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ON A PIECE OF SURFACE IN A FIBRED SPACE
By MaRrixko KoNisHI

In 1955 Heinz [1] proved the following

THEOREM A. Let z=2z(x, y) be a 2-dimensional surface in a 3-dimensional
Euclidean space defined over the disk x*+y*<R%, where z(z,vy) is a C*class func-
tion. Let H and K denote its mean curvature and Gaussian curvature respectively.

If |H|=c>0, then Ré%.
172
If K=c>0, then Rg(%) :
172
I K=—c<0, then R§e<%) .
(c=constant in all cases.)

Generalizing this, in 1965 Chern [2] obtained

THEOREM B. Let M™ be a compact piece of an oriented hypersuface (of dimen-
sion n) with smooth boundary oM™, which is immersed in Euclidean space E™'.
Suppose that the mean curvature Hi=c (c=const.). Let a be a fixed unit vector
which makes an angle =n|2 with all the normals of M". Then

ncVe=L,

where V,, is the volume of the orthogonal projection of M™ and L, that of oM™ on
the hyperplane perpendicular to a. When M™ is defined by the equation

Z=Z($1, “ty xn); x12+"'+xn2§R2y

where x1, +++, Tn, 2 arve rectangular coordinates in the space E*** and a=(0, --+, 0, 1),
then cR=1.

Katsurada [5] extended this theorem to a compact piece of a hypersurface in
a Riemann manifold admitting a conformal killing vector field. The purpose of
the present paper is to study this problem in a fibred space with some properties;
that is, to prove Theorem 3.
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1. Fibred spaces.”

The set (M, M, z; E, 5) is called a fibred space if it satisfies the following
five conditions:
1) M, M are two differentiable manifolds of dimension #+1 and 7 re-
spectively.
2) = is a differentiable mapping from M onto M and of maximum rank 7.

3) The inverse imaNge z~i(p) of a point peM is a 1-dimensional connected
submanifold of M. We denote z~'(p) by F, and call F, the fiber over the
point P.

4) Gisa positive definite Riemannian metric.

5) E is a unit vector field in M tangent to the fiber everywhere.

Moreover, if £6=0 (here and in the sequel £ denotes Lie derivation with respect
to E), we call G an invariant metric. Let U be a coordinate neighborhood and
(%) =(z, ---, z"*') be local coordinates defined in {J, where and in the sequel the
indices a, B, --- run over the range {1, 2, ---, z+1}. We denote the components of
E and G with respect to these coordinates by E7 and G,; respectively. If (&%)
=(g!, ---, & are local coordinates in n(0J), = has a local expression

1.1 & =r4a"),

ft (i=1, ---, n) being certain functions, where and in the sequel, the indices 4,7, &,
- run over the range {1, 2, ---, n}. Then the differential of = has the local ex-
pression

déer=E; dx*,
where we have put E,*=0.f? 0, denoting the differential operator 9/0z*. We see
that the » local covector fields {i=FE,*dx* are linearly independent in UU. Putting
(1. 2) EﬁZGTﬂET)

we denote by 7 the 1-form whose components are Ej in U.
We now find
EE»=0
because the vector field £ is tangent to fibers, ie, drn(E)=0. Consequently, the
inverse of the matrix (£, E,) has the form

N
(Ea)Ea) l—<Eﬁ)

and thus for each fixed index %, EP, are components of a local vector field
Ah, in U.

1) As to notations and the definitions of fibred spaces we follow [7] and [8].
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If we assume that G satisfies the condition
(1.3) £(GE7;E%)=0,

then we can induce a metric g on M whose components are ¢;=G,E";E#; in U.
In this sense, when a Riemannian metric G satisfies 1. 3), G is called a projectable
metric a’pd g is called the induced metric in M from G. In the sequel, a fibred
space (M, M, x; E, 5) is called, for simplicity, a fibred space with projectable (resp.
invariant) metric when G is projectable (resp. invariant) metric.

2. A piece of hypersurface in a fibred space.

Let (M, M, T3 E,G) be a fibred space with projectale metric G Consider a
compact piece M™ of an orientable hypersurface of dimension # in M and denote
by dM™ the boundary of the compact piece M*. We suppose that M* meets at
most once each fiber. For simplicity, we say that such a piece M® of a hyper-
surface is a simple covering of the projection M»=xz(M™).

