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ON A PIECE OF SURFACE IN A FIBRED SPACE

BY MARIKO KONISHI

In 1955 Heinz [1] proved the following

THEOREM A. Let z=z(x, y) be a 2-dimensional surface in a ^-dimensional
Euclidean space defined over the disk x2+y2<R2, where z(xy y) is a O-class func-
tion. Let H and K denote its mean curvature and Gaussian curvature respectively.

If \H\^c>$, then R^~.
c

If K^c>0, then R^(^

If K^-c<0, then R^e(^

(c=constant in all cases.)

Generalizing this, in 1965 Chern [2] obtained

THEOREM B. Let Mn be a compact piece of an oriented hypersuface (of dimen-
sion n) with smooth boundary dMn, which is immersed in Euclidean space En+1.
Suppose that the mean curvature Hi^c (c= const). Let a be a fixed unit vector
which makes an angle ^τr/2 with all the normals of Mn. Then

where Va is the volume of the orthogonal pi'ojection of Mn and La that of dMn on
the hyperplane perpendicular to a. When Mn is defined by the equation

Z~z{Xχ, •••, Xn), Xl2-\ \-Xn2^R2y

where xlf •••, xn, z are rectangular coordinates in the space En+1 and a = (0, •••, 0,1),
then cR^l.

Katsurada [5] extended this theorem to a compact piece of a hypersurface in
a Riemann manifold admitting a conformal killing vector field. The purpose of
the present paper is to study this problem in a fibred space with some properties;
that is, to prove Theorem 3.
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1. Fibred spaces.1)

The set (M, M,π',E, G) is called a fibred space if it satisfies the following
five conditions:

1) M, M are two differentiable manifolds of dimension n+1 and n re-
spectively.

2) π is a differentiable mapping from M onto M and of maximum rank n.

3) The inverse image π~\p) of a point psM is a 1-dimensional connected
submanifold of M. We denote π~\p) by Fp and call Fp the fiber over the
point P.

4) G is a positive definite Riemannian metric.

5) E is a unit vector field in M ta agent to the fiber everywhere.

Moreover, if £G=0 (here and in the sequel £ denotes Lie derivation with respect
to E)y we call G an invariant metric. Let 0 be a coordinate neighborhood and
(xa) = (x1, •• ,# w + 1 ) be local coordinates defined in 0y where and in the sequel the
indices a, β, ••• run over the range {1, 2, •••, n+1}. We denote the components of
E and G with respect to these coordinates by Er and Grβ respectively. If (£*)
= (ξ\ ~- >ξn) are local coordinates in πφ), π has a local expression

(1. 1) ?=/'(*•),

/ £ (/=1, •••, «) being certain functions, where and in the sequel, the indices i,j, k,
••• run over the range {1,2, •••,«}. Then the differential of π has the local ex-
pression

where we have put Ea

τ=daf\ da denoting the differential operator d/dx". We see
that the n local covector fields ζί=Ea'

ιdxa are linearly independent inU. Putting

(1.2) Eβ=GrβE
τ,

we denote by η the 1-form whose components are Eβ in U.
We now find

EaEa*=0

because the vector field E is tangent to fibers, i.e, dπ(E)=0. Consequently, the
inverse of the matrix (Ea

%, Ea) has the form

and thus for each fixed index h, Eβ

h are components of a local vector field
Ah in U.

1) As to notations and the definitions of fibred spaces we follow [7] and [8].



178 MARIKO KONISHI

If we assume that G satisfies the condition

(1.3)

then we can induce a metric g on M whose components are gji=GrβE
rjEβi in U.

In this sense, when a Riemannian metric G satisfies (1. 3), G is called a projectable
metric arid g is called the induced metric in M from G. In the sequel, a fibred
space (M, M,π',E> G) is called, for simplicity, a fibred space with projectable (resp,
invariant) metric when G is projectable (resp. invariant) metric.

2. A piece of hypersurface in a fibred space.

Let (My My π Ef G) be a fibred space with projectale metric G. Consider a
compact piece Mn of an orientable hypersurface of dimension n in M and denote
by dMn the boundary of the compact piece Mn. We suppose that Mn meets at
most once each fiber. For simplicity, we say that such a piece Mn of a hyper-
surface is a simple covering of the projection Mn=π(Mn).

