ON CERTAIN SUBMANIFOLDS OF CODIMENSION 2 OF AN ALMOST TACHIBANA MANIFOLD

By U-Hang Ki

Dedicated to Professor Kentaro Yano on his sixtieth birthday

§0. Introduction.

Blair, Ludden and Yano [1] introduced a structure which is naturally induced on a submanifold of codimension 2 of an almost complex manifold. Yano and Okumura [6] introduced what they call an (f, g, u, v, λ) -structure and gave characterizations of even-dimensional sphere. In a previous paper [5], Yano and the present author proved that

THEOREM A. Let M be a complete manifold with normal metric (f, g, u, v, λ) -structure satisfying

 $(0.1) (dv)_{ji} = 2cf_{ji},$

or, equivalently

$$(0.2) \qquad \qquad \mathcal{L}_u g_{ji} = -2c\lambda g_{ji},$$

where c is a non-zero constant on M. If $\lambda(1-\lambda^2)$ is an almost everywhere non-zero function and dim M>2, then M is isometric with an even-dimensional sphere.

In the present paper, using theorem A, we study submanifolds of codimension 2 of an almost Tachibana manifold \tilde{M} .

In §1, we recall the properties of (f, g, u, v, λ) -structure of a submanifold of codimension 2 in \tilde{M} and find differential equations which the induced (f, g, u, v, λ) -structure satisfies.

We study in §2 totally umbilical submanifolds of codimension 2 of \tilde{M} and in §3 submanifolds of codimension 2 of 6-dimensional sphere S⁶.

§1. Submanifolds of codimension 2 of an almost Tachibana manifold.

In this section, we recall some properties of submanifolds of codimension 2 in an almost Tachibana manifold as examples of the manifold with (f, g, u, v, λ) -structure (cf. [5], [6]). Let \tilde{M} be a (2n+2)-dimensional almost Tachibana manifold covered by

Received February 8, 1971.

a system of coordinate neighborhoods $\{\tilde{U}; y^{\epsilon}\}$, where here and in the sequel the indices $\kappa, \lambda, \mu, \nu, \cdots$ run over the range $\{1, 2, \cdots, 2n+2\}$, and let $(F_{\lambda}^{\epsilon}, G_{\mu\lambda})$ be the almost Tachibana structure, that is, F_{λ}^{ϵ} is the almost complex structure;

$$F_{\mu}{}^{\kappa}F_{\lambda}{}^{\mu} = -\delta_{\lambda}{}^{\kappa}$$

and $G_{\mu\lambda}$ a Riemannian metric such that

(1.2)
$$G_{\gamma\beta}F_{\mu}{}^{\gamma}F_{\lambda}{}^{\beta}=G_{\mu\lambda},$$

and

where we denote by $\{{}_{\mu}{}_{\lambda}\}$ and V_{μ} the Christoffel symbols formed with $G_{\mu\lambda}$ and the operator of covariant differentiation with respect to $\{{}_{\mu}{}_{\lambda}\}$ respectively.

Let M be a 2n-dimensional differentiable manifold which is covered by a system of coordinate neighborhoods $\{U; x^h\}$, where here and in the sequel the indices h, i, j, \cdots run over the range $\{1, 2, \cdots, 2n\}$ and which is differentiably immersed in \widetilde{M} as a submanifold of codimension 2 by the equations

$$(1. 4) y^{\kappa} = y^{\kappa}(x^{h}).$$

We put

$$B_i^{\kappa} = \partial_i y^{\kappa}, \qquad (\partial_i = \partial/\partial x^i),$$

then B_i^{κ} is, for each *i*, a local vector field of \tilde{M} tangent to *M* and the vectors B_i^{κ} are linearly independent in each coordinate neighborhood. B_i^{κ} is, for each κ , a local 1-form of *M*.

