ON THE BEHAVIOUR OF A SERIES ASSOCIATED WITH THE ALLIED SERIES OF A FOURIER SERIES

By R. D. Ram and Shiva N. Lal

1. Let $0 \leq \lambda_{0}<\lambda_{1}<\lambda_{2}<\cdots<\lambda_{n} \rightarrow \infty$ as $n \rightarrow \infty$. The series $\sum a_{n}$ is said to be summable $\left|R, \lambda_{n}, 1\right|$ if

$$
\sum_{n=1}^{\infty}\left\{\frac{1}{\lambda_{n}}-\frac{1}{\lambda_{n+1}}\right\}\left|\sum_{\nu=1}^{n} \lambda_{\nu} a_{\nu}\right|<\infty .
$$

Also, the series $\sum a_{n}$ is said to be summable $|N, 1 /(n+1)|$ if

$$
\sum_{n=1}^{\infty} \frac{1}{P_{n} P_{n-1}}\left|\sum_{\nu=0}^{n-1}\left(\frac{P_{n}}{\nu+1}-\frac{P_{\nu}}{n+1}\right) a_{n-\nu}\right|<\infty
$$

where

$$
P_{n}=\sum_{\nu=0}^{n} \frac{1}{\nu+1} \sim \log n .
$$

Let $f(t)$ be a periodic function with period 2π and Lebesgue integrable in $(-\pi, \pi)$ and let

$$
f(t) \sim \frac{1}{2} a_{0}+\sum\left(a_{n} \cos n t+b_{n} \sin n t\right),
$$

where the coefficients a_{n} and b_{n} are given by the usual Euler-Fourier formulae. The allied series of the above series is

$$
\sum\left(b_{n} \cos n t-a_{n} \sin n t\right) \equiv \sum B_{n}(t) .
$$

We write

$$
\psi(t)=\frac{1}{2}\{f(x+t)-f(x-t)\} .
$$

2. In an attempt to show that the behaviour of the series $\Sigma B_{n}(x) / \log (n+1)$ is more or less like that of the allied series $\sum B_{n}(x)$, Mohanty and Ray [4] recently established the following

Theorem A. If $\psi(t)$ is of bounded variation in $(0, \pi)$ and $|\psi(t)| / t \log (k / t)(k>\pi)$
Received March 5, 1970.
is integrable in $(0, \pi)$, then the series $\sum B_{n}(x) / \log (n+1)$ is summable $\left|R, e^{n \alpha}, 1\right|$, where $0<\alpha<1$.

It has been recently [1] established that every series summable by the method $|N, 1 /(n+1)|$ is also summable by the method $\left|R, e^{n^{\alpha}}, 1\right|$ but the converse is, in general, false. In this paper we establish the following

Theorem. If $\psi(t)$ is of bounded variation in $(0, \pi)$ and $|\psi(t)| / t \log (k / t)(k>\pi)$ is integrable in $(0, \pi)$, then the series $\sum B_{n}(x) / \log (n+1)$ is summable $|N, 1 /(n+1)|$.

It is interesting to note that although the series $\Sigma B_{n}(x) / \log (n+1)$ behaves like the allied series $\sum B_{n}(x)$ as far as summability $\left|R, e^{w^{\alpha}}, 1\right|$ is concerned as is shown by Theorem A and Theorem 5 in [2], the function $\psi(t) / \log (k / t)$ in Theorem A playing the role of $\psi(t)$ in the corresponding one for the series $\sum B_{n}(x)$, our theorem in view of a known result (see [3], Theorem 1) clearly shows that the same is not true if instead of the summability $\left|R, e^{w \alpha}, 1\right|$ the summability $|N, 1 /(n+1)|$ is considered.
3. The following lemma is pertinent to the proof of our theorem.