We now assume that Mn has a local expression

(2.1) x r = * r ( ^ ) ,

where (uj)=(u1> -' ,un) are local parameters of Mw, and that the boundary dMn has
a local expression

where (rα) = (r1, •••, r71"1) are local parameters of dMn. The indices a,b,c,— run
over the range {1, 2, •••, n—1}.

If we put

then Bj=(B/) are vectors tangent to Mw. We choose a unit vector C normal to
Mn in such a way that the determinant of the matrix (Cr, B/) is positive, O
being the components of C. We put

(2.2) E?=vW/+aa

on the compact piece Mn. Denoting by Sji=B/BiβGrβ the metric tensor on Mn

induced from G and setting

we have

(2.3) Vi=Bir

because of (1. 2) and (2. 2). Hence we have

(2.4) PjV^a
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along Mn, where hμ denotes the second fundamental tensor of Mn. Transvecting
(2. 3) with gi\ we get

(2.5) 0»rjϋi=a(nH1)+±0*B/BS£Grβ,

where Hi is the mean curvature of Mn, i.e. Hί = (lln)SJihji. Integrating both sides
of (2. 5) over Mn and applying Stokes' theorem, we have

(2.6) [ _ VjD*dσ=n[ ΆadΫ+—

D=(Dj) being the unit vector field normal to C and to the boundary dMn. In the
integral formula (2. 6) da and dV denote the volume elements of dMn and Mn re-
spectively, that is,

da= Vdet g dr1 Λ-~ Λdr71'1,

dV— Vdet g du1 A' Άdun

y

where we have put

det g and det g denoting the determinants formed with (gc6) and (fifyi) respectively.

From the definitions of g and C, we have

(2. 7) Vdet G det (C, By) = Vdet g.

Here and in the sequel det (C, By) denotes the determinant of the matrix (Cα, Bj").
On the other hand, since the Riemannian metric g induced on the base space

M from G has the components

we have

(2. 8) det G{det (E, Άj)}*=det g.

Since Mn is nowhere tangent to fibres, we can choose (^)=(f 1 , •••, ζn) as the local
parameters of Mn. If we substitute the local expression (2.1) with uj=ξj in (1.1),
we have the identity

£'=/'(*•(£*)).

Then, differentiating the equation above, we have

(2.9)

and consequently

(2.10) B%=
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inO.
Taking account of (2. 2) and (2.10), we get

det (E, Bj)=άet (v'Bi+aC, Bd)=a det (C, Bj),
(2 11) _ „ _ „ „ „

det (£, i4y)=det (E, Bj-VjE)=det (E, 5 y).

Consequently, if we assume α>0, we have from (2. 7), (2. 8) and (2.11)

(2.12) I a I vΉet?=
The metric g of dMn induced from g being defined by

gcb=G(BBc, BBb),

we have

(2.13) (det G){det (C, iffc, ^ δ ) } 2

where (BD)r=BjrD* and (BBb)
r=B/BbK On the other hand, denoting by *g the

metric induced on π(dMn) from the induced metric g of M, we have

(2.14) VdetG det (AN, 5, ABb) = \/det*^,

where N=(Nj) denotes the unit normal to π(dMn), and {AN)r=E7

jN
j is such that

the determinant of the matrix (AN, E> ABb) is positive. The unit vector C normal

to Mn is a linear combination of AN, E, and ABd, i.e.,

ύr, bd being certain functions where | t f |^l . Thus we have

(2.15) det (C, J5, A§δ) = |«|det (AN, E, ABb).

If we put

E=(vjDJ)BD

for certain functions da, we have

det (C, J§, A&δ)=det (C, ,E,
(2.16)

by virtue of (2. 8) and (2.10).

Now we suppose that D is chosen in such a way that det(C, BD, BBb)>0.