We now assume that M" has a local expression

2.1 " =x"(u),
where (w/)=(u, ---, w*) are local parameters of M", and that the boundary oM™ has
a local expression
! .:uf(ra),
where (r®)=(r!, ---, 7"*) are local parameters of aM™. The indices a, b, c, - run

over the range {1, 2, ---, n—1}.
If we put

;_ 0x"
7T oud’
then §j=(Bj) are vectors tangent to M7 We choose a unit vector € normal to

M™ in such a way that ghe determinant of the matrix (C', B,") is positive, C*
being the components of C. We put

2. 2) Ef=0IB#+aC*

on the compact piece M». Denoting by §;=B, B#G,s the metric tensor on M"
induced from G and setting

v; =009,
we have
(2' 3) v; =B¢TE7,
because of (1.2) and (2. 2). Hence we have

(2 4) V,vz=ahﬁ +B_77BiﬁVTEp
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along ]VI", where #;; denotes the second fundamental tensor of M= Transvecting
(2. 3) with §%, we get

@. 5) 6fiVjvi=a(nHl)+%gjﬂBfBi"£G,p,

where H, is the mean curvature of M, i.e. Hi=1/n)§?*h;. Integrating both sides
of (2.5) over M™ and applying Stokes’ theorem, we have

@ 6) S ijfd&=nS Hladmlg §7B, B £G,dV,
afin in 2 Jin

ﬁ=(Df) being the unit vector field normal to € and to the boundal;y oM™, ln the
integral formula (2. 6) d# and dV denote the volume elements of aM™ and M" re-
spectively, that is,
dé=~/det gdr*\---Ndr*1,
dV = ~/det § dut \--- Adu™,
where we have put
- - o - -
Bi=(B)=(gr):  w=0Bo B

det § and det § denoting the determinants formed with (§e) and (§;;) respectively.
From the definitions of § and é, we have

@.7 Vdet G det (€, Bj)=+/det g.

Here and in the sequel det (C', ﬁj) denotes the determinant of the matrix (C*, B,%).
On t}Le other hand, since the Riemannian metric ¢ induced on the base space
M from G has the components

05=G(4;, A,
we have
2. 8) det G{det (E, A,;)P=det g.
Since M™ is nowhere tangent to fibres, we can choose (£/)=(¢, -+, £") as the local

parameters of M. If we substitute the local expression (2.1) with #/=¢& in (1. 1),
we have the identity

& =f(z"(£¥)).
Then, differentiating the equation above, we have
2.9 0i/=E,J B
and consequently
(2. 10) Bi=A+7BYE, 7B)=v
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in 0.
Taking account of (2.2) and (2. 10), we get
o 10 det (E, B))=det (v'Bi+aC, By)=adet (C, B)),
’ det (E, A;)=det (E, B,—v;E)=det (E, B)).

Consequently, if we assume a>0, we have from (2. 7), (2. 8) and (2.11)
2.12) la|v/det = +/det g.
The metric § of aM® induced from § being defined by
der=G(BB., BBy),
we have
(2.13) (det G)(det (C, BB, BB,)f*=det g,
where (BD)T B,’D? and (BB,,)’— ,"By?. On the other hand, denoting by *g the
metric induced on n(aM”) from the induced metric ¢ of M, we have
2. 14) Vdet G det (AN, E, ABy)= +/dety,

where N=(NN’) denotes the unit normal to n(aM"), and (AN)’—E’ij is such that
the determinant of the matrix (AN E, ABb) is p031t1ve The unit vector ¢ normal
to M» is a linear combination of AN, E, and ABd, ie.,

C=a(AN)+v4ABy)+aE
a, b? being certain functions where |¢|<1. Thus we have
(2. 15) det (C, E, ABy)=|aldet (AN, E, AB,).
If we put N N
E=;D))BD+d*(BB.)+aC
for certain functions d®, we have

det C, E, ABy=det (C, E, BBy)
(2.16) ~ o~ A
=v;Di det (C, BD, BBy),

by virtue of (2. 8) and (2. 10). ~
Now we suppose that [J is chosen in such a way that det(C, BD, BBy)>0.
Then we have ;D=0 and

2.17) (v;D9)~/det §=|a]+/det *¢

because of (2. 13)~(2. 16).
Returning to the integral formula (2.5) and taking account of (2.12) and
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(2.17), we get