Lemma.

$$
\begin{equation*}
\sum_{\nu=0}^{[n / 2]-2}\left|\Delta\left(\frac{(n+1) P_{n}-(\nu+1) P_{\nu}}{(n-\nu) \log (n-\nu+1)}\right)\right|=O(1) \tag{3.1}
\end{equation*}
$$

and

$$
\begin{equation*}
\left.\left.\sum_{n=[1 / t]+1}^{\infty} \frac{1}{P_{n} P_{n-1}}\right|_{\nu=[n / 2]} ^{n-1}\left(\frac{P_{n}}{\nu+1}-\frac{P_{\nu}}{n+1}\right) \frac{\cos (n-\nu) t}{(n-\nu) \log (n-\nu+1)} \right\rvert\,=O(1) . \tag{3.2}
\end{equation*}
$$

The estimate in (3.1) is known (see Lemma 4 in [5]). The estimate in (3.2) of the lemma can be obtained similarly as the estimation of Σ_{3} in [5].
4. Proof of the theorem. Before proceeding to prove the theorem we note that (see Lemma 1 in [4]) the assumption of the theorem is equivalent to

$$
\begin{equation*}
\int_{0}^{\pi} \log \frac{k}{t}\left|d\left\{\frac{\psi(t)}{\log (k \mid t)}\right\}\right|<\infty, \tag{4.1}
\end{equation*}
$$

and

$$
\begin{equation*}
\lim _{t \rightarrow 0+} \frac{\psi(t)}{\log (k / t)}=0 \tag{4.2}
\end{equation*}
$$

Using the condition (4.2) and proceeding as in [4] we have

$$
\frac{B_{n}(x)}{\log (n+1)}=\frac{2}{\pi} \int_{0}^{\pi} d\left\{\frac{\psi(t)}{\log (k / t)}\right\} \int_{t}^{\pi} \log \frac{k}{u} \frac{\sin n u}{\log (n+1)} d u
$$

so that

$$
\begin{aligned}
& \sum_{n=1}^{\infty} \frac{1}{P_{n} P_{n-1}}\left|\sum_{\nu=0}^{n-1}\left(\frac{P_{n}}{\nu+1}-\frac{P_{\nu}}{n+1}\right) \frac{B_{n-\nu}(x)}{\log (n-\nu+1)}\right| \\
\leqq & \frac{2}{\pi} \int_{0}^{\pi}\left|d\left\{\frac{\psi(t)}{\log (k / t)}\right\}\right| \sum_{n=1}^{\infty} \frac{1}{P_{n} P_{n-1}}\left|\sum_{\nu=0}^{n-1}\left(\frac{P_{n}}{\nu+1}-\frac{P_{\nu}}{n+1}\right) \int_{t}^{\pi} \log \frac{k}{u} \frac{\sin (n-\nu) u}{\log (n-\nu+1)} d u\right|
\end{aligned}
$$

Hence by virtue of the condition (4.1), in order to establish the theorem, it is sufficient to show that uniformly in $0<t \leqq \pi$,

$$
\begin{equation*}
\Sigma \equiv \sum_{n=1}^{\infty} \frac{1}{P_{n} P_{n-1}}\left|\sum_{\nu=0}^{n-1}\left(\frac{P_{n}}{\nu+1}-\frac{P_{\nu}}{n+1}\right) \int_{t}^{\pi} \log \frac{k}{u} \frac{\sin (n-\nu) u}{\log (n-\nu+1)} d u\right|=O\left(\log \frac{k}{t}\right) . \tag{4.3}
\end{equation*}
$$