Then we have VjDJ^0 and

(2.17) (vjDη VάetQ= \a

because of (2.13)-(2.16).
Returning to the integral formula (2. 5) and taking account of (2.12) and
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(2.17), we get

\ laWά^t^dr'A'-Άd^-^ni HiVά^tgdu'A-'d^+X G*rP£GrβdV

and hence by virtue of \a\^l

(2.18) [ Vd&*gdrιΛ ~Λdrn-1 = n[ HiVdeΰϊdu1Λ-dun+[ G*r*£GrβdΫ,

where we have put
If we assume that iJ i^c>0 (c: constant), α>0 and

then we get

[ Λ dVy

where dσ and dV are the volume elements of π(3Mn) and π(Mn) respectively.
Therefore we obtain

THEOREM 1. Let (M, M,π:E, G) be a fibred space with projectable metric G.
Let Mn be a compact piece of an oriented hypersurface in M with compact smooth
boudary dMn, which covers simply the projection π(Mn). Suppose that its mean cur*
υatvre Hi satisfies the condition Hι^c>0 (c: constant) and that E makes an angle
^π/2 with the normals of Mn at each point. If the condition

(2.19)

holds, then the inequality

(2.20) ncV^L

holds, where V and L denote the volume of the projection of Mn and dMn re-
spectively.

REMARK 1. When Mn is a compact hypersurface, dMn is empty. Thus taking
account of (2.18), we see that there is no compact hypersurface satisfying the
conditions mentioned in Theorem 1. In other words we can say that if Mn is a
compact hypersurface of constant mean curvature, then Mn must be minimal.

REMARK 2. When (M, M, π: E, G) is a fibred space with invariant Riemanian
metric, the condition (2.19) mentioned in Theorem 1 obviously holds.

For a projectable metric G, if we put

£Er=φjEr',

for certain functions φJf then we have
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Grβ=φj(E/Eβ+ErEβη

by virtue of £E=0. Hence we have

by virtue of (2. 3) and (2. 8). Thus we get

G^£Grβ=2υiφi=2viBi

r£Eΐ

=2(Er-aCr)£E7= -2aθ£EΓ

We note the above obtained results in the following remark.

REMARK 3. The condition (2.19) is equivalent to the condition

3. A piece of submanifold of co-dimension 2.

In this section we discuss a compact piece Mn~ι of (n—l)-dimensional orient-
able submanifold of co-dimension 2 in a fibred space (M, M, π : E, G). We also
suppose that Mn~ι is a simple covering of the projection Mn~1=π(Mn~1) in the
above mentioned sense.

We now assume that Mn-1 has a local expression

(3.1) xα=xα(uJ),

(uJ)2:> = (u1

y ~',un-λ) being local parameters of M71*1, and that the boundary dMn~λ

has a local expression

(rs)3^ = (r1, •••, rn~2) being local parameters of dMn~x. If we put

then we have n—1 linearly independent vectors Dj=(Bja) tangent to Mn~ι.

Let Ci=(Ciα), Cz=(C2

a) be mutually orthogonal unit vectors normal to Mn-λ

and Ai=(Aα)ϋ), hi=(h^ji) be the ^second fundamental tensors with respect to Ci,
C2, reespectively. A vector field H=(Ha) defined by

2) T h e indicies ϊ, j> ••• run over the range {1, •••, n— 1}.

3) T h e indicies άy b, ••• r u n over the range {1, •••, n—2}.
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is independent of the choice of (Ci, C2), and we call H the mean curvature vector
field of M71-1. The magnitude ϋZi of the mean curvature vector field is called the
mean curvature of M71-1, i.e.,

If Hx is positive, we can take the first unit normal Ci in the direction of the
mean curvature vector field H. In this case we see that

(3.2) 0*Att>*=O and _ 1 ^

We put

(3. 3) Er=υ?Bf+aCir+βCS

on the compact piece M"-1. Putting

we have

(3.4) Vt=BiEr,

because of (1. 2) and (3. 3). Hence we have

(3.5) Fjυ^ahji+βkjt+B

along Mn~λ. Transvecting (3. 4) with <p, we get

(3.6) gJΨjvi=a(nH1)+±-gJίBfBi£Gΐβ

by virtue of (3. 2). Integrating both sides of (3. 6) over M71-1 and applying Stokes'
theorem, we have