Sam |a| \/mdrl/\m/\dr”—l:nsmffx v/det g du* A-+-du™+ SﬂnG*’ﬁ;,eG,,,dV
and hence by virtue of |z|=1
@19 | varganpar-=n| Bvatsaen-aet | cmec,af,

where we have put G¥#=§/'B,’ B
If we assume that Hi=c¢>0 (c: constant), >0 and

S~ G*18.£.G,, dV 20,
jin
then we get

do= ncS av,

Sn(am) =(3™)

where do and dV are the volume elements of z(M") and n(]\71") respectively.
Therefore we obtain

THEOREM 1. Let (M, M, = E, G) be a fibred space wzth projectable metric G.
Let M™ be a compact piece of an oriented hypersurface in M with compact smooth
boudary aM™, which covers simply the projection z(M”) Suppose that its mean cur-
vatvre H, satisfies the condition Hi=c>0 (c: constant) and that E makes an angle
=n/2 with the normals of M* at each point. If the condition

@.19) SmG*”’éjG,ﬁ =0
holds, then the inequality
(2. 20) ncV=L

holds, where V and L denote the volume of the projection of M* and oM™ re-
spectively.

REMARK 1. When M is a compact hypersurface, oM™ is empty. Thus taking
account of (2.18), we see that there is no compact hypersurface satisfying the
conditions mentioned in Theorem 1. In other words we can say that if M is a
compact hypersurface of constant mean curvature, then M™ must be minimal.

ReEMARK 2. When (M , M,z E, 5) is a fibred space with invariant Riemanian
metric, the condition (2. 19) mentioned in Theorem 1 obviously holds.
For a projectable metric G, if we put

£ Er = ¢J’Erj’

for certain functions ¢;, then we have
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Grs=¢4E/Ep+E,Ey)
by virtue of £E=0. Hence we have
G¥8 £G,=07 B, Bif¢(E,*Es+ E, Eg*)
=247 ;6
by virtue of (2.3) and (2.8). Thus we get
G¥t £G,,=20'¢;=20'B]’ £E,
=2E"—aC")£E,=—2aC" £ E,.
We note the above obtained results in the following remark.

RemArk 3. The condition (2.19) is equivalent to the condition

S~ C' £ E, aff 0.
in

3. A piece of submanifold of co-dimension 2.

In this section we discuss a compact piece M1 of (n— 1)- dlmenswnal orient-
able submanifold of co-dimension 2 in a fibred space (M, M,z E, G) We also
suppose that M1 is a simple covering of the projection M™- l--:r(M"-l) in the
above mentioned sense.

We now assume that M7-! has a local expression

3.1 z*=x(),

(> =(a, -+, u™") being local parameters of A7I”-1, and that the boundary oM™
has a local expression

w=ul(r?),
F®H» =", ---, r*?) being local parameters of oM™ If we put

x”

Bj“= auj ’

then we have n—1 linearly independent vectors ﬁ,—(B,v") tangent to M,

Let Cl—(Cl"‘), 2—(C2") be mutually orthogonal unit vectors normal to M”~
and hl——(h(l)ﬁ), =(hwj) be the second fundamental tensors with respect to Cl,
Ca reespectlvely A vector field H=(H") defined by

Ha:};_—l(h(nﬁ Vb )5

2) The indicies i, 7, --- run over the range {1, .-, n—1}.
3) The indicies &, , -- run over the range {1, ---, 2—2}.
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is indepegdent of the choice of (51, 52), and we call H the mean curvature vector
field of M*-*. The INnagnitude H, of the mean curvature vector field is called the
mean curvature of M™, i.e.,

1 . .
H= m(g”hmﬁ-l-gi%(z)ﬁ)-

If H, is positive, we can take the first unit normal C, in the direction of the
mean curvature vector field H. In this case we see that

) #hwp=0 and — Fihej=H.
We put
3.3) E"=0/Bj +aCy + fCy
on the compact piece Mn-. Putting
v=050,
we have
G.9 v;=B/E,,

because of (1.2) and (3. 3). Hence we have
(3. 5) Vﬂ)i:ahﬁ-l- ﬁka"i-BjrBiﬁVrEp

along M~'. Transvecting (3. 4) with §%, we get
3.6) gﬁV,vFa(nHl)+%affB,-fBi£G,ﬂ

by virtue of (3.2). Integrating both sides of (3. 6) over M7 and applying Stokes’
theorem, we have

Hla dV-I——];S
-1 2 Ji

3.7) S v,Dfda=nS §Bi B £G,sdV,
afin—1 jin-1

Mn

where D=(D%) is the unit vector field normal to C,, €, and to the boundary
61\71"“, and dé, dV denote the volume elements of oM™, M respectively. Next
we will compare dV with the volume element of 7:(1&7”‘1). Since M"! is nowhere
tangent to fibres, we can choose (#’)=(#', ---, u»*) as the local parameters of the
projection M™-! that is, M"-! has the local expression

Ei=si(uj)r
and by virtue of (1. 1), we have the identity
&)= fla"(W)).

