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ON THE BEHAVIOUR OF A SERIES ASSOCIATED WITH
THE ALLIED SERIES OF A FOURIER SERIES

By R.D. Ram AND SuivAa N. LAL

1. Let 0<<ti<A:< < Ap—00 as n—oo. The series Y, @, is said to be sum-
mable |R, A, 1] if

n

Z} a2, | <

v=1

Z=: { n Zn+1 }
Also, the series Y@, is said to be summable |N, 1/(z+1)] if

& 1 gt P P,
nézl PnPn—-l ;§) <U+1 N n+1>an"”

<o,

where

v=0

Let f(?) be a periodic function with period 2r and Lebesgue integrable in (—z, x)
and let

f(t)""%do'l' Y (an €08 nt+b, sin nt),

where the coefficients @, and b, are given by the usual Euler-Fourier formulae.
The allied series of the above series is
>1(br cOs nt—a, sin nt)= 3 Bu(t).

We write
$O=5 S+~ fw—1).

2. In an attempt to show that the behaviour of the series ] B.(x)/log (2+1)
is more or less like that of the allied series Y Bn.(x), Mohanty and Ray [4] recently
established the following

THEOREM A. If ¢(2) is of bounded variation in (0, z) and |p(8)|[t log (k[t) (B>x)
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is integrable in (0, z), then the series Y, Bn(x)/log (n+1) is summable |R, e™, 1|, where
0<a<1.

It has been recently [1] established that every series summable by the method
IN, 1/(rn+1)| is also summable by the method |R, e, 1] but the converse is, in
general, false. In this paper we establish the following

THEOREM. If ¢(t) is of bounded variation in (0, z) and |J(t)|/t log (k[t) (B>n)
is integrable in (0, r), then the series Y, Bn(x)/log (n+1) is summable |N, 1/(n+1)|.

It is interesting to note that although the series X B.(z)/log (z+1) behaves
like the allied series Y Bn(x) as far as summability |R, e¢*% 1| is concerned as is
shown by Theorem A and Theorem 5 in [2], the function ¢()/log (%/¢) in Theorem
A playing the role of ¢(f) in the corresponding one for the series 3, Bn(x), our
theorem in view of a known result (see [3], Theorem 1) clearly shows that the
same is not true if instead of the summability |R, e*¢, 1| the summability |N, 1/(z+1)|
is considered.

3. The following lemma is pertinent to the proof of our theorem.

LEMMA.
m2=2) [ (n+1)P,—(+1)P, \_
B.1) P ((n—v) log (n—v+1)> =0,
and
. 1 2l (P, P, cos (n—v)t
. B =0(1).
(3.2) it PPy vz[n,ﬂ(y“ n+1> (n—v)log (n—v+1) @)

The estimate in (3.1) is known (see Lemma 4 in [5]). The estimate in (3. 2)
of the lemma can be obtained similarly as the estimation of }}; in [5].

4. Proof of the theorem. Before proceeding to prove the theorem we note
that (see Lemma 1 in [4]) the assumption of the theorem is equivalent to

(o ]
and
4.2) lim 90 _ =0

o+ 10g (B[t)
Using the condition (4.2) and proceeding as in [4] we have

Bu(x) _2(r 6] = k sinnu
log (n+1) = S d{ log (kD) lSt 8 % Tog i+ 1)

0

so that
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“‘1< P P, ) By ()

c 1
‘n§1 PnPn-l

S\0FL T n+l/)log (m—v+1)
2(r 10) & 1 |t/ P P >S &k sin(n—v)u )
= nSo d{ Tog (&/0) } Z PP ,=o<y+1 231)). 18 % og nmvt ) )

Hence by virtue of the condition (4.1), in order to establish the theorem, it is
sufficient to show that uniformly in 0<¢=n,

43 = i 1 %1( P, P, >S”10g k sin(n—v)u d =O<Iogé>.

E PPy | S5\ o1 T n+1)), ° w log (n—v+1) u
Now
I
+t§ P,,11>n-1 :, < uinl - nil)S: og %%d"l

= 1
n={1761+1 PnPr-1

n=1 < P, P >S"lo k sin(n—v)u ”l
v=tmp\v+1  n4+1/); gu log (n—y+1)

=21+ 2+ s+ 24, say.

Using the estimate (see proof of (2. 2.10) in [4])

S” log L2 sin nu du:O( log » ),
0 u n

we have

B el 1wt P, log (n—v)
Zl—O(l)ngl PuPos ,ZE) (v+1)(n—v)log (n—v+1)

O 1 [1/t] 1 n-1 1 0 1 [1/¢1 1 n—1 1
=00 L Grnrs L POV L Grnps A v

4.5)

And
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olsiog FYY_1 2 P,
2= ( o8 7),.; PoPrss 2 ¥ D) og (=r ¥ D)
BN\D/ 1 no1 ]
*.6 —O(t log 7),§1 jn Vs
k
—O(log 7).

By the application of the second mean value theorem we have

- (t=p=n)

n=[1/t]+1 PnPn—l

k el 1
=|log — -_
__<0g t>n=l§t]+1 PnPn—l

k kil 1
log —
+< g t ) n=[lz/t]+1 PnPn—-l

2=

a2t P, P\ log () Sﬂ. _
<,,+1 n+1>log(n—u+l)  Sin (n—v)u du

v=0

WZ’“( P, P > cos (m—v)t
v+l  n+l) (n—v) log (n—v+1)

v=0

[n/z]—1< P. P ) cos (n—yv)p
v+l n+1/ (n—v)log (n—v+1)

v=0

N <10g 1:‘-)(23'1"‘ 2ls2), say.

Applying Abel’s transformation to the inner sum in 33, and using the estimate

cos (n—v)t k
ZT—O(‘°g t>’

we get
(n+1)Pn_(lJ+1)Pv
(n—v) log (n—v+1)

[n/2]-2

k ® 1
=0(log £ S
2.1 0<°g t),,=nzm+l n+ )PP, &

k i 1 (n4+1) P —[n/2] Prajp1—
+0<log 7) n=|§]+1 B+1D)PoPoy (n—[n/2]+1) log (n—[n/2]+2)

k i 1
=0(log =
O( 87 > v ok D) Tog? (it D)
=0(1).

Similarly we can show that X3 ,=O(1), and then

4.7 23=0<10g —I:—>

Again, proceeding similarly as in J};, we get
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nol ( P, P ) cos (n—y)t
v+l  n+l/ (n—v)log(mn—v+1)

& 1
n=[1/t]+1 PnPn—l

k o 1
1 -
+( o8 t>n=§u+l PP

PIPES (log é)

v=[n/2]

nl < Pn P ) cos (m—v)u
v+l  #n+l/) n—v)log (n—v+1)

. (I=p=n)

v=[n/2]

so that by the application of the estimate in (3. 2) of the lemma we get

4.8 Z4=O<log é)

Combining the estimates in (4. 4) through (4. 8) we get the estimate in (4. 3).
This completes the proof of the theorem.
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