Now

$$
\begin{align*}
\Sigma \leqq & \leqq \sum_{n=1}^{[1 / t]} \frac{1}{P_{n} P_{n-1}}\left|\sum_{\nu=0}^{n-1}\left(\frac{P_{n}}{\nu+1}-\frac{P_{\nu}}{n+1}\right) \int_{0}^{\pi} \log \frac{k}{u} \frac{\sin (n-\nu) u}{\log (n-\nu+1)} d u\right| \\
& +\sum_{n=1}^{[1 / t]} \frac{1}{P_{n} P_{n-1}}\left|\sum_{\nu=0}^{n-1}\left(\frac{P_{n}}{\nu+1}-\frac{P_{\nu}}{n+1}\right) \int_{0}^{t} \log \frac{k}{u} \frac{\sin (n-\nu) u}{\log (n-\nu+1)} d u\right| \\
& \left.+\left.\sum_{n=[1 / t]+1}^{\infty} \frac{1}{P_{n} P_{n-1}}\right|_{\nu=0} ^{[n / 2]-1}\left(\frac{P_{n}}{\nu+1}-\frac{P_{\nu}}{n+1}\right) \int_{t}^{\pi} \log \frac{k}{u} \frac{\sin (n-\nu) u}{\log (n-\nu+1)} d u \right\rvert\, \tag{4.4}\\
& \left.+\left.\sum_{n=[1 / t]+1}^{\infty} \frac{1}{P_{n} P_{n-1}}\right|_{\nu=[n / 2]} ^{n-1}\left(\frac{P_{n}}{\nu+1}-\frac{P_{\nu}}{n+1}\right) \int_{t}^{\pi} \log \frac{k}{u} \frac{\sin (n-\nu) u}{\log (n-\nu+1)} d u \right\rvert\, \\
= & \sum_{1}+\sum_{2}+\sum_{3}+\sum_{4}, \text { say. }
\end{align*}
$$

Using the estimate (see proof of (2.2.10) in [4])

$$
\int_{0}^{\pi} \log \frac{k}{u} \sin n u d u=O\left(\frac{\log n}{n}\right),
$$

we have
(4. 5)

$$
\begin{aligned}
\Sigma_{1} & =O(1) \sum_{n=1}^{[1 / t]} \frac{1}{P_{n} P_{n-1}} \sum_{\nu=0}^{n-1} \frac{P_{n} \log (n-\nu)}{(\nu+1)(n-\nu) \log (n-\nu+1)} \\
& =O(1) \sum_{n=1}^{[1 / t]} \frac{1}{(n+1) P_{n-1}} \sum_{\nu=0}^{n-1} \frac{1}{n-\nu}+O(1) \sum_{n=1}^{[1 / t]} \frac{1}{(n+1) P_{n-1}} \sum_{\nu=0}^{n-1} \frac{1}{\nu+1} \\
& =O(1) \sum_{n=1}^{[1 / t]} \frac{1}{n+1} \\
& =O\left(\log \frac{k}{t}\right) .
\end{aligned}
$$

And

$$
\begin{align*}
\sum_{2} & =O\left(t \log \frac{k}{t}\right) \sum_{n=1}^{[1 / t]} \frac{1}{P_{n} P_{n-1}} \sum_{\nu=0}^{n-1} \frac{P_{n}}{(\nu+1) \log (n-\nu+1)} \\
& =O\left(t \log \frac{k}{t}\right) \sum_{n=1}^{[1 / t]} \frac{1}{P_{n-1}} \sum_{\nu=0}^{n-1} \frac{1}{\nu+1} \tag{4.6}\\
& =O\left(\log \frac{k}{t}\right) .
\end{align*}
$$

By the application of the second mean value theorem we have

$$
\begin{aligned}
\sum_{3}= & \sum_{n=[1 / t]+1}^{\infty} \frac{1}{P_{n} P_{n-1}}\left|\sum_{\nu=0}^{[n / 2]-1}\left(\frac{P_{n}}{\nu+1}-\frac{P_{\nu}}{n+1}\right) \frac{\log (k \mid t)}{\log (n-\nu+1)} \int_{t}^{\mu} \sin (n-\nu) u d u\right|(t \leqq \mu \leqq \pi) \\
\leqq & \left(\log \frac{k}{t}\right)_{n=[1 / t]+1}^{\infty} \frac{1}{P_{n} P_{n-1}}\left|\sum_{\nu=0}^{[n / 2]-1-1}\left(\frac{P_{n}}{\nu+1}-\frac{P_{\nu}}{n+1}\right) \frac{\cos (n-\nu) t}{(n-\nu) \log (n-\nu+1)}\right| \\
& +\left(\log \frac{k}{t}\right)_{n=[1 / t]+1}^{\infty} \frac{1}{P_{n} P_{n-1}}\left|\sum_{\nu=0}^{[n / 2]-1}\left(\frac{P_{n}}{\nu+1}-\frac{P_{\nu}}{n+1}\right) \frac{\cos (n-\nu) \mu}{(n-\nu) \log (n-\nu+1)}\right| \\
= & \left(\log \frac{k}{t}\right)\left(\sum_{3,1}+\sum_{3,2}\right), \quad \text { say. }
\end{aligned}
$$