We assume that we can choose two mutually orthogonal unit vectors C^{ϵ} and D^{ϵ} of \tilde{M} normal to M in such a way that 2n+2 vectors B_i^{ϵ} , C^{ϵ} , D^{ϵ} give the positive orientation of \tilde{M} . The transforms $F_{\lambda}^{\epsilon}B_i^{\lambda}$ of B_i^{λ} by F_{λ}^{ϵ} can be expressed as linear combinations of B_i^{ϵ} , C^{ϵ} and D^{ϵ} , that is,

(1.5)
$$F_{\lambda}^{\kappa}B_{i}^{\lambda}=f_{i}^{h}B_{h}^{\kappa}+u_{i}C^{\kappa}+v_{i}D^{\kappa},$$

where f_i^h is a tensor field of type (1, 1) and u_i, v_i are 1-forms on M, and, the transform $F_{\lambda}^* C^{\lambda}$ of C^{λ} by F_{λ}^* and the transform $F_{\lambda}^* D^{\lambda}$ of D^{λ} by F_{λ}^* can be written as

$$F_{\lambda}^{\kappa}C^{\lambda} = -u^{\imath}B_{i}^{\kappa} + \lambda D^{\kappa},$$

(1.6)

$$F_{\lambda}^{\kappa}D^{\lambda} = -v^{\imath}B_{i}^{\kappa} - \lambda C^{\kappa},$$

respectively, where

 $u^{\imath} = u_{\iota}g^{\iota i}, \qquad v^{\imath} = v_{\iota}g^{\iota i},$

 g_{ji} being the Riemannian metric on M induced from that of \tilde{M} , and λ is a function on M. We can easily verify that λ is a function globally defined on M.

From (1.2), (1.5) and (1.6), we have

(1.7)

$$f_{j}^{t}f_{i}^{h} = -\delta_{j}^{h} + u_{j}u^{h} + v_{j}v^{h},$$

$$f_{j}^{t}f_{i}^{s}g_{is} = g_{ji} - u_{j}u_{i} - v_{j}v_{i},$$

$$f_{i}^{t}u_{i} = \lambda v_{i} \quad \text{or} \quad f_{i}^{h}u^{i} = -\lambda v^{h},$$

$$f_{i}^{t}v_{i} = -\lambda u_{i} \quad \text{or} \quad f_{i}^{h}v^{i} = \lambda u^{h},$$

$$u_{i}u^{i} = v_{i}v^{i} = 1 - \lambda^{2}, \quad u_{i}v^{i} = 0.$$

If we put

 $f_{ji} = f_j^r g_{ri},$

then we can easily verify that f_{ji} is skew-symmetric.

We call an (f, g, u, v, λ) -structure of M the set of f, g, u, v and λ satisfying (1.7).

An (f, g, u, v, λ) -structure is said to be *normal* if the tensor field S_{ji}^{h} of type (1, 2) defined by

(1.8)
$$S_{ji}{}^{h} = N_{ji}{}^{h} + (\nabla_{j}u_{i} - \nabla_{i}u_{j})u^{h} + (\nabla_{j}v_{i} - \nabla_{i}v_{j})v^{h}$$

vanishes, where $N_{ji}{}^{h}$ is the Nijenhuis tensor formed with $f_{i}{}^{h}$. We denote by $\{{}_{j}{}^{h}{}_{i}\}$ and V_{i} the Christoffel symbols formed with g_{ji} and the operator of covariant differentiation with respect to $\{{}_{j}{}^{h}{}_{i}\}$ respectively.

An (f, g, u, v, λ) -structure is said to be quasi-normal if the condition

(1.9)
$$S_{jih} - (f_j^t f_{tih} - f_i^t f_{tjh}) = 0,$$

is satisfied, where

(1.10)
$$f_{jih} = \overline{V}_j f_{ih} + \overline{V}_i f_{hj} + \overline{V}_h f_{ji}.$$

Yano and the present author [5] proved

LEMMA 1.1. For a manifold with quasi-normal (f, g, u, v, λ) -structure, if $\lambda(1-\lambda^2)$ is almost everywhere non-zero, then we have

$$(1.11) \qquad \lambda(1-\lambda^2)(\nabla_j u_i - \nabla_i u_j) = u_i f_j^{s} u^t \mathcal{L}_v g_{st} - \{\lambda u_i v^t + (1-\lambda^2) f_i^{t}\} \mathcal{L}_v g_{jt}, \ (\mathcal{L}_u g_{ji}) u^j v^i = 0,$$

and

$$(1.12) \qquad \lambda(1-\lambda^2)(V_j v_i - V_i v_j) = -v_i f_j^{s} v^t \mathcal{L}_u g_{st} - \{\lambda v_i u^t - (1-\lambda^2) f_i^{t}\} \mathcal{L}_u g_{jt}, \ (\mathcal{L}_v g_{ji}) u^j v^i = 0,$$

where \mathcal{L}_u denotes the operator of Lie differentiation with respect to the vector field u^h .

