ON CERTAIN SUBMANIFOLDS OF CODIMENSION 2 OF AN ALMOST TACHIBANA MANIFOLD

By U-Hang Ki
Dedicated to Professor Kentaro Yano on his sixtieth birthday

§0. Introduction.

Blair, Ludden and Yano [1] introduced a structure which is naturally induced on a submanifold of codimension 2 of an almost complex manifold. Yano and Okumura [6] introduced what they call an (f, g, u, v, λ)-structure and gave characterizations of even-dimensional sphere. In a previous paper [5], Yano and the present author proved that

Theorem A. Let M be a complete manifold with normal metric (f, g, u, v, λ)structure satisfying

$$
\begin{equation*}
(d v)_{j i}=2 c f_{j i}, \tag{0.1}
\end{equation*}
$$

or, equivalently

$$
\begin{equation*}
\mathcal{L}_{u} g_{j i}=-2 c \lambda g_{j i}, \tag{0.2}
\end{equation*}
$$

where c is a non-zero constant on M. If $\lambda\left(1-\lambda^{2}\right)$ is an almost everywhere non-zero function and $\operatorname{dim} M>2$, then M is isometric with an even-dimensional sphere.

In the present paper, using theorem A, we study submanifolds of codimension 2 of an almost Tachibana manifold \tilde{M}.

In $\S 1$, we recall the properties of (f, g, u, v, λ)-structure of a submanifold of codimension 2 in \tilde{M} and find differential equations which the induced (f, g, u, v, λ)structure satisfies.

We study in $\S 2$ totally umbilical submanifolds of codimension 2 of \tilde{M} and in $\S 3$ submanifolds of codimension 2 of 6 -dimensional sphere S^{6}.

§1. Submanifolds of codimension 2 of an almost Tachibana manifold.

In this section, we recall some properties of submanifolds of codimension 2 in an almost Tachibana manifold as examples of the manifold with (f, g, u, v, λ)-structure (cf. [5], [6]). Let \tilde{M} be a $(2 n+2)$-dimensional almost Tachibana manifold covered by

[^0]a system of coordinate neighborhoods $\left\{\tilde{U} ; y^{*}\right\}$, where here and in the sequel the indices $\kappa, \lambda, \mu, \nu, \cdots$ run over the range $\{1,2, \cdots, 2 n+2\}$, and let ($F_{\lambda}{ }^{*}, G_{\mu \lambda}$) be the almost Tachibana structure, that is, $F_{\lambda}{ }^{k}$ is the almost complex structure;
\[

$$
\begin{equation*}
F_{\mu}{ }^{{ }^{\prime}} F_{\lambda}{ }^{\mu}=-\delta_{\lambda}^{\kappa}, \tag{1.1}
\end{equation*}
$$

\]

and $G_{\mu \lambda}$ a Riemannian metric such that

$$
\begin{equation*}
G_{r \beta} F_{\mu}{ }^{\gamma} F_{\lambda}{ }^{\beta}=G_{\mu \lambda}, \tag{1.2}
\end{equation*}
$$

and

$$
\begin{equation*}
\nabla_{\mu} F_{\lambda{ }^{\kappa}+\nabla_{\lambda} F_{\mu}{ }^{\kappa}=0, ~}^{\text {a }} \tag{1.3}
\end{equation*}
$$

where we denote by $\left\{{ }_{\mu}{ }^{k} \lambda\right\}$ and ∇_{μ} the Christoffel symbols formed with $G_{\mu \lambda}$ and the operator of covariant differentiation with respect to $\left\{{ }_{\mu}{ }^{\circ}{ }_{\lambda}\right\}$ respectively.

Let M be a $2 n$-dimensional differentiable manifold which is covered by a system of coordinate neighborhoods $\left\{U ; x^{h}\right\}$, where here and in the sequel the indices h, i, j, \cdots run over the range $\{1,2, \cdots, 2 n\}$ and which is differentiably immersed in \tilde{M} as a submanifold of codimension 2 by the equations

$$
\begin{equation*}
y^{k}=y^{k}\left(x^{h}\right) \tag{1.4}
\end{equation*}
$$

We put

$$
B_{i}{ }^{\kappa}=\partial_{i} y^{k}, \quad\left(\partial_{i}=\partial / \partial x^{i}\right),
$$

then $B_{i}{ }^{\kappa}$ is, for each i, a local vector field of \tilde{M} tangent to M and the vectors $B_{i}{ }^{*}$ are linearly independent in each coordinate neighborhood. $B_{i}{ }^{\kappa}$ is, for each κ, a local 1 -form of M.