Then, differentiating the equation above, we have
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0 «
o7 =B

and consequently, if we set

a {J
B=B)= (57 )

3.8) ~
AB;=(E"Bf),

then we have

3.9) AB;=B,—v;E

in {f. From the definition of C;, C; and §, we have
Vdet G det (Cy, s, Bj)=+/detg.

On the other hand, denoting by ¢ the metric induced on :r(ll71"-1) from the induced
metric of M, we have

det G{det (B, AN, ABj)p=det ¢

where N;=(N,?) denotes the unit normal to z(ﬂ"“), and (A?/’Q’:EQNIJ. If we
suppose that AN=C, or equivalently p=0 in (3. 3), then we have

det (E, ANy, AB;)=det (E, C., ABy)=a det (C,, Cs, B))

by virtue of (3. 3) and (3. 8). Thus we obtain the relation

la| v/det §=+/det g.
Henceforth we assume that >0, and then we have

adV=dv.
If we denote by g the induced metric on oM™ from 4, § is given by
955 =G(BB.BE;),

and det§ by
(3.10) det Gidet (Cy, Cs, BD, BBy))=det g,

where gB’\fi’y)’=B,-’B;f and (l?f))’:B;’Df. OnNthe other hand, as for the metric *g
on m(@M™*') induced from the metric g of =(M™!), we have

3. 11) det G{det (AN, E, AN,, AB5)}*=det *g,
where N,=(N,) denotes the unit normal to n(&M”“), (A’\Z/VZ)’=E’JBJNJ and
(ABg) =E";BiB5".

The unit vector 51 normal to M”! is a linear combination of A’T\fl, A’\I\J/}, E
and ABq, ie.
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Cr=a(AN) +b(AN,) + ¢4 AB3) +aE,

a, b, ¢® being certain functions |¢|=1, |b|=1.
Therefore we have

3.12) det (E, &1, AN, ABy)=|b| det (E, AN,, AN, AB).
Putting
E=@;D))BD+d%BBs)+aC:+ pCs
for certain functions d% and taking account of
ABy=BB; —(0;8:)E

obtained from (3. 9), we have

det (£, C1 ANy, ABy)=(v;D% det (BD, C,, Cs, BBj)
@13 =(0;D%) det (Cs, Cs, BD, BBj).

As a result of (3.10)~(3. 13), we get

[0;D7) v/det 5= |b| /det %g .

We can choose D in such a way that »;D07=0, and we finally get

v;D7+/det §=|b| v/det *¥¢.

Returning to the integral formula (3. 7), we get

g _ Adet*gdriA--Ndrtiza S _ Hav/detgdu' A ---/\du"“+S . G¥ELGy d1'7,
a(oMn-1) Mn—1 jin—-1
where we have put G¥*#=§"'Bj E.

If we assume that H;=c>0 (c: const) and

S~ G*18.£G,y AV 20,
jin-1
then we get

de=nc

av,

S =(affn—1) Sz(ﬁn—l)

where do and dV are the volume elements of n(aMn—l) and n(ﬂ"“’) respectively.
Summarizing, we obtain

THEOREM 2. Let (M', M, z; E, (‘:) be a fibred space with projectable metric G.
Let M be a compact piece of an oriented submanifold of co-dimension 2 ZZ’ M
with compact smooth boundary oM™=, which covers simply the projection z(M™ 7).
Suppose that at each point, the mean curvature vetor H is spanned by Bi, -, Bi=
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and E, and that H makes an angle <z|2 with E. If we assume that the mean
curuature satisfies the condition Hy=c>0, ¢ being a constant, and

S~ GH18£G,s AV 20,
jin-1

then the inequality
ncV=L

holds, where V and L denote the volume of the projection of M and BAZI"'I, re-
spectively.

4. Special cases.

In this section we shall prove theorem 3 which is a generalization of Heinz’s
theorem. For this purpose we need some lemmas, which will be proved by de-
vices similar to those developed in [1] and [3].