Applying Abel's transformation to the inner sum in $\Sigma_{3,1}$ and using the estimate

$$
\Sigma \frac{\cos (n-\nu) t}{\nu+1}=O\left(\log \frac{k}{t}\right)
$$

we get

$$
\begin{aligned}
\sum_{3,1}= & O\left(\log \frac{k}{t}\right) \sum_{n=[1 / t]+1}^{\infty} \frac{1}{(n+1) P_{n} P_{n-1}} \sum_{\nu=0}^{[n / 2]-2}\left|\Delta \frac{(n+1) P_{n}-(\nu+1) P_{\nu}}{(n-\nu) \log (n-\nu+1)}\right| \\
& +O\left(\log \frac{k}{t}\right)_{n=[1 / t]+1}^{\infty} \frac{1}{(n+1) P_{n} P_{n-1}} \frac{(n+1) P_{n}-[n / 2] P_{[n / 2]-1}}{(n-[n / 2]+1) \log (n-[n / 2]+2)} \\
= & O\left(\log \frac{k}{t}\right)_{n=[1 / t]+1}^{\infty} \frac{1}{(n+1) \log ^{2}(n+1)} \\
= & O(1) .
\end{aligned}
$$

Similarly we can show that $\sum_{3,2}=O(1)$, and then

$$
\begin{equation*}
\Sigma_{3}=O\left(\log \frac{k}{t}\right) \tag{4.7}
\end{equation*}
$$

Again, proceeding similarly as in Σ_{3}, we get

$$
\begin{aligned}
\sum_{4} \leqq & \left(\log \frac{k}{t}\right) \sum_{n=[1 / /]+1}^{\infty} \frac{1}{P_{n} P_{n-1}}\left|\sum_{\nu=[n / 2]}^{n-1}\left(\frac{P_{n}}{\nu+1}-\frac{P_{\nu}}{n+1}\right) \frac{\cos (n-\nu) t}{(n-\nu) \log (n-\nu+1)}\right| \\
& +\left(\log \frac{k}{t}\right)_{n=[1 /]]+1}^{\infty} \frac{1}{P_{n} P_{n-1}}\left|\sum_{\nu=[n / 2]}^{n-1}\left(\frac{P_{n}}{\nu+1}-\frac{P_{\nu}}{n+1}\right) \frac{\cos (n-\nu) \mu}{(n-\nu) \log (n-\nu+1)}\right|(t \leqq \mu \leqq \pi)
\end{aligned}
$$

so that by the application of the estimate in (3.2) of the lemma we get

$$
\begin{equation*}
\Sigma_{4}=O\left(\log \frac{k}{t}\right) \tag{4.8}
\end{equation*}
$$

Combining the estimates in (4.4) through (4.8) we get the estimate in (4.3). This completes the proof of the theorem.

References

[1] Das, G., Tauberian theorems for absolute Nörlund summability. Proc. London Math. Soc. 19 (1969), 357-384.
[2] Mohanty, R., On the absolute Riesz summability of Fourier series and its conjugate series. Proc. London Math. Soc. 52 (1951), 295-320.
[3] Mohanty, R., and B. K. Ray, On the non-absolute summability of a Fourier series and the conjugate of a Fourier series by a Nörlund method. Proc. Cambridge Phil. Soc. 63 (1967), 407-411.
[4] Mohanty, R., and B. K. Ray, On the behaviour of a series associated with the conjugate series of a Fourier series. Canadian Journ. Math. 21 (1969), 535-551.
[5] Varshney, O. P., On the absolute harmonic summability of a series related to a Fourier series. Proc. Amer. Math. Soc. 10 (1959), 784-789.

Banaras Hindu University, India.