We assume that we can choose two mutually orthogonal unit vectors C^{k} and D^{x} of \tilde{M} normal to M in such a way that $2 n+2$ vectors $B_{i}{ }^{\kappa}, C^{\kappa}, D^{\kappa}$ give the positive orientation of \tilde{M}. The transforms $F_{\lambda}{ }^{\kappa} B_{i}{ }^{\lambda}$ of $B_{i}{ }^{\lambda}$ by $F_{i}{ }^{\kappa}$ can be expressed as linear combinations of $B_{i}{ }^{\text {c }}, C^{\varepsilon}$ and D^{c}, that is,

$$
\begin{equation*}
F_{\lambda}{ }^{\kappa} B_{i}{ }^{\lambda}=f_{i}{ }^{h} B_{h}{ }^{\kappa}+u_{i} C^{\kappa}+v_{i} D^{\kappa}, \tag{1.5}
\end{equation*}
$$

where $f_{i}{ }^{h}$ is a tensor field of type $(1,1)$ and u_{i}, v_{i} are 1 -forms on M, and, the transform $F_{\lambda}{ }^{\kappa} C^{\lambda}$ of C^{λ} by $F_{\lambda}{ }^{\kappa}$ and the transform $F_{\lambda}{ }^{k} D^{\lambda}$ of D^{λ} by $F_{\lambda}{ }^{k}$ can be written as

$$
\begin{equation*}
F_{\lambda}{ }^{{ }^{\kappa} C^{\lambda}=-u^{2} B_{i}{ }^{\kappa}+\lambda D^{\kappa}, ~} \tag{1.6}
\end{equation*}
$$

$$
F_{\lambda}{ }^{k} D^{2}=-v^{2} B_{i}{ }^{k}-\lambda C^{k},
$$

respectively, where

$$
u^{2}=u_{t} g^{i i}, \quad v^{2}=v_{t} g^{t i},
$$

$g_{j i}$ being the Riemannian metric on M induced from that of \tilde{M}, and λ is a function on M. We can easily verify that λ is a function globally defined on M.

From (1.2), (1.5) and (1.6), we have

$$
\begin{align*}
& f_{j}^{t} f_{t}^{h}=-\delta_{j}^{h}+u_{j} u^{h}+v_{j} v^{h}, \\
& f_{j}^{t} f_{\imath}^{s} g_{t s}=g_{j i}-u_{j} u_{i}-v_{j} v_{i}, \\
& f_{\imath}{ }^{t} u_{t}=\lambda v_{i} \quad \text { or } \quad f_{\imath}^{h} u^{2}=-\lambda v^{h}, \tag{1.7}\\
& f_{\imath}{ }^{t} v_{t}=-\lambda u_{i} \quad \text { or } \quad f_{2}^{h} v^{2}=\lambda u^{h}, \\
& u_{i} u^{2}=v_{i} v^{i}=1-\lambda^{2}, \quad u_{i} v^{2}=0 .
\end{align*}
$$

If we put

$$
f_{j i}=f_{j}^{r} g_{r l},
$$

then we can easily verify that $f_{j i}$ is skew-symmetric.
We call an (f, g, u, v, λ)-structure of M the set of f, g, u, v and λ satisfying (1.7).
An (f, g, u, v, λ)-structure is said to be normal if the tensor field $S_{j i}{ }^{h}$ of type $(1,2)$ defined by

$$
\begin{equation*}
S_{j i}{ }^{h}=N_{j i}{ }^{h}+\left(\nabla_{j} u_{i}-\nabla_{i} u_{j}\right) u^{h}+\left(\nabla_{j} v_{i}-\nabla_{i} v_{j}\right) v^{h} \tag{1.8}
\end{equation*}
$$

vanishes, where $N_{j i}{ }^{h}$ is the Nijenhuis tensor formed with $f_{2}{ }^{h}$. We denote by $\left\{j_{j}{ }^{h}\right\}$ and ∇_{i} the Christoffel symbols formed with $g_{j i}$ and the operator of covariant differentiation with respect to $\left\{{ }_{j}{ }^{h}{ }_{i}\right\}$ respectively.