(3.7) \
JdMn-i jfΛ-i

where D=(DJ) is the unit vector field normal to Cu C2 and to the boundary
dM71'1, and dσ, dV denote the volume elements of dM71'1, Mn~x respectively. Next
we will compare dΫ with the volume element of π(Mn~ι). Since Mn~ι is nowhere
tangent to fibres, we can choose (uJ) = (u1, •••, u71'1) as the local parameters of the
projection M71'1 that is, M71'1 has the local expression

and by virtue of (1.1), we have the identity

ζ\u!)=f\xa{u%

Then, differentiating the equation above, we have
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and consequently, if we set

*-««-(£)•

A B B

(3.8)

then we have

(3.9) ABJ=BJ-VJE

in 0. From the definition of Ci, C2 and g, we have

Vdet G det (Ci, C2, Bj) = Vdetflf.

On the other hand, denoting by g the metric induced on π(Mn-χ) from the induced
metric of M, we have

det G{det (E, ANly ABj)}2=det g

where iVΊ = (W) denotes the unit normal to π(Mn~ι), and (ANι)r=ErjNιK If we

suppose that AN=C2 or equivalently β=0 in (3. 3), then we have

det (£, iiVi, AB/)=det (E, C2, ABj)=a det (Ci, C2, β/)

by virtue of (3. 3) and (3. 8). Thus we obtain the relation

Henceforth we assume that α>0, and then we have

adΫ=dV.

If we denote by g the induced metric on dM71'1 from g, g is given by

and det £ by

(3.10) det G{det (Cu C2, BD, BBF)}2=det g,

where {βB^)r=BjrBΈ

5 and (BD)7=BjrDJ. On^the other hand, as for the metric *g
on πidM71'1) induced from the metric g of n^M71-1), we have

(3.11) det G{det (AN, E, AN2, ABF)}2=det *g,

where N2=(N2

J) denotes the unit normal to π(dMn-λ), (AN2)
r=ErjB^N2

ι and

The unit vector Ci normal to M71"1 is a linear combination of A/Vi, AN2, E

and ^ d , i.e.
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a, b, cd being certain functions | # | ^ 1 ,
Therefore we have

(3.12) det (£, Clf ANlf ABF) = \b\ det (E, AN2, ANlf ABτ).

Putting

for certain functions da

y and taking account of

obtained from (3. 9), we have

det (E, Ci ANU ABs)=(vjDJ) det (#D, Cu C2, BBτ)
(3.13) , . . ^ ^

=(pjD>) det (Ci, C2, BD, BBτ).

As a result of (3.10)—(3.13), we get

\vjDJ\ Vάetg= \b\ Vάet *g.

We can choose D in such a way that vjDJ^0, and we finally get

vjDWάetg= \b\ Vdet*g.

Returning to the integral formula (3. 7), we get

where we have put G^^
If we assume that H^cyO (c: const) and

then we get

[ Λ dV,

where do and dV are the volume elements of πidM71'1) and ^M71"1) respectively.
Summarizing, we obtain

THEOREM 2. Let (M, M,π;E, G) be a fibred space with projectable metric G.
Let M71'1 be a compact piece of an oriented submanifold of co-dimension 2 in M
with compact smooth boundary dMn~1

t which covers simply the projection π(Mw"1).
Suppose that at each point, the mean curvature vetor H is spanned by B-ίy •••, B^rx
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and Ey and that H makes an angle <π/2 with E. If we assume that the mean
curuature satisfies the condition # i ^ c > 0 , c being a constant, and

then the inequality

holds, where V and L denote the volume of the projection of M71"1 and dM71'1, re-
spectively.

4. Special cases.

In this section we shall prove theorem 3 which is a generalization of Heinz's
theorem. For this purpose we need some lemmas, which will be proved by de-
vices similar to those developed in [1] and [3].