U-HANG KI

The equations of Gauss of M are

(1. 13)
$$V_{j}B_{i}^{\kappa} = \partial_{j}B_{i}^{\kappa} + {\kappa \atop \mu\lambda} B_{j}^{\mu}B_{i}^{\lambda} - B_{h}^{\kappa} {h \atop j i}$$
$$= h_{ji}C^{\kappa} + k_{ji}D^{\kappa},$$

where h_{ji} and k_{ji} are the second fundamental tensors of M with respect to the normals C^{ϵ} and D^{ϵ} respectively.

The equations of Weingarten are

where

 $h_{j^{i}} = h_{jt}g^{ti}, \qquad k_{j^{i}} = k_{jt}g^{ti}$

and l_j is the so-called third fundamental tensor.

Differentiating (1.5) covariantly along M and taking account of (1.13) and (1.14), we get

(1. 15)
$$\begin{array}{c} (\nabla_{\mu}F_{\lambda}^{*})B_{j}^{\mu}B_{i}^{\lambda} - (h_{ji}u^{h} + k_{ji}v^{h})B_{h}^{*} - \lambda k_{ji}C^{*} + \lambda h_{ji}D^{*} \\ = (\nabla_{j}f_{i}^{h} - h_{j}^{h}u_{i} - k_{j}^{h}v_{i})B_{h}^{*} + (\nabla_{j}u_{i} + h_{jt}f_{i}^{t} - l_{j}v_{i})C^{*} + (\nabla_{j}v_{i} + k_{jt}f_{i}^{t} + l_{j}u_{i})D^{*}. \end{array}$$

Thus, from (1.3), we have

(1. 16)
$$\nabla_{j}f_{i}^{h} + \nabla_{i}f_{j}^{h} = -2h_{ji}u^{h} + h_{j}^{h}u_{i} + h_{i}^{h}u_{j} - 2k_{ji}v^{h} + k_{j}^{h}v_{i} + k_{i}^{h}v_{j}.$$

(1. 17)
$$\nabla_j u_i + \nabla_i u_j = -h_{jt} f_i^{\ t} - h_{it} f_j^{\ t} - 2\lambda k_{ji} + l_j v_i + l_i v_j,$$

(1.18)
$$\nabla_{j}v_{i} + \nabla_{i}v_{j} = -k_{jt}f_{i}^{t} - k_{it}f_{j}^{t} + 2\lambda h_{ji} - l_{j}u_{i} - l_{i}u_{j}$$

In particular, if \tilde{M} is a Kählerian manifold, that is, if $V_{\mu}F_{\lambda}^{\ \epsilon}=0$, then we have from (1.15)

$$\nabla_j f_i{}^h = -h_{ji}u^h + h_j{}^h u_i - k_{ji}v^h + k_j{}^h v_i.$$

From this, we have $f_{jih}=0$. Therefore, from (1.9), we see that a submanifold of codimension 2 with quasi-normal (f, g, u, v, λ) -structure of a Kählerian manifold is normal.

§ 2. Totally umbilical submanifolds of conimenson 2 in an almost Tachibana manifold.

In this section, we consider totally umbilical submanifolds of codimension 2 with normal (f, g, u, v, λ) -structure of an almost Tachibana manifold.

Let M be a submanifold of codimension 2 of an almost Tachibana manifold. Then the mean curvature vector of M is defined to be

(2.1)
$$H^{\epsilon} = \frac{1}{2n} h_i{}^i C^{\epsilon} + \frac{1}{2n} k_i{}^i D^{\epsilon},$$

and the mean curvature H of M is defined to be the length of H^{ϵ} , that is,

(2. 2)
$$H^{2} = \frac{1}{4n^{2}} \{(h_{i}^{i})^{2} + (h_{i}^{i})^{2}\}.$$

Differentiating (2.1) covariantly and making use of (1.13) and (1.14), we have

$$\nabla_{j}H^{\epsilon} = -\frac{1}{4n^{2}}\{(h_{i}^{i})^{2} + (k_{i}^{i})^{2}\}B_{j}^{\epsilon} + \frac{1}{2n}(\nabla_{j}h_{i}^{i} - l_{j}k_{i}^{i})C^{\epsilon} + \frac{1}{2n}(\nabla_{j}k_{i}^{i} + l_{j}h_{i}^{i})D^{\epsilon}.$$