An (f, g, u, v, λ)-structure is said to be quasi-normal if the condition

$$
\begin{equation*}
S_{j i l}-\left(f_{j}{ }^{t} f_{t i h}-f_{\imath}{ }^{t} f_{t j h}\right)=0, \tag{1.9}
\end{equation*}
$$

is satisfied, where

$$
\begin{equation*}
f_{j i h}=\nabla_{j} f_{i h}+\nabla_{i} f_{h j}+\nabla_{h} f_{j i} . \tag{1.10}
\end{equation*}
$$

Yano and the present author [5] proved
Lemma 1.1. For a manifold with quasi-normal ($f, g, u, v, \lambda)$-structure, if $\lambda\left(1-\lambda^{2}\right)$ is almost everywhere non-zero, then we have

$$
\begin{equation*}
\lambda\left(1-\lambda^{2}\right)\left(\nabla_{j} u_{i}-\nabla_{i} u_{j}\right)=u_{i} f_{j}^{s} u^{t} \mathcal{L}_{v} g_{s t}-\left\{\lambda u_{i} v^{t}+\left(1-\lambda^{2}\right) f_{\imath}{ }^{t} \mathcal{L}_{v} g_{j t},\left(\mathcal{L}_{u} g_{j i}\right) u^{j} v^{v}=0,\right. \tag{1.11}
\end{equation*}
$$

and

$$
\begin{equation*}
\lambda\left(1-\lambda^{2}\right)\left(\nabla_{j} v_{i}-\nabla_{i} v_{j}\right)=-v_{i} f_{j}^{s} v^{t} \mathcal{L}_{u} g_{s t}-\left\{2 v_{i} u^{t}-\left(1-\lambda^{2}\right) f_{\imath}^{t}\right\} \mathcal{L}_{u} g_{j t},\left(\mathcal{L}_{v} g_{j i}\right) u^{\jmath} v^{v}=0 \tag{1.12}
\end{equation*}
$$

where \mathcal{L}_{u} denotes the operator of Lie differentiation with respect to the vector field u^{h}.

The equations of Gauss of M are

$$
\begin{align*}
\nabla_{j} B_{i}{ }^{\kappa} & =\partial_{j} B_{i}{ }^{\kappa}+\left\{\begin{array}{c}
\kappa \\
\mu \lambda
\end{array}\right\} B_{j}{ }^{\mu} B_{i}{ }^{\alpha}-B_{h}{ }^{\kappa}\left\{\begin{array}{c}
h \\
j i
\end{array}\right\} \tag{1.13}\\
& =h_{j i} C^{\kappa}+k_{j i} D^{\kappa},
\end{align*}
$$

where $h_{j i}$ and $k_{j i}$ are the second fundamental tensors of M with respect to the normals C^{x} and D^{x} respectively.

The equations of Weingarten are

$$
\begin{align*}
& \nabla_{j} C^{\kappa}=\partial_{j} C^{\kappa}+\left\{\begin{array}{c}
\kappa \\
\mu \lambda
\end{array}\right\} B_{j}{ }^{\mu} C^{\lambda}=-h_{j}{ }^{2} B_{i}{ }^{\kappa}+l_{j} D^{\kappa}, \tag{1.14}\\
& \nabla_{j} D^{\kappa}=\partial_{j} D^{\kappa}+\left\{\begin{array}{c}
\kappa \\
\mu \lambda
\end{array}\right\} B_{j}{ }^{\mu} D^{\alpha}=-k_{j}{ }^{2} B_{i}{ }^{\kappa}-l_{j} C^{\kappa},
\end{align*}
$$