Let M be an n-dimensional Riemannian manifold. Let y be a geodesic starting
at meM and parametrized by arc-length ¢,

r@)=expn p(?), 7(0)=m,

where p(¢), is a ray in the tangent space M, of M at the point m. Now a Jacobi
field along a geodesic y is defined by

DerINiTION. If a vector field ¥ given along a geodesic y satisfies the dif-
ferential equation
Y"+R(Y, p)i=0,

the prime denoting covariant differentiation along y, Y is called a Jacobi field
along y, where R is the curvature tensor, that is,

R(X,Y)=[Vy, Pr]—Viz, 1
As is well known, we have (cf. [1] p. 172)

LemMA 1. Let A be a constant field along the ray p in the tangent space
My, then
Y(t)=dexpntA
is a Jacobi field along 7.

LeMMA 2. Assume that M is a space of constant curvature k. Let y be a
geodesic in M having no conjugate point of y(0) and E., E,, -, E. be a parallel
orthonormal basis along y. If hE, (i=1, 2, ---, n) is Jacobi field with the conditions
h0)=0, h(r)=1,% then h satisfies one of the following conditions:

4) See Appendix I.
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D HO=32E, i k=b
2 Wy=", i k=
) Ho=S ey

Proof. If RE, is a Jacobi field along y with the conditions 4(0)=0, %()=1,
then % is a solution of the differential equation

d*h
75—+kh—-0

with the conditions k(0)=0, #(»)=1. Thus we have Lemma 2.

If X and Y are vector fields along y and orthogonal to p, the index form of
the pair (X,Y) on (0, r) is given by

1%, %)=\ (X, ) ~(RG, X7, Vol
where <, > denotes the Riemannian metric in M. For a Jacobi field Y, I(X, Y)
reduces to

I(X, Y)=<{X, Yi.

LemMA 3. Let y be a geodesic and have no conjugate point of m=y(0).
Let Y be an orthogonal Jacobi field along y and X be any field orthogonal to y
with X0)=Y(0), X)=Y (). Then I(X, X)=ZIY,Y) and the equality occurs only
when X=Y.

Proof. If XxY, then X—Y=0. Since I(X,Y) is positive definite,
0<IX-Y, X-Y)=I(X, X)-2[(X, Y)+I(Y,Y)
=I(X, X)—2(X, Y [3+<Y, Y')5
=I(X, X)— <Y, Y i=I(X, X)—I(Y,Y),
which proves Lemma 3.

Next we consider the Jacobian determinant of the exponential mapping expm
at a point p(¥) and its relation with Jacobi fields. In the sequel R;(X) and
K(X,Y) denote the Ricci curvature with respect to X and the sectional curvature
with respect to X and Y, i.e,

(RX, Y)Y, X
X, XY, YH—(X, Y

KX, )=

5) See Appendix II.



188 MARIKO KONISHI
1 n
Ry(X)=——=2 K(X;, X),
n—1 =1

X, being an orthonormal frame at .

LeMmMa 4. Let y be a geodesic starting at m in M and j(t) the Jacobian deter-
minant of expn at a point p(t). Then j(t) satisfies one of the following conditions:

H n—-1 3 n-1
1 { 3121tbt } zj(t)éi sn;tat }

at least out to the first conjugate point of m along y, if Ri(X)=a?>0, and
0<K(X, Y)=0b? for arbitrary X and Y;

2) jO=1, if K(X,Y)=0 for any X and Y,

. sinh @t | *-!
3) =i =S5
if Ri(X)=—a? and K(X,Y)=0 for any X and Y.

Proof. We first note that j(¢) is given by

||d €Xpm S1°++d €XPm Sn—1l|
[IS1+++Sn—1l|

)=

for any linearly independent (#—1)-vectors sy, -+, S,—1 Which are orthogonal to p at
o(@®) (cf. [1]), where

(1Yo Yaoal|=det (Y5 Y)).
Let A, be constant fields along p, and assume that dexpn (rA.)=Fi(r), where
{F}, -+, Fu-1} is a parallel orthonormal basis along y. Put Yi(#)=d expn (¢4;), then

by virtue of Lemma 1, Y3, ---, Yo-1 are Jacobi fields along y which are linearly
independent. Then we have

oy Y1 Y|
](t)_ tn_lA ’
where A=||A;---An-1]| is constant. Since Yy(r), .-+, Yn-:(r) are orthonormal, we have

Y YardF)=2 5 V), VO,

and therefore

j'r) "o N it 3
4. 1) o g}l Yin), Y./ ()) ot

For the first case 1), using the assumption, we have
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Vi), Y= (¥~ K, Yol Yl
4. 2)
- So{u Y| — 0 Vil d.