If the covariant derivative $V_j H^{\epsilon}$ of the mean curvature vector field of M is tangent to M, then

(2.3)
$$\nabla_j h_i{}^i = l_j k_i{}^i, \quad \nabla_j k_i{}^i = -l_j h_i{}^i.$$

We now suppose that M is totally umbilical. Then from (1.17) we have

(2.4)
$$\nabla_j u_i + \nabla_i u_j = -2 \left(\frac{1}{2n} k_i^t\right) \lambda g_{ji} + l_j v_i + l_i v_j,$$

from which, using the second equation of (1.11), $l_i u^i = 0$. Similarly we see, from (1.18) and the second equation of (1.12), that $l_i v^i = 0$. Taking the symmetric part of the first equation of (1.12) in *j* and *i* and using (2.4), $l_i v^i = 0$ and $l_i u^i = 0$, we find $l_j u_i + l_i u_j = 0$, from which, $l_j = 0$ and consequently $h_i^i = \text{constant}$, $k_i^i = \text{constant}$ because of (2.3). Thus the structure is normal (See [5]).

Taking acount of Theorem A and $l_1=0$, we have

THEOLEM 2. 1.¹⁾ Let M be a complete totally umbilical submanifold of codimension 2 with normal (f, g, u, v, λ) -structure of an almost Tachibana manifold \tilde{M} . Suppose that the covariant derivative of the mean curvature vector of M is tangent to M, the mean curvature of M does not vanish and $\lambda(1-\lambda^2)$ is almost everywhere non-zero (n>1). Then M is isometric with an even-dimensional sphere.

As a direct consequence of (1.17), (2.4), $l_{j}=0$ and Theorem A, we have

THEOREM 2. 2. Let M be a complete totally umbilical submanifold (n>1) of codimension 2 of an almost Tachibana manifold. If the (f, g, u, v, λ) -structure on M is nomal, h_i^{v} or k_i^{v} is non-vanishing constant and $\lambda(1-\lambda^2)$ is an almost everywhere non-zero function, then M is isometric with an even-dimensional sphere.

¹⁾ M. Okumura has proved the theorem in the case \widetilde{M} is Kählerian, [3].

U-HANG KI

§3. Submanifolds of codimension 2 of a 6-dimensional sphere.

Let M be an almost Tachibana manifold of constant curvature, that is, 6dimensional sphere S^6 , [4]. Its curvature form is given by

$$(3.1) R_{\nu\mu\lambda\kappa} = k(G_{\nu\kappa}G_{\mu\lambda} - G_{\mu\kappa}G_{\nu\lambda}),$$

k being a positive constant.

In this section, we consider a submanifold of codimension 2 of S^6 . Substituting (3.1) into the Gauss, Codazzi, Ricci-equations;

$$R_{\nu\mu\lambda\epsilon}B_{k}^{\nu}B_{j}^{\mu}B_{i}^{\lambda}B_{h}^{\epsilon} = R_{kjih} - h_{kh}h_{ji} + h_{jh}h_{ki} - k_{kh}k_{ji} + k_{jh}k_{ki},$$

$$\begin{cases} R_{\nu\mu\lambda\epsilon}B_{k}^{\nu}B_{j}^{\mu}B_{i}^{\lambda}C^{\epsilon} = \nabla_{k}h_{ji} - \nabla_{j}h_{ki} - l_{k}k_{ji} + l_{j}k_{ki},$$

$$R_{\nu\mu\lambda\epsilon}B_{k}^{\nu}B_{j}^{\mu}B_{i}^{\lambda}D^{\epsilon} = \nabla_{k}k_{ji} - \nabla_{j}k_{ki} + l_{k}h_{ji} - l_{j}h_{ki},$$