where

$$
h_{j}{ }^{2}=h_{j t} t^{t i}, \quad k_{j}{ }^{2}=k_{j t} q^{t i}
$$

and l_{J} is the so-called third fundamental tensor.
Differentiating (1.5) covarirntly along M and taking account of (1.13) and (1.14), we get

$$
\begin{align*}
& \left(\nabla_{\mu} F_{\lambda}{ }^{\kappa}\right) B_{j}{ }^{\mu} B_{i}{ }^{2}-\left(h_{j i} u^{h}+k_{j i} v^{h}\right) B_{h}{ }^{\kappa}-\lambda k_{j i} C^{\kappa}+\lambda h_{j i} D^{\kappa} \tag{1.15}\\
= & \left(\nabla_{j} f_{i}{ }^{h}-h_{j}{ }^{h} u_{i}-k_{j}{ }^{h} v_{i}\right) B_{h}{ }^{\kappa}+\left(\nabla_{j} u_{i}+h_{j t} f_{i}{ }^{t}-l_{j} v_{i}\right) C^{\kappa}+\left(\nabla_{j} v_{i}+k_{j t} f_{i}{ }^{t}+l_{j} u_{i}\right) D^{\kappa} .
\end{align*}
$$

Thus, from (1.3), we have

$$
\begin{equation*}
\nabla_{j} f_{i}{ }^{h}+\nabla_{\imath} f_{j}{ }^{h}=-2 h_{j i} u^{h}+h_{j}{ }^{h} u_{i}+h_{i}{ }^{h} u_{j}-2 k_{j i} v^{h}+k_{j}{ }^{h} v_{i}+k_{i}{ }^{h} v_{j} . \tag{1.16}
\end{equation*}
$$

$$
\begin{equation*}
\nabla_{j} u_{i}+\nabla_{i} u_{j}=-h_{j t} f_{i}^{t}-h_{i t} f_{j}^{t}-2 \lambda k_{j i}+l_{j} v_{i}+l_{i} v_{j}, \tag{1.17}
\end{equation*}
$$

$$
\begin{equation*}
\nabla_{j} v_{i}+\nabla_{i} v_{j}=-k_{j t} f_{\imath} t-k_{i t} f_{j}^{t}+2 \lambda h_{j i}-l_{j} u_{i}-l_{i} u_{j} . \tag{1.18}
\end{equation*}
$$

In particular, if \tilde{M} is a Kählerian manifold, that is, if $\nabla_{\mu} F_{\lambda}{ }^{\kappa}=0$, then we have from (1.15)

$$
\nabla_{j} f_{i}{ }^{h}=-h_{j i} u^{h}+h_{j}{ }^{h} u_{i}-k_{j i} v^{h}+k_{j}{ }^{h} v_{i} .
$$

From this, we have $f_{j i t}=0$. Therefore, from (1.9), we see that a submanifold of codimension 2 with quasi-normal (f, g, u, v, λ)-structure of a Kählerian manifold is normal.

§ 2. Totally umbilical submanifolds of conimenson 2 in an almost Tachibana manifold.

In this section, we consider totally umbilical submanifolds of codimension 2 with normal (f, g, u, v, λ)-structure of an almost Tachibana manifold.

Let M be a submanifold of codimension 2 of an almost Tachibana manifold. Then the mean curvature vector of M is defined to be

$$
\begin{equation*}
H^{\varepsilon}=\frac{1}{2 n} h_{i}{ }^{i} C^{\varepsilon}+\frac{1}{2 n} k_{i}{ }^{i} D^{\kappa} \tag{2.1}
\end{equation*}
$$

and the mean curvature H of M is defined to be the length of H^{*}, that is,

$$
\begin{equation*}
H^{2}=\frac{1}{4 n^{2}}\left\{\left(h_{i}^{i}\right)^{2}+\left(k_{i}\right)^{2}\right\} \tag{2.2}
\end{equation*}
$$