Let M be an ^-dimensional Riemannian manifold. Let γ be a geodesic starting
at msM and parametrized by arc-length U

γ(f)=expm p(f), γ(0)=m,

where p(f), is a ray in the tangent space Mm of M at the point m. Now a Jacobi
field along a geodesic γ is defined by

DEFINITION. If a vector field Y given along a geodesic γ satisfies the dif-
ferential equation

the prime denoting covariant differentiation along γ, Y is called a facobi field
along γ, where R is the curvature tensor, that is,

As is well known, we have (cf. [1] p. 172)

LEMMA 1. Let A be a constant field along the ray p in the tangent space
Mmt then

Y(t)=dexpmtA

is a Jacobi field along γ.

LEMMA 2. Assume that M is a space of constant curvature k. Let γ be a
geodesic in M having no conjugate point of γ{Qi) and E1} E2, •••, En be a parallel
orthonormal basis along γ. If hEz (f=l, 2, •••, n) is Jacobi field with the conditions
A(0)=0, Λ(r) = l,4) thenh satisfies one of the following conditions'.

4) See Appendix I.



A PIECE OF SURFACE IN A FIBRED SPACE 187

if k=b2;

2) A0)=-£-, if k=0;

3) A(0 = - ΐ ^ */ k=-b\
sinh ί»r

Proof. If A£» is a Jacobi field along ?- with the conditions h(0)=0, k(r)=l,
then & is a solution of the differential equation

with the conditions &(0)=0, h(r) = l. Thus we have Lemma 2.

If X and Y are vector fields along γ and orthogonal to γ, the index form of
the pair (X, Y) on (0, r) is given by

Y)= Γ«^, Y'>-<R(t, x)ΐ, Y»tdt}

where < , > denotes the Riemannian metric in M. For a Jacobi field Y, I(X, Y)
reduces to

LEMMA 3. Let γ be a geodesic and have no conjugate point of m=γ(0).
Let Y be an orthogonal Jacobi field along γ and X be any field orthogonal to γ
with X(0)=Y(Q)y X(r)=Y(r). Then I(X, X)^I(Y,Y) and the equality occurs only
when X= Y.

Proof. If ft7, then X-Y^O. Since I(X, Y) is positive definite,5^

- Y, X- Y)=I(X, X)-2IiX, Y)+I{Y, Y)

which proves Lemma 3.

Next we consider the Jacobian determinant of the exponential mapping expm

at a point p{t) and its relation with Jacobi fields. In the sequel Ri(X) and
K(X, Y) denote the Ricci curvature with respect to X and the sectional curvature
with respect to X and Y, i.e.,

<R(X,Y)Y,X>
K{Λ, ϊ) = -< I , I X F , F ) - < Z , y > 2 '

5) See Appendix II.
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X% being an orthonormal frame at m.

LEMMA 4. Let γ be a geodesic starting at m in M and jif) the Jacobian deter-

minant of expm at a point p(t). Then j(t) satisfies one of the following conditions:

1)

at least out to the first conjugate point of m along γ, if Ri(X)^a2>0f and

0<K(X, Y)^b2 for arbitrary X and Y;

2) j(t)=l, if K(X, Y)=0 for any X and Y;

3)
i w * J

if Ri(X)^-a\ and K(X, F)^0 for any X and F.

Proof We first note that j(t) is given by

j(t)=-

for any linearly independent («—1)-vectors s1} •••, sn-i which are orthogonal to p at

9{t) (cf. [1]), where

Let At be constant fields along p, and assume that dexpm(rAι)=Fi(r)} where

{Fiy •••, Fn-i} is a parallel orthonormal basis along γ. Put Yi(t)=dexpm(tAi), then

by virtue of Lemma 1, Ylf •••, yw_i are Jacobi fields along γ which are linearly

independent. Then we have

where yl=||^4i ^4«-i|| is constant. Since Y\{r), •• ,Yn-i(r) are orthonormal, we have

and therefore

f(r) "-1

(41)

For the first case 1), using the assumption, we have
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t, Yi)\\Yi\\*)tdt

(4. 2)