$$R_{\nu\mu\lambda\epsilon}B_{k}^{\nu}B_{j}^{\mu}C^{\lambda}D^{\epsilon} = \nabla_{k}l_{j} - \nabla_{j}l_{k} + h_{ki}k_{j}^{t} - h_{ji}k_{k}^{t},$$

we have respectively

$$(3.2) R_{kjih} - h_{kh} h_{ji} + h_{jh} h_{ki} - k_{kh} k_{ji} + k_{jh} k_{ki} = k(g_{kh} g_{ji} - g_{jh} g_{ki}),$$

and

(3.3)
$$\begin{cases} \nabla_k h_{ji} - \nabla_j h_{ki} - l_k k_{ji} + l_j k_{ki} = 0, \\ \nabla_k k_{ji} - \nabla_j k_{ki} + l_k h_{ji} - l_j h_{ki} = 0, \end{cases}$$

and

$$(3.4) \qquad \qquad \nabla_k l_j - \nabla_j l_k + h_{kt} k_j^t - h_{jt} k_k^t = 0.$$

Now, we consider a submanifold M of codimension 2 of an almost Tachibana manifold satisfying the fallowing conditions;

$$(3.5) f_j^t h_t^h = h_j^t f_t^h,$$

$$(3.6) f_j^t k_t^h = k_j^t f_t^h.$$

We see that (3.5) and (3.6) are global conditions over the submanifold M.

LEMMA 3.1. For (f, g, u, v, λ) -structure of M with (3.5) and (3.6), if λ does not vanssh almost everywhere, we have

$$(3.7) h_{ji}u^i = \alpha u_j, h_{ji}v^i = \alpha v_j,$$

and

$$(3.8) k_{ji}u^i = \bar{\alpha}u_j, k_{ji}v^i = \bar{\alpha}v_j,$$

where α and $\bar{\alpha}$ are scalars of M [2].

LEMMA 3.2. Let M be a submanifold of codimension 2 of an almost Tachibana

manifold. If the (f, g, u, v, λ) -structure on M is quais-normal and satisfies (3.5) and (3.6), and assume that $\lambda(1-\lambda^2)$ is almost everywhere non-zero, then we have

$$(3.9) \nabla_j u_i = -h_{jt} f_i^{\ t} - \lambda k_{ji},$$

Proof. By assumptions, (1.17) and (1.18) can be respectively written as

$$\nabla_j u_i + \nabla_i u_j = -2\lambda k_{ji} + l_j v_i + l_i v_i, \qquad \nabla_j v_i + \nabla_i v_j = 2\lambda h_{ji} - l_j u_i - l_i u_j.$$

Substituting the equations above into the first equations of (1. 11), (1. 12) respectively, we have

(3.11)
$$\nabla_{j}u_{i} - \nabla_{i}u_{j} = -2h_{jt}f_{i}^{t} + \frac{1}{\lambda}(u_{j}f_{i}^{t}l_{t} - u_{i}f_{j}^{t}l_{t}) + l_{j}v_{i}$$

(3. 12)
$$\nabla_{j}v_{i} - \nabla_{i}v_{j} = -2k_{jt}f_{t}^{t} + \frac{1}{\lambda}(v_{j}f_{t}^{t}l_{t} - v_{i}f_{j}^{t}l_{t}) - l_{j}u_{i}$$

by virtue of Lemma 3.1, from which, taking the symmetric part in j and i and using the second equations of (1.11) and (1.12), $l_j u_i + l_i u_j = 0$ and $l_i v_j + l_j v_i = 0$ and consequently $l_j = 0$. Thus (3.9) and (3.10) proved.

LEMMA 3. 3. Let M be a submanifold of codimension 2 of S⁶. If the (f, g, u, v, λ) -structure on M is quasi-normal and satisfies (3. 5) and (3. 6), and assume that $\lambda(1-\lambda^2)$ is almost everywhere non-zero on M, then we have

$$(3. 13) h_i{}^t h_t{}^h = \alpha h_i{}^h, k_i{}^t k_t{}^h = \bar{\alpha} k_i{}^h,$$

and α and $\bar{\alpha}$ are both constants.