Differentiating (2.1) covariantly and making use of (1.13) and (1.14), we have

$$
\nabla_{j} H^{\kappa}=-\frac{1}{4 n^{2}}\left\{\left(h_{i}{ }^{i}\right)^{2}+\left(k_{i}\right)^{2}\right\} B_{j}{ }^{\kappa}+\frac{1}{2 n}\left(\nabla_{j} h_{i}{ }^{i}-l_{j} k_{i}{ }^{i}\right) C^{\kappa}+\frac{1}{2 n}\left(\nabla_{j} k_{i}{ }^{i}+l_{j} h_{i}{ }^{i}\right) D^{\mathrm{c}} .
$$

If the covariant derivative $\nabla_{j} H^{*}$ of the mean curvature vector field of M is tangent to M, then

$$
\begin{equation*}
\nabla_{j} h_{i}{ }^{2}=l_{j} k_{i}{ }^{i}, \quad \nabla_{j} k_{i}{ }^{i}=-l_{j} h_{i}{ }^{2} . \tag{2.3}
\end{equation*}
$$

We now suppose that M is totally umbilical. Then from (1.17) we have

$$
\begin{equation*}
\nabla_{j} u_{i}+\nabla_{i} u_{j}=-2\left(\frac{1}{2 n} k_{t}^{t}\right) \lambda g_{j i}+l_{j} v_{i}+l_{i} v_{j} \tag{2.4}
\end{equation*}
$$

from which, using the second equation of (1.11), $l_{t} u^{t}=0$. Similarly we see, from (1.18) and the second equation of (1.12), that $l_{t} v^{t}=0$. Taking the symmetric part of the first equation of (1.12) in j and i and using (2.4), $l_{t} v^{t}=0$ and $l_{t} u^{t}=0$, we find $l_{j} u_{i}+l_{i} u_{j}=0$, from which, $l_{j}=0$ and consequently $h_{i}{ }^{i}=$ constant, $k_{i}{ }^{i}=$ constant because of (2.3). Thus the structure is normal (See [5]).

Taking acount of Theorem A and $l_{j}=0$, we have
Theolem 2.1.1) Let M be a complete totally umbilical submanifold of codimension 2 with normal (f, g, u, v, λ)-structure of an almost Tachibana manifold \tilde{M}. Suppose that the covariant derivative of the mean curvature vector of M is tangent to M, the mean curvature of M does not vanish and $\lambda\left(1-\lambda^{2}\right)$ is almost everywhere non-zero $(n>1)$. Then M is isometric with an even-dimensional sphere.

As a direct consequence of (1.17), (2.4), $l_{j}=0$ and Theorem A, we have
Theorem 2.2. Let M be a complete totally umbilical submanifold ($n>1$) of codimension 2 of an almost Tachibana manifold. If the (f, g, u, v, λ)-structure on M is nomal, $h_{i}{ }^{2}$ or $k_{i}{ }^{2}$ is non-vanishing constant and $\lambda\left(1-\lambda^{2}\right)$ is an almost everywhere non-zero function, then M is isometric with an even-dimensional sphere.

[^1]
§ 3. Submanifolds of codimension 2 of a $\mathbf{6}$-dimensional sphere.

Let M be an almost Tachibana manifold of constant curvature, that is, 6 dimensional sphere S^{6}, [4]. Its curvature form is given by

$$
\begin{equation*}
R_{\nu \mu k k}=k\left(G_{\nu k} G_{\mu \lambda}-G_{\mu k} G_{\nu \lambda}\right), \tag{3.1}
\end{equation*}
$$

k being a positive constant.
In this section, we consider a submanifold of codimension 2 of S^{6}. Substituting (3.1) into the Gauss, Codazzi, Ricci-equations;