On the other hand, if we consider a Jacobi field Ϋi=h(f)Ei(f) along a geodesic f

on the space S of constant curvature b2 (f(t)==^^m(t)texpm:Sm—*S)Et denoting

orthonormal vector fields given in Lemma 2, we have

(4. 3) <A(r)#(r), h{r
o

by means of Lemma 2.
Since Γ* are Jacobi fields, we have, from Lemma 3,

(4.4) | | | | | |
Jo Jo

Combining (3. 2), (3. 3) and (3. 4), we have

(4.5)

by virtue of Lemma 2.
Next, taking account of Lemma 3, we have

(4. 6) <Γ4(r), F/(r)>=/(Γι, F,)=/(AF,, AF,)= Γ{#•-#(?, F,)Aa}Λ.
Jo

Taking sum with respect to i and taking account of the inequality
and (4.1), we find

(4. 7) ^ ^ ( n - 1 ) Γ{(A')a-αW} Λ - — ,
Jl'J Jo '

which implies together with (4. 2)

(n -l)fcot ar--
\ r j{r) \ r

Integrating each side of this inequality from 5 to t, (se(0, t)), we get

(sinaty-1/ as N71"1^ j(f) > / s i n ft/X"-1/
\ a t ) \ s m a s ] = j(s) = \ b t ) \si\ at ) \sin#s/ j(s) \ bt ) \smbs)

Taking the limit as 5—>0, we have

by virtue of i(0)=l.
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For the second case 2), j'(r)lj(f) being zero, we have j(t)=l.

For the last case 3), (4. 2) reduces to

Jo r

by means of Lemmas 2 and 3. Moreover (4. 7) reduces to

0^^^(n
Jv)

where h(t)=sinhatlsmhar. Thus we get

Consequently, Lemma 4 has been proved completely.

We are now going to prove

T H E O E M 3. Let (M, M,π;E, G) be a fibred space with projectable metric and
Mn a compact piece of an oriented hypersurface in M with properties stated in
Theorem 2. Assume that the projection Mn of Mn to M is a Riemannian sphere
with radius R lying in a normal coordinate neighborhood. Then R satisfies one of
the folloiving inequalities'.

1) ncί^X'Ύί S m ^ t y ~ W l , if Ri(X)^a2>0, and 0<K(X, Y)^b2 on Mn;
\ b I Jo \ sin aK ]

2) cR^l, if K(X,Y)=0;

3) cR^(SmhaRY~\ if Ri(X)^-a2 and K(X, F)<0,
\ a )

where c is the constant appearing in Theorem 2.

Proof. If m is the origin of the Riemannian sphere Mn> Mn is the image
of i?-ball B(R) in the tangent space Mm under the exponential mapping and its
boundary 8Mn is the image of (n—l)-dimensional sphere Sn~\R) with radius R.
Let γ be a geodesic in Mn orthogonal to 3Mn and j(f) be the Jacobian determi-
nant of expm at p(f). If dB and dS are the volume elements of B{R) and the
unit sphere Sn~1il) respectively, the volume element dV of Mn is given by

dV=j(t) dB^jlfit"-1 dtdS.

Thus we get

volumeMn^ [ j{t) dB= Γ ( Kήt"-1 dtdB.
Jΰ(β) Jo Js»-i

Taking account of Lemma 4, we have for the case 1)
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S
R / sin bt \ n~i

( — ΰ — ) dt
o \ 0 J

>(volumedMn)[^X~Ύ( S 1 Π b* V*dt.
~κ J\b) )o\smaRJ

On the other hand, we have already in Theorem 2 the inequality

nc volume Mn^ volume dMn.

Thus, summing up, we obtain the following required inequality

/ ay-irR( sinbt y-1

 J± Λ

nc[j) Uώi^J dt-h

For the cases 2) and 3) we reach the corresponding inequalities in the same way.

As a special case, we consider a fibred space (Sn + 1, CP(l), π; E, G), where Sn+1

is a unit sphere with natural metric G induced from En+2 and CP(Γ) is the com-
plex projective space of complex dimension / (2l=ri). We shall prove

THEOREM 4. Let Mn be a compact piece of an oriented hyper surf ace of Sn+1

with properties stated in Theorem 2. Assume that the projection Mn of Mn to
CPiΐ) is a Riemannian sphere with radius i?<π/2. Then R satisfies the follow-
ing inequality

R ,

where c is the constant appearing in Theorem 2.