Proof. Differentiating the first equation of (3.7) covariantly, we obtain

$$(\nabla_k h_{ji})u^i + h_{ji}(\nabla_k u^i) = (\nabla_k \alpha)u_j + \alpha \nabla_k u_j,$$

or, using (3.9),

$$(\nabla_k h_{ji})u^i + h_{ji}(h_k^t f_{li} - \lambda k_k^i) = (\nabla_k \alpha)u_j + \alpha(-h_{kt}f_j^t - \lambda k_{kj}),$$

and consequently, taking the skew-symmetric part, we have

$$h_{ji}h_k{}^tf_l{}^i - h_{ki}h_j{}^tf_l{}^i = (\nabla_k\alpha)u_j - (\nabla_j\alpha)u_k - \alpha h_{kl}f_j{}^t + \alpha h_{jl}f_k{}^t$$

because of $V_k h_{ji} - V_j h_{ki} = 0$, $h_{ji} k_k^t = h_{ki} k_j^t$, or, using (3.5),

$$(3. 14) \qquad \qquad 2h_{ji}h_k{}^tf_t{}^i = (\overline{\nu}_k\alpha)u_j - (\overline{\nu}_j\alpha)u_k - 2\alpha h_{kt}f_j{}^t,$$

from which, transvecting with u^k ,

$$-2\alpha\lambda h_{jt}v^{t} = (u^{k}\nabla_{k}\alpha)u_{j} - (\nabla_{j}\alpha)(1-\lambda^{2}) - 2\alpha^{2}\lambda v_{j},$$

that is,

$$(3.15) \qquad (1-\lambda^2) \overline{V}_j \alpha = (u^k \overline{V}_k \alpha) u_j.$$

Thus, $V_{j\alpha}$ being proportional to u_j , we find from (3.14)

$$h_{ji}f_k^t h_t^i = \alpha h_{jt}f_k^t$$

since h_k^t and f_t^i commute.

Transvecting this equation with $f_{h}{}^{k}$, we find

$$(h_{ji}h_t^i)(-\delta_h^t+u_hu^t+v_hv^t)=\alpha h_{jt}(-\delta_h^t+u_hu^t+v_hv^t),$$

or, using (3.7),

$$h_i^t h_i^h = \alpha h_i^h.$$

Differentiating the second equation of (3.7) covariantly and taking account of (3.10), we find

$$(\nabla_j h_i^h) v_h - h_i^h (k_{ji} f_h^t - \lambda h_{jh}) = (\nabla_j \alpha) v_i - \alpha (k_{ji} f_i^t - \lambda h_{ji}),$$

from which, taking the skew-symmetric part

$$h_j{}^hk_{it}f_h{}^t - h_i{}^hk_{jt}f_h{}^t = (\nabla_j\alpha)v_i - (\nabla_i\alpha)v_j + \alpha(k_{it}f_j{}^t - k_{jt}f_i{}^t),$$

because of the equation of Conazzi (3.3) with $l_1=0$.

Transvecting the above equation with v^{j} and making use of (1.7), (3.7) and (3.8), we obtain

$$(3. 16) \qquad (1-\lambda^2) \overline{V}_j \alpha = (v^k \overline{V}_k \alpha) v_j.$$

From (3. 15) and (3. 16), we see that α is constant.

Similarly we can prove

$$k_i{}^t k_i{}^h = \bar{\alpha} k_i{}^h, \quad \bar{\alpha} = \text{constant}.$$

LEMMA 3.4. Under the same assumptions as those in Lemma 3.3, the mean curvature of M is constant.

Proof. Let α' be an eigenvalue of h_i^h at a point of M and p^i the eigenvector corresponding to α' at the point. Then we have

$$h_i^h p^i = \alpha' p^h$$
.

Applying this h_h^j and taking account of (3.13), we find

$$\alpha \alpha' p^j = \alpha'^2 p^j,$$

from which

$$\alpha' = \alpha$$
 or $\alpha' = 0$.

Thus the only eigenvalue of h_i^h is α or 0 and consequently the eigenvalues of h_i^h are constant,

Similarly we can prove that k_i^h has only two constant eigenvalues $\bar{\alpha}$ and 0. Let r and s be multiplicities of the eigenvalues α of h_i^h and $\bar{\alpha}$ of k_i^h respectively. Then α and $\bar{\alpha}$ being constant, r and s are also constant. So we have

$$h_i^i = r\alpha, \quad k_i^i = s\bar{\alpha}.$$

Substituting these into the equation giving the mean curvature of M;

(3. 17)
$$H^{2} = \frac{1}{16} \{ (h_{i}^{i})^{2} + (k_{i}^{i})^{2} \},$$

we have H= const. This complets the proof of the lemma.