$$
\begin{gathered}
R_{\nu \mu k k} B_{k}{ }^{\nu} B_{\jmath}{ }^{\mu} B_{i}{ }^{2} B_{h}{ }^{\kappa}=R_{k j i h}-h_{k h} h_{j i}+h_{j h} h_{k i}-k_{k h} k_{j i}+k_{j h} k_{k v}, \\
\left\{\begin{array}{l}
R_{\nu \mu \lambda k} B_{k}{ }^{\nu} B_{j}{ }^{\mu} B_{i}{ }^{2} C^{k}=\nabla_{k} h_{j i}-\nabla_{j} h_{k i}-l_{k} k_{j i}+l_{j} k_{k i}, \\
R_{\nu \mu \lambda k} B_{k}{ }^{\nu} B_{j}{ }^{\mu} B_{i}{ }^{2} D^{k}=\nabla_{k} k_{j i}-\nabla_{j} k_{k i}+l_{k} h_{j i}-l_{j} h_{k i}, \\
R_{\nu \mu \lambda k} B_{k}{ }^{\nu} B_{j}{ }^{\mu} C^{2} D^{k}=\nabla_{k} l_{j}-\nabla_{j} l_{k}+h_{k t} k_{j}{ }^{t}-h_{j t} k_{k}{ }^{t},
\end{array}\right.
\end{gathered}
$$

we have respectively

$$
\begin{equation*}
R_{k j i h}-h_{k h} h_{j i}+h_{j h} h_{k i}-k_{k h} k_{j i}+k_{j h} k_{k \imath}=k\left(g_{k h} g_{j i}-g_{j h} g_{k \imath}\right), \tag{3.2}
\end{equation*}
$$

and

$$
\left\{\begin{array}{l}
\nabla_{k} h_{j i}-\nabla_{j} h_{k i}-l_{k} h_{j i}+l_{j} k_{k i}=0, \tag{3.3}\\
\nabla_{k} k_{j i}-\nabla_{j} k_{k i}+l_{k} h_{j i}-l_{j} h_{k i}=0,
\end{array}\right.
$$

and

$$
\begin{equation*}
\nabla_{k} l_{j}-\nabla_{j} l_{k}+h_{k t} k_{j}{ }^{t}-h_{j t} k_{k}{ }^{t}=0 \tag{3.4}
\end{equation*}
$$

Now, we consider a submanifold M of codimension 2 of an almost Tachibana manifold satisfying the fallowing conditions;

$$
\begin{align*}
& f_{j}^{t} h_{t}{ }^{h}=h_{\jmath}{ }^{t} f_{t}^{h}, \tag{3.5}\\
& f_{j}{ }^{t} k_{t}{ }^{h}=k_{\jmath}{ }^{t} f_{t}^{h} . \tag{3.6}
\end{align*}
$$

We see that (3.5) and (3.6) are global conditions over the submanifold M.
Lemma 3.1. For (f, g, u, v, λ)-structure of M with (3.5) and (3. 6), if λ does not vanssh almost everywhere, we have

$$
\begin{equation*}
h_{j i} u^{i}=\alpha u_{j}, \quad h_{j i} v^{i}=\alpha v_{j}, \tag{3.7}
\end{equation*}
$$

and

$$
\begin{equation*}
k_{j i} u^{2}=\bar{\alpha} u_{j}, \quad k_{j i} v^{i}=\bar{\alpha} v_{j}, \tag{3.8}
\end{equation*}
$$

where α and $\bar{\alpha}$ are scalars of M [2].
Lemma 3. 2. Let Mbe a submanifold of codimension 2 of an almost Tachibana
manifold. If the (f, g, u, v, λ)-structure on M is quais-normal and satisfies (3.5) and (3.6), and assume that $\lambda\left(1-\lambda^{2}\right)$ is almost everywhere non-zero, then we have

$$
\begin{align*}
\nabla_{j} u_{i} & =-h_{j t} f_{\imath}^{t}-\lambda k_{j i}, \tag{3.9}\\
\nabla_{j} v_{i} & =-k_{j t} f_{\imath}^{t}+\lambda h_{j i}, \tag{3.10}
\end{align*}
$$

Proof. By assumptions, (1.17) and (1.18) can be respectively written as

$$
\nabla_{j} u_{i}+\nabla_{i} u_{j}=-2 \lambda k_{j i}+l_{j} v_{i}+l_{i} v_{i}, \quad \nabla_{j} v_{i}+\nabla_{i} v_{j}=2 \lambda h_{j i}-l_{j} u_{i}-l_{i} u_{j}
$$

