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ON UNIVALENT ENTIRE FUNCTIONS

BY BOO SANG LEE

§1. Shah and Trimble [2] proved the following result. Let f(z) be a trans-
cendental entire function such that

(1.1)

where O^N^oo, and cfβ,zn are all complex numbers such that c^O, \β\^l and
|2 n |>2. Then / maps D—{z\ |z |<l} univalently onto a convex domain if

d 2) \β\+Y\ ]
w=l \Zn\~l

In this paper we shall improve the condition (1.2) to conclude only the
univalence of f(z).

THEOREM 1. Suppose f{z) is a transcendental entire function such that f\z) is
given by (1.1), where cf β, zn are all complex numbers such that C^FO, |β|^i2 and

1. Let

Then f{z) is univalent in D if

(1.3) (-ψ + Σrn )+2Σ^i.
\ ^ TO = 1 / W=l

Proof Denote the Schwarzian derivative of f(z) by {/, z}, i.e.,

Nehari [1] proved that for an analytic function / to be univalent in D it is neces-
sary that

and sufficient that
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d 5) \{f, *>|g 2

Now we have for

N

(i 6) ( I - N W . ^ Σ

Define A(a;) by

for O ^ α ^ l . Then

max h(x)=h(a-A/a2-l)=2(a-*/a2-l).

Hence for every z£D

( L 7 ) liJHi

Now (1. 6), (1. 7) and (1. 3) yield (1. 5), and hence f(z) is univalent in D.

§2. Let fp(z) (p=0 or p=ϊ) be a transcendental entire function defined by

(2.1) / ^ ^

where c^O is real, β^O, O^N^oo and {an}%.i are all real numbers such that
an+1^an>l. Let αo=O and {a™} denote the sequence of zeros of f^(z)y where
|0JH = |tfjί+il> a n ( i it is understood that j starts from 0 when p=l and j starts from
1 when p=0. af denotes a3.

Under these definitions and notations, we have

LEMMA. For all k^l,f%\z) has exactly N+p number of zeros which are all
real and positive, and

(2.2) a

Further,

(2. 3) ff{z) =fF(0)e?z Σ ( l - - 4 r ) ,

where 5=0 if p=l, and δ=l if p=0.

Proof. When p=l, the proof was given in [2]. We omit the proof for the
case when p=0, since it is essentially same as given in [2].

Shah and Trimble [2] also proved that if fx(z) is defined by (2.1) then fλ(z)
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and all its derivatives map D univalently onto convex domains if and only if

We prove

THEOREM 2. Suppose fo(z) is a transcendental entire function defined by (2.1).
Then fo(z) and all its derivatives are univalent in D if

(2.4)

where

Proof Define γ%>=a$>-A/{a%>)*-l for k^X. By (2. 2) we have for

Hence from (2. 4)

By Theorem 1 fck~l:>(z) is univalent in 2) for every k^l.

§ 3. REMARK. ( i ) In fact, the condition (1. 2) implies the condition (1. 3). To
verify this we first notice that

N 1 N O v

1> V -*- — V __ZϋL
± = Z-l I I 1 — Z j /-I v N

Now

( JV \ f | O | 2 N ( N \

!i3|+2Σr»)- FΓ-+I/3IΣM-3 Σr»
n=l / I ^ n=l \n=l /

Hence (1. 2) implies (1. 3).

(ii) In Theorem 1, the condition (1. 3) cannot be replaced by any condition
which is sharper than
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This can be easily seen from the fact that for fo(z) defined in § 2 we have

and hence by (1. 4)
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