% in yy(M).

Let F be a (1,1) tensor field defined along yv(M). If T.(yv(M)), s€rv(M), is
invariant by the action of the tensor F, the cross-section (M) is said to be in-
variant by F.

From (3. 5), we have

1
FO(BwyX)=B¢-w(FX)+Bo-in (LvF)X) +7,‘B<r—u+2)((IZVF)X)
1 1
+ ;,‘B(r—w#)((I“VF)X) + - +WB(,>((,C§,F)X)

for any vector field X in M. Thus we have
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ProrosiTiON 3. 4. For FegiM), the cross-section yv(M) is invariant by F™ if
and only if Lv F=0. In this case (F}=y,F holds. The lifts F» (2=0, 1, ---, r—1)
do not leave yv(M) invariant unless F=0.

ProrosiTioN 3.5 If F is an almost complex structure in M such that LyF=0,
then (F™Y is an almost complex structur in yy(M).
If (g, F) is an almost Hermitian structure in M and _CyF=0 holds, then
(@HEFPYBwX, (FPBwY)=ro)GvF)BoX, (vF)BwY)
=(g(FX, FY))"
Thus we have
ProrosiTiON 3. 6. Suppose that ihere is given an almost Hermitian structure

(g, F) in M. If LyF=0, then ((g©), (F™)¥) is an almost Hermitian structure
in ry(M).

By (3. 6), we have for any SeJ (M)
SP(BwyX, Bw)Y)=Buw-»S(X, Y)+Bo-1un(LrS)(X, Y))

g Baran(LHE ¥+ B (LYSHE, D).

Thus we have

ProrosiTioN 3. 7. If SeTyM), the vector field ST (BwX, BwyY) is tangent to
rv(M) for arbitrary X,Y of Ty M), if and only if LvS=0, and in this case (S)
=13S. The vector fields S®(BwX, B Y) (0<a<r) are not tangent to yv(M)
unless S=0.

Let F be a tensor of type (1,1) in M and Ny its Nijenhuis tensor. Then it
is easy to check that LyF?=0 implies Ly(Np)t;=0. Thus we have

CoroLLARY 1. Let F be an element of TXM) such that _LvF=0, then
(Np)™(BwyX, B Y) is tangent to yv(M) for arbitaary elements X and Y of TyM).
In this case (Np)")l'=7yNp.

COROLLARY 2. If a complex structure F in M satisfies the condition LvyF=0,
then (FO)F is a complex structure in yy(M).
§4. Prolongations of affine connections in the cross-section.

Suppose an affine connection P with coefficients I'} is given in M. For a
vector field X with components X* and a tensor field P of type (1, 2) with compo-
nent Pj;, we have the following formulas [6]:

Ly(V, XM=V Ly XM)=(LvI)XE,
Vi Lvl ) — VA LA )= LvRej,
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Lv(VPl)— Vi Ly PR =Ly ) P — (Lv ) Py — (Lv 8 Pl

where Ryt are components of the curvature tensor of /.
Using the third formula for any tensor field P with local componente P, we
have easily
q—1
@D L3, x0)-rrsxm= "5 (%) (Lo,

§=0

(4.2) PALITR~FALITR+ 5 (1 )C8- TR LI Tl —(LF TEX LY )] = L3 Rus

@.3) ak<£$r;+i>—aj<,csrz>+§( )[ws LY ) — (LI TR LT )] = L Re:

for any positive integer q.
Let ’* be the lift of the affine connection V. Then FP* is an affine connection
in T,(M). We shall now prove

r—$

ProrosiTiON 4. 1. V¥wiBwr= Z ,(,EVF,k) Bstuhe

Proof. By (1.24) and (3. 1), we have

r 1
4.4 VP XD =rX)" =3, F(I%VyX")oBcs)n-
On the other hand, we have

P X" = r(r)(}_-‘;"—'(.vah) B(s)h)

=

(4. 4Y L
,
Z < (LY XMV $on+ Z Yiaz(-fVXh)oB(s)h

For any oeyy(M) there is a vector field Y in M with initial condition Y= Y79/0x?,

LvY=0, -, L3Y=0 at p=n(s). Then Y™ =Y/B,, at ¢. Taking the coefficients

of Y7 in right-hand sides of (4. 4) and (4. 4)’, we have

Z —, (LY Vi X" Bn= Z (LY X"V Eoy iBon+ Z ST (0j,C§th)°B<s)n
Hence we have

Zo o1 (,EVXh)OV*(O)jB(s)n— ZE)—S,—(I%VJX"—%I%X")(’B@M

-x—

—

ST (L X =T, Ly X 4 T L5 X Bon

(Z (2 )ereracsxn) Bon,
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where we have used (4.1). Since X is arbitrary, we may compare the coefficients
of (X®)©O, (LyX*®, (£3XF)® ... in the equation above and have

.5 Pl Beoe= T = (LET 1 Barun
which is to be proved.

Putting
4. 6) "V¥B =V} ;Bsri— ") Besrn,

then we have
r—S8

/V;kB(s)zz' Z 1y (I%F?«»')OB(Hu)hy 5=0, 1, ) 7’-—1;

%=1 Z{—
4.7)
’V;kB(r)i= 0.
Thus we have now

ProposiTiON 4. 2. The cross-section yv(M) is totally geodesic in T.(M) with re-
spect to the commection V* if and only if the vector field V is infinitesimal affine
transformation in M with respect to V, i.e., LyI'%=0.