Substituting the equations above into the first equations of (1.11), (1.12) respectively, we have

$$
\begin{equation*}
\nabla_{j} u_{i}-\nabla_{i} u_{j}=-2 h_{j t} f_{\imath}^{t}+\frac{1}{\lambda}\left(u_{j} f_{2}^{t} l_{t}-u_{i} f_{j}^{t} l_{t}\right)+l_{j} v_{i} \tag{3.11}
\end{equation*}
$$

$$
\begin{equation*}
\nabla_{j} v_{i}-\nabla_{i} v_{j}=-2 k_{j t} f_{\imath}^{t}+\frac{1}{\lambda}\left(v_{j} f_{\imath}^{t} l_{t}-v_{i} f_{j}^{t} l_{t}\right)-l_{j} u_{i} \tag{3.12}
\end{equation*}
$$

by virtue of Lemma 3.1, from which, taking the symmetric part in j and i and using the second equations of (1.11) and (1.12), $l_{j} u_{i}+l_{i} u_{j}=0$ and $l_{i} v_{j}+l_{j} v_{i}=0$ and consequently $l_{j}=0$. Thus (3.9) and (3.10) proved.

Lemma 3. 3. Let M be a submanifold of codimension 2 of S^{6}. If the (f, g, u, v, λ)structure on M is quasi-normal and satisfies (3.5) and (3.6), and assume that $\lambda\left(1-\lambda^{2}\right)$ is almost everywhere non-zero on M, then we have

$$
\begin{equation*}
h_{i}{ }^{t} h_{t}{ }^{h}=\alpha h_{i}{ }^{h}, \quad k_{i}{ }^{t} k_{t}{ }^{h}=\bar{\alpha} k_{i}{ }^{h} \tag{3.13}
\end{equation*}
$$

and α and $\bar{\alpha}$ are both constants.
Proof. Differentiating the first equation of (3.7) covariantly, we obtain

$$
\left(\nabla_{k} h_{j i}\right) u^{2}+h_{j i}\left(\nabla_{k} u^{i}\right)=\left(\nabla_{k} \alpha\right) u_{j}+\alpha \nabla_{k} u_{j},
$$

or, using (3.9),

$$
\left(\nabla_{k} h_{j i}\right) u^{2}+h_{j i}\left(h_{k}^{t} f_{t}{ }^{2}-\lambda k_{k}{ }^{i}\right)=\left(\nabla_{k} \alpha\right) u_{j}+\alpha\left(-h_{k t} f_{j}^{t}-\lambda k_{k j}\right),
$$

and consequently, taking the skew-symmetric part, we have

$$
h_{j i} h_{k}{ }^{t} f_{t}{ }^{i}-h_{k i} h_{j}{ }^{t} f_{t}{ }^{2}=\left(\nabla_{k} \alpha\right) u_{j}-\left(\nabla_{j} \alpha\right) u_{k}-\alpha h_{k t} f_{j}^{t}+\alpha h_{j t} f_{k}^{t}
$$

because of $\nabla_{k} h_{j i}-\nabla_{j} h_{k_{2}}=0, h_{j t} k_{k}{ }^{t}=h_{k t} k_{j}{ }^{t}$, or, using (3.5),

$$
\begin{equation*}
2 h_{j i} h_{k}^{t} f_{t}{ }^{2}=\left(\nabla_{k} \alpha\right) u_{j}-\left(\nabla_{j} \alpha\right) u_{k}-2 \alpha h_{k t} f_{j}^{t}, \tag{3.14}
\end{equation*}
$$

from which, transvecting with u^{k},

$$
-2 \alpha \lambda h_{j t} v^{t}=\left(u^{k} \nabla_{k} \alpha\right) u_{j}-\left(\nabla_{j} \alpha\right)\left(1-\lambda^{2}\right)-2 \alpha^{2} \lambda v_{j},
$$

that is,

$$
\begin{equation*}
\left(1-\lambda^{2}\right) \nabla_{j} \alpha=\left(u^{k} \nabla_{k} \alpha\right) u_{\jmath} . \tag{3.15}
\end{equation*}
$$