On the other hand, if we consider a Jacobi field ¥;=A(f)Ei(¥) along a geodesic 7
on the space S of constant curvature * (7(¢)=exps (£), €Xpz:S7—S) E, denoting
orthonormal vector fields given in Lemma 2, we have

4.3 CHOEL), W) Er)y=<Fir), T0r)>= S:{I ¥ /12— 0%|F %), dt

by means of Lemma 2.
Since ¥; are Jacobi fields, we have, from Lemma 3,

4. 4) S:{un'nz—bﬂmnm = S:{n?/nz—bzn?m,dt.

Combining (3. 2), (3.3) and (3. 4), we have
4. 5) Yi(r), Y/ (r))=cot br

by virtue of Lemma 2.
Next, taking account of Lemma 3, we have

(4. 6) Yi(r), Yo' (0)> =I(Y,, Yi)=I(hF;, hF;)= ST {r'*—K(3, F))h* dt.

0
Taking sum with respect to i and taking account of the inequality Ry(7)=a?>0
and (4. 1), we find

i'0) R |
@17 5 g(n——l)So{(/z) @ty de—",
which implies together with (4. 2)
1\, J'(n 1
(%—1)<C0t ar—7>;wé(n—1)(cotbr——;>.

Integrating each side of this inequality from s to ¢, (s€(0, #)), we get

(sinat)”"( as >"‘1>M>(Sinbt>"‘l( bs >"“
at sin as “js) T\ ot sin bs ’

Taking the limit as s—0, we have

sinat\"*'_ . sin bt \™!
2> > >( 2= 20
( at ) =;(t)z( bt )

by virtue of j(0)=1.
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For the second case 2), j/(r)/j(r) being zero, we have j(#)=1.
For the last case 3), (4. 2) reduces to
o), oz v pazt
by means of Lemmas 2 and 3. Moreover (4. 7) reduces to

0= ’j((:)) =(n—1) S:{(h')2+a%2} dt—ﬁr—l-

where A(f)=sinh at/sinh ar. Thus we get

. sinh at\"!
léj(t)é( pr )

Consequently, Lemma 4 has been proved completely.

We are now going to prove

THEOEM 3. Let (M M, r; E, G) be a fibred space wzth projectable metric and
M a compact piece of an oriented hypersurface m M with properties stated in
Theorem 2. Assume that the projection M™ of M® to M is a Riemannian sphere
with radius R lying in a normal coordinate neighbovhood. Then R satisfies one of
the following inequalities:

1 (i>"_ISR(M>"_Idt<1 if R(X)=a*>0, and 0<K(X, Y)=b* on M™;
ne\p sinaR =L Y fuld)=a" >0, an Y= ;

2) ¢R=1, if K(X,Y)=0;
sinhaR)"—1
a

3) 0R§< ,if R(X)=—a* and K(X, Y)<0,

where ¢ is the constant appearing in Theorem 2.

Proof. If m is the origin of the Riemannian sphere M?", M"™ is the image
of R-ball B(R) in the tangent space M2 under the exponential mapping and its
boundary oM™ is the image of (#—1)-dimensional sphere S™-*(R) with radius R.
Let y be a geodesic in M™ orthogonal to dM™ and j(f) be the Jacobian determi-
nant of exp, at po(f). If dB and dS are the volume elements of B(R) and the
unit sphere S™-!(1) respectively, the volume element dV of M* is given by

AV=j(f) dB=j (Ot dt dS.
Thus we get
R
volume M”zg i@ dB=g S @1 dt dB.
B(R) 0 JSn-1

Taking account of Lemma 4, we have for the case 1)
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B i n—1
volume M*=(volume S*-1) S ( Slr; bz‘) @t
0

n-1C0R 1 n-1
=(volume 9M™) (%) S < ssi;nab;? > @
0

On the other hand, we have already in Theorem 2 the inequality
nc volume M™=volume oM™

Thus, summing up, we obtain the following required inequality

a\" ' (B/ sinbt \**
nc<?> So(_—sinaR> dat=1.

For the cases 2) and 3) we reach the corresponding inequalities in the same way.