For any X of gyM) we get, from (4. 6),
(XE)VEB 0= (X%)V% 0y jBri— (X)) Boyn

and then
V§(o)j(B(0)X) =, X")°Bwn+ (X™F¥Bon-

So, for any Yeg¥M), we get
(4. 8) V% v (B X)=BwyPr X)+(X*)°(Y7)°V ¥ Bo>n-

Thus Bwy(PyX) is the tangent component to yy(M) of F¥,r(BwX), according to
(4.7). We can now define an affine connection F* in y»(}) by the equation

4.9 V% 0yr By X=Bw(Fr X).

We then have some propositions concerning /%

ProrosiTION 4. 3. For an element h of TYM) and an element Z of TYM),
we have
4. 10) V% 0y 2@ = (Vzh) ™2,
Especially, let ¢ be a Riemannian metric in M and V the Riemannian connection

determined by g in M, then the connmection V* induced in yv(M) from V is the
Riemannian connection determined by the induced metric g% of rv(M).

Proof. First we have
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(B Z )WY BwX, B Y))=Vk,z2(h*(BwX, BnY))
=(Vﬁ;(0)zh(o)’)(3(o)X, BwY)
+h Oy 2B X, BoY)
+AO B X, V2B Y)
By Proposition 3. 3(c) and (4. 9), we get
hao (BwX, By Y)=WX, Y))°, hO¥F% ,z2BwX, By Y)=0V:2X,Y)),
hO BwX, Vs zBoy Y)=(X, VzY)).
On the other hand, we have
(ZRX, Y ) =(Pzh) (X Y))°+(h(VzX, Y )+ (WX, V2Y))°.
Thus, we have
V% 2k Bw X, BwY)=Zh(X, V)~ Wz X, Y))'— (X, VzY))o
=((Pzh)(X, Y))=Vzh) By X, B Y),

which implies (4. 10) because X and Y are arbitrary.
For the case =g, Vzg=0 implies '}  z9*=0. It is also clear by (4.9) that
if 7 is without torsion, so is /% Hence Proposition 4. 3 is proved.

Let an element F' of JYM) satisfy :CVF=0. Then, for any vector field A tan-
gent to y»(M), by Proposition 3. 4, FF™ A is also tangent to y»(M). We can then
define an element F* of giyy(M)) by

4. 11) FOY By X)=F"(BwX), XeIyM).
ProposiTION 4. 4. Let F be an element of TM) satisfying LvF=0, then
(a) (PozFP(BX)=Bw(VzF)X), X, ZeTy(M);

(b) If VF=0 in M, then V*F™*=0 in yy(M);
(c¢) If (g9, F) is a Kéhlerian structure in M, so is (9, F%) in yy(M).

Proof. We have only to prove (a). By use of (4.9), we have
4.12) V5 0y 2(F ¥ By X)) =g gy 2F OBy X) + FO¥ By V2 X)-

On the other hand, since F™(BX) is tangent to yy(M), we get F(BpX)
=BwnF™"(BwX). Using (4.9), (3.5) and the fact LyF=0, we have

V) (F O B X)) =V z(F"(Bw X))
(4. 13) =% z2(BoFX)
=Bz (FX).
Noticing that F™¥ Bz X)=F®(B«FzX), from (4.12) and (4. 13), we have
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V0, 2(F ) (B X)=ByVz(FX)—F"(BwVzX)
=Bw(VzF)X)+ Bw(FVzX)— F"(BwlzX)
=Bw((VzF)X),
since By(FVzX)=F™(BwVzX).

Finally, we shall calculate the curvature tensor of P* along the cross-section
yv(M). By (4.5), we have
r1
Vw50 iBon=VEw <Z ?,‘(GE%F'}-;)OBQM)
=0 .

s=

M-

!

.

1 =8 1
—‘[3Ic(,ﬁrrﬁ *Bon+ (LYL)° Z-:o —u—l—(,[,"%['k"‘h)°B<s+u)m:I

0

»
[}

S
r 1 s
% [adosrne+ 5 (2 sy ey [Bon

$=0 s!

and hence
Vﬁ(o)kVﬁw)jB(O)“Vﬁ(o)ngco)kan

1
st

.
gl
o

[aecsrmr—acormy
+ 5 (N Ts s TBe—(CHTE LT |Beom.
Now, by (4. 3), have

1

* ¥ B % % Beoy, =

VB(o)kVB(o)j wﬁ_VB(o)jVBconc = 2 S,(I?;R;/WB(S)”.
$=0 -

Thus we have, for the curvature tensor R* of /¥,

1
4. 14) R*(Bwyk, Bwj)Bwnw= 2, ?,—(,C ¥ RiiD)°Bsn.

$=0
As a direct consequence of (4.14), we have

ProroSITION 4.5. For arbitrary elements X and Y of TYM), the curvature
transformation R¥(BwX, BwY) leaves the tangent space of yv(M) invariant at
each point if and only if LyvRit=0. In this case R¥=y,R.
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