Proof. Let m be the origin of the Riemannian sphere. A holomorphic sec-
tional curvature on CP(ΐ) being constant (=1), the curvature tensor is given by

, Y)Z, W>=j{<X, WXY, Z)-(X, ZXY, W}
(4.8)

+ UX, WXJY, Z)-<fY, WXJX, Z)-2<JX, YXfZ, W»,

where / is the complex structure in CP{1). Let γ be a geodesic starting at m and
orthogonal to dMn. We choose a parallel orthonormal basis along f, Eλ, £Ί*, •••,£!,
Eι* in such a way that

El=t9 Ea*=fEa (α=l, ...,/)-

If hiE% (i: not summed f=l , 1*, •••, /, /*) is a Jacobi field along γ with the con-
ditions Λ(0)=0 and A(r)=l, then h4f) satisfies

( 4 . 9 ) , , < ( ) = | l ί , W , . * ^ . (ί=2,
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In fact, hi* and hi satisfy the differential equations

dt2

~hi=O, hi(O)=O, Ai(r)=l.
UL 4

Next we have an estimation of the Jacobian determinant j(f) of expTO, that is,

(4.10) i(0=i

at least out to the first conjugate point of m along γ. In fact, taking n—1 Jacobi
fields Ylf •••, Fn-i in the same way as in proof of Theorem 3, we have again

If hiEi (i: not summed) is a Jacobi field along γ such that hi(0)=0y fe(r)=l, then
we have

cotr,
<Yi(r),Yι'(r)}=hi(r)hί(r) = Icotf M*.

Therefore we obtain

j'(r) n-2 . r , .w - >cot — + c o t r - -
i(r) 2

Integrating this from s to ί (s€(0, ί))> w e g e t

j(0 _ sw-X2 sin (tβ))n-2 sin ̂
;(s) ~ tn~\2 sin (s/2))w-2 sin s '

Now taking the limit as s-»0, we have

by virtue of y(0)=l.

Denoting by dS the volume element of the unit sphere Sn~1

t we have

volume Mn=\ \ j{f)tn-ιdtdS
Jo Jsw-i

=(volume S""1) Γf 2sin -̂ -V^cos 4" Λ
Jo \ 2 / 2

S sin (12/2) / ^ \

un~ιdu \u—$m — J
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=—^2 sin -^"(volume S"'1)

= — tan JLj(R)R»-i (volume S7*-1)
ft Δ

2 R
= — tan -^ (volume dMn)

n Δ

by virtue of (4. 3). Since (Sn+1, CP(l), π:EfG) is a fibred space with invariant
metric, the inequality

nc (volume Mn)^k volume dMn

has been established. Thus we obtain the required inequality

2c tan ^ - ^ 1 .

5. Appendix (cf. [1] or [6]).

We give here the definition of conjugate points and properties which our
argument requires.

Let γ : [0, /]—»M be a geodesic starting at m and parametrized by arc length t;

γ(t)=expm pit), γ(0)=m.

We call t0 a conjugate point to 0 along γ if <iexpm is singular at p(t0) and call
γ(t0) a conjugate point to γ(0)=m along γ.

I) The uniqueness of Jacobi field.

Let r be a non-conjugate point to 0 along γ and veMm and w€MrCr> Then
there exists exactly one Jacobi field Y along γ such that Y(0)=v and Y(f)=w.

II) The relation to the index form.

The following two propositions are equivalent:

1) γ has no conjugate point.

2) I(X9 X)>0 for any X*0 such that X(0)=X(l)=0.

Ill) Theorem of Morse-Schoenberg:

1) If K(X, Y)^k and l<π/VΈ, then ^ has no conjugate point,

1)' if iΓ(X, F ) ^ 0 , then ^ has no conjugate point,

2) if 0^^<iΓ(Z, Y), there exists at least one conjugate point along γ at

distance at most π/Vkf

where k is a constant.
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