As a special case, we consider a ﬁNbred space (S™+, CP(l), =; E, 5), where S™*!
is a unit sphere with natural metric G induced from E?*2 and CP(/) is the com-
plex projective space of complex dimension / (2/=#). We shall prove

THEOREM 4. Let M™ be a compact piece of an oriented hypersurface of S"*
with properties stated in Theorem 2. Assume that the projection M"™ of M™ to
CP(l) is a Riemannian sphere with radius R<zx|2. Then R satisfies the follow-
ing inequality

=1,

2¢ tan %

where c is the constant appearing in Theorem 2.

Proof. Let m be the origin of the Riemannian sphere. A holomorphic sec-
tional curvature on CP(l) being constant (=1), the curvature tensor is given by

(R(X,Y)Z, W>=%{<X, WXY, Z)—X, Z)Y, W)
“4.8)
+UX, WXTY, Z5—JY, WXIX, Z>-2{JX, Y )JZ, W)},

where J is the complex structure in CP(/). Let y be a geodesic starting at » and
orthogonal to aM™ We choose a parallel orthonormal basis along #, Ey, Ew, «, Ey,
E;. in such a way that

El:f" En=JE, (a'_"l: ey D).

If A, (i: not summed i=1, 1%, ..., [, [*) is a Jacobi field along y with the con-
ditions %(0)=0 and A(r)=1, then 7;(¥) satisfies

sin ¢ __ sin (#/2)
siny’ hi(t)= sin (7/2)

4.9 hu(t)= (i=2, 2%, -+, [, I*).
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In fact, A4y and A; satisfy the differential equations

d*h;.
T

d?h;
dt?

+h1t—0 h]t(o) =0, hp(r)=1;

+5h=0,  BO=0, k=1

Next we have an estimation of the Jacobian determinant j(#) of expn, that is,

AR
(4. 10) = = (2 sin— 2) coS —

2

at least out to the first conjugate point of m along y. In fact, taking »—1 Jacobi
fields Y3, «+, Yy—1 in the same way as in proof of Theorem 3, we have again

7=l n— 1

<Y(r),
=g e

If AE; (i: not summed) is a Jacobi field along y such that %,(0)=0, A:(»)=1, then
we have

. cotr, i=1%
TN T =ROMO =1L e 7 oy

Therefore we obtain

7 _n—2 r n—
I = cot D) + cotr

Integrating this from s to # (se(0, ©)), we get

Jj@) _ s"*(2sin (¢/2))"*sint

i(s t"“‘(Z sin (s/2))"%sin s”

Now taking the limit as s—0, we have

n-2
](t)— 1 (25111;) sin ¢

by virtue of 7(0)=1.
Denoting by dS the volume element of the unit sphere S*-!, we have

R
volume Mn=S S i) 1 de dS
0 JSn-1

R t n-1 t
=(volume S*-?) S (2 sin —> cos — dt
0 2 2

Ssm (R/2)

=2"(volume S™*) w du (u =sin %)
0
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_1(p RN net
—;(Zsm ) ) (volume S*-%)

=% tan % J(R)R™ (volume S™-Y)

_2 R w
= tan -5 (volume aM™)

by virtue of (4.3). Since (S**!,CP(l),x: E,G) is a fibred space with invariant
metric, the inequality

nc (volume M™) =volume oM™

has been established. Thus we obtain the required inequality

5. Appendix (cf. [1] or [6]).

We give here the definition of conjugate points and properties which our
argument requires.
Let y: [0, 1—M be a geodesic starting at m and parametrized by arc length #

r)=expn p(®), r(0)=m.
We call 4 a conjugate point to 0 along y if dexpn, is singular at p(%) and call
7(to) a conjugate point to y(0)=m along p.
I) The uniqueness of Jacobi field.

Let » be a non-conjugate point to 0 along y and »eM, and weM,,,. Then
there exists exactly one Jacobi field Y along 7 such that Y(0)=v and Y(r)=w.

II) The relation to the index form.
The following two propositions are equivalent:
1) r has no conjugate point.
2) I(X, X)>0 for any X=0 such that X(0)=X({)=0.

III) Theorem of Morse-Schoenberg:
1) If K(X,Y)<Fk and /<z/~k, then y has no conjugate point,
1) if K(X, Y)=0, then y has no conjugate point,
2) if 0=k<K(X,Y), there exists at least one conjugate point along y at
distance at most z/+/ %,
where % is a constant,
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