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ON THE BEHAVIOUR OF A SERIES ASSOCIATED WITH

THE ALLIED SERIES OF A FOURIER SERIES

BY R. D. RAM AND SHIVA N. LAL

1. Let 0<Λ<Λi<Λ2< <V->oo as n->oo. The series Σctn is said to be sum-

mable \R, λn, 1| if

w=i I An An+i
Σla, <oo.

Also, the series Σan is said to be summable \N, l /(#+l) | if

n=i PnPn-1
<oo,

where

Let f(t) be a periodic function with period 2π and Lebesgue integrable in (-TΓ, π)
and let

βn cos nt+bn sin

where the coefficients an and bn are given by the usual Euler-Fourier formulae.
The allied series of the above series is

n cos nt-an sin nt)=ΣBn(t).

We write

2. In an attempt to show that the behaviour of the series
is more or less like that of the allied series Σ Bn(x), Mohanty and Ray [4] recently
established the following

THEOREM A. If ψ(t) is of bounded variation in (0, π) and \ψ(t)\ltlog(k/f) (k>π)
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is integrabίe in (0, π), then the series Σ Bn(x)fiog {n+l) is summάble \R, ena, 1|, where

It has been recently [1] established that every series summable by the method
IN, lj{n+ΐ)\ is also summable by the method \R, ena, 1| but the converse is, in
general, false. In this paper we establish the following

THEOREM. If ψ{t) is of bounded variation in (0, π) and \φ{t)\jt log {kjt) (k>π)
is integrabίe in (0, π), then the series ΣBn(oc)llog {n+l) is summable \N7lj{n+l)|.

It is interesting to note that although the series ΣBn{x)jlog{n+l) behaves
like the allied series ΣBn{x) as far as summability \R, ewa, 1| is concerned as is
shown by Theorem A and Theorem 5 in [2], the function φ{t)jlog {kjt) in Theorem
A playing the role of ψ{t) in the corresponding one for the series ΣBn{%), our
theorem in view of a known result (see [3], Theorem 1) clearly shows that the
same is not true if instead of the summability \R, ewa, 1| the summability \N, lj{n+ΐ)\
is considered.

3. The following lemma is pertinent to the proof of our theorem.

LEMMA.

(3.1)

and

(3.2)

in/21-2 {n+l)Pn-{v+l)Pv/ {n+
\{n- v)log{n-v+l)

PnPn-1 n+l 1 {n-
cos {n-v)t

The estimate in (3.1) is known (see Lemma 4 in [5]). The estimate in (3. 2)
of the lemma can be obtained similarly as the estimation of Σs in [5].

4. Proof of the theorem. Before proceeding to prove the theorem we note
that (see Lemma 1 in [4]) the assumption of the theorem is equivalent to

(4.1)

and

(4.2)

L l o g τ log {kit)
<oo,

l i ra =0,lira . ^ . . .
«-*+ log {kjt)

Using the condition (4. 2) and proceeding as in [4] we have

Bn{x) 2 Γ* f φ{t) l f » k s i n nu

log {n+l)
_ 2 Γ* f φ{t) l f» k s in nu

π)a

a\ log {kit) I ) t

 iOg u log {n+l) U

so t h a t
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n=l PnPn-\
Bn-V{x)

n+1 / login—v-\-l)

π Jo log {kit) I
n=rl PnPn-1 Σ

Hence by virtue of the condition (4.1), in order to establish the theorem, it is
sufficient to show that uniformly in 0<t^π,

(4 3) y = V -
n = l A-tίi-1

Now

n-l / p

SVTTΪ
=θ(log}).

- Σn=l PnPn-1

+ Σ

)VOgu \og{n-vΛ

(4.4)

+ -Σ

PnPfi-l

1

w+l/J*

xf* ft sin {n~v)u

n-l / p sin ( . - ,

4, say.

Using the estimate (see proof of (2. 2.10) in [4])

fπ 1 * ^ /V tog» \
\ log — sm nudu—O\—-— ,
Jo u \ n )

we have

[l/t] 1 n-l

Σi=O(l) ^ -^— v
Pn log (n-v)

n% PnPn-1 ί=Ό (v + l ) (»-v) log ( » -

1 - Σ ^
[l/t]

(4.5)

n-l 1

- y ——

[I/O 1

5

And
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) S 5 log ( n -

(4.6) ( £ \ DA

By the application of the second mean value theorem we have

.= Σ
P. (V

\ sin (n—v)u du

</wA\ y 1 ίnψΊ P" P^Λ cos(n-v)t

+ {logτ)n=Σ+1PnPn_1

log (n-

\ cos {n—v)μ

), say.

Applying AbeΓs transformation to the inner sum in Σs.i and using the estimate

_ cos (n-v)t
v+1

-=o(iogA),

we get

( h \ °° 1 Cn/2]-

i o g f ) M = Σ ] + i ( w + 1 ) P 7 ί P m i Σ
+oίiogj) Σ

=θ(log})n

—v) log (/ί—

wPw-i ( n - [nβ]+1) log ( » - [»/2] +2)

(»+i) log2

=0(1).

Similarly we can show that Σ 3,2=0(1), and then

(4.7) Σ s =

Again, proceeding similarly as in Σ s> w e
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n-i / P_ P \ cos (n-v)t
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V

logy) Σ ~pf- Σ (
t I n=[l/ί]+l ΓnΓn-1 v=[n/2] \

ι—v)\og(n—v+V)

Pn Pv \ cos(n—v)μ

κ v+1 n+lj (n—v) log (n—v+1)

so that by the application of the estimate in (3. 2) of the lemma we get

(4 8) Σ 4 = θ ( l o g | ) .

Combining the estimates in (4. 4) through (4. 8) we get the estimate in (4. 3).
This completes the proof of the theorem.
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