We now assume that the mean curvature vector does not vanish everywhere on M and choose the second unit normal D^{ϵ} in such a way that B_i^{ϵ} , C^{ϵ} , D^{ϵ} form the positive orientation of S^{ϵ} . Then from the equation giving the mean curvature vector of M:

$$H^{*} = \frac{1}{4} \{ (h_{i}^{*}C^{*} + k_{i}^{*}D^{*}) \},\$$

 $k_{i^{i}}=0,$

we have

(3.18)

which implies that

$$k_{ji}k^{ji}=0$$

because of (3.13). This shows that $k_{ji}=0$ and consequently

by virtue of (3. 10). Differentiating

$$v_i v^i = 1 - \lambda^2$$

covariantly and taking account of (3.19), we obtain

 $(3. 20) \nabla_j \lambda = -\alpha v_j.$

Substituting (3. 19) into the Ricci-identity:

$$\nabla_k \nabla_j v^h - \nabla_j \nabla_k v^h = R_{kji}{}^h v^i,$$

we have

$$R_{kji}{}^{h}v^{i} = (\nabla_{k}\lambda)h_{j}{}^{h} - (\nabla_{j}\lambda)h_{k}{}^{h} + \lambda(\nabla_{k}h_{j}{}^{h} - \nabla_{j}h_{k}{}^{h})$$

or, using (3.3) with $l_{j}=0$ and (3.20),

On the other hand, transvecting (3.2) with v^i and using $k_{ji}=0$, we have

U-HANG KI

$$R_{kjih}v^{i} - \alpha v_{j}h_{kh} + \alpha v_{k}h_{jh} = k(g_{kh}v_{j} - g_{jh}v_{k}).$$

From these and (3. 21), we have k=0. This contradicts (3. 1). Thus, the mean curvature vector vanishes identically on M and consequently

$$h_i^i = 0, \qquad k_i^i = 0.$$

So, using (3.13), we have

$$h_{ji}h^{ji}=0, \qquad k_{ji}k^{ji}=0$$

which implies that

(3. 22) $h_{ji}=0, \quad k_{ji}=0.$

Thus we have

THEOREM 3.5. Let M be a submanifold of codimension 2 of S⁶. If the (f, g, u, v, λ) -structure on M is quasi-normal, $\lambda(1-\lambda^2)$ is almost everywhere non-zero on M, and the linear transformation $h_{j^{k}}$ and $k_{j^{k}}$ which are defined by the second fundrmental tensors commute with $f_{j^{k}}$, then M is totally geodesic.

If the submanifold M is complete, then it is a great sphere.

BIBLIOGRAPHY

- BLAIR, D. E., G. D. LUDDEN, AND K. YANO, Induced structures on submanifolds. Kodai Math. Sem. Red. 22 (1970), 188–198.
- [2] KI, U-HANG, On certain submanifolds of codimension 2 of a locally Fubinian manifold. Ködai Math. Sem. Rep. 24 (1972), 17–27.
- [3] OKUMURA, M., Totally umbilical submanifolds of a Kählerian manifold. J. Math. Soc. Japan 19 (1967), 317-327.
- [4] TACHIBANA, S., On almost analytic vectors in certain almost Hermitian manifolds. Tôhoku Math. J. 11 (1959), 351-363.
- [5] YANO, K., AND U-HANG KI, On quasi-normal (f, g, u. v, λ)-structures. Kōdai Math. Sem. Rep. 24 (1972), 106-120.
- [6] YANO, K., AND M. OKUMURA, On (f, g, u, v, λ)-structures. Kōdai Math. Sem. Rep. 22 (1970), 401-423.
- [7] _____, On normal (f, g, u, v, λ)-structures on submanifolds of codimension 2 ::: an even-dimensional Euclidean space. Kōdai Math. Sem. Rep. 23 (1971), 172-197,

Tokyo Institute of Technology and Kyugpook University.