Thus, $\nabla_{j} \alpha$ being proportional to u_{j}, we find from (3.14)

$$
h_{j i} f_{k}^{t} h_{t}{ }^{i}=\alpha h_{j t} f_{k}^{t}
$$

since $h_{k}{ }^{t}$ and $f_{t}{ }^{i}$ commute.
Transvecting this equation with $f_{h}{ }^{k}$, we find

$$
\left(h_{j i} h_{t}{ }^{i}\right)\left(-\delta_{h}^{t}+u_{h} u^{t}+v_{h} v^{t}\right)=\alpha h_{j t}\left(-\delta_{h}^{t}+u_{h} u^{t}+v_{h} v^{t}\right),
$$

or, using (3.7),

$$
h_{i}{ }^{t} h_{t}^{h}=\alpha h_{i}{ }^{h} .
$$

Differentiating the second equation of (3.7) covariantly and taking account of (3. 10), we find

$$
\left(\nabla_{j} h_{i}{ }^{h}\right) v_{h}-h_{i}{ }^{h}\left(k_{j t} f_{h}{ }^{t}-\lambda h_{j h}\right)=\left(\nabla_{j} \alpha\right) v_{i}-\alpha\left(k_{j i} f_{i}{ }^{t}-\lambda h_{j t}\right),
$$

from which, taking the skew-symmetric part

$$
h_{j}{ }^{h} k_{i t} f_{h}{ }^{t}-h_{i}{ }^{h} k_{j t} f_{h}{ }^{t}=\left(\nabla_{j} \alpha\right) v_{i}-\left(\nabla_{i} \alpha\right) v_{j}+\alpha\left(k_{i t} f_{j} t-k_{j t} f_{i}{ }^{t}\right),
$$

because of the equation of Conazzi (3.3) with $l_{j}=0$.
Transvecting the above equation with v^{j} and making use of (1.7), (3.7) and (3. 8), we obtain

$$
\begin{equation*}
\left(1-\lambda^{2}\right) \nabla_{j} \alpha=\left(v^{k} \nabla_{k} \alpha\right) v_{j} \tag{3.16}
\end{equation*}
$$

From (3.15) and (3.16), we see that α is constant.
Similarly we can prove

$$
k_{i}{ }^{t} k_{t}{ }^{h}=\bar{\alpha} k_{i}{ }^{h}, \quad \bar{\alpha}=\text { constant } .
$$

Lemma 3.4. Under the same assumptions as those in Lemma 3.3, the mean curvature of M is constant.

Proof. Let α^{\prime} be an eigenvalue of ${h_{i}}^{h}$ at a point of M and p^{i} the eigenvector corresponding to α^{\prime} at the point. Then we have

$$
h_{i}{ }^{h} p^{i}=\alpha^{\prime} p^{h}
$$

Applying this $h_{h}{ }^{j}$ and taking account of (3.13), we find

$$
\alpha \alpha^{\prime} p^{j}=\alpha^{\prime 2} p^{j}
$$

from which

$$
\alpha^{\prime}=\alpha \quad \text { or } \quad \alpha^{\prime}=0 .
$$

Thus the only eigenvalue of $h_{i}{ }^{h}$ is α or 0 and consequently the eigenvalues of $h_{i}{ }^{h}$ are constant,

Similarly we can prove that $k_{i}{ }^{h}$ has only two constant eigenvalues $\bar{\alpha}$ and 0 .
Let r and s be multiplicities of the eigenvalues α of $h_{i}{ }^{h}$ and $\bar{\alpha}$ of $k_{i}{ }^{h}$ respectively. Then α and $\bar{\alpha}$ being constant, r and s are also constant. So we have

$$
h_{i}{ }^{2}=r \alpha, \quad k_{i}{ }^{i}=s \bar{\alpha} .
$$

Substituting these into the equation giving the mean curvature of M;

$$
\begin{equation*}
H^{2}=\frac{1}{16}\left\{\left(h_{i}\right)^{2}+\left(k_{i}\right)^{2}\right\} \tag{3.17}
\end{equation*}
$$

we have $H=$ const. This complets the proof of the lemma.
We now assume that the mean curvature vector does not vanish everywhere on M and choose the second unit normal D^{k} in such a way that $B_{i}{ }^{k}, C^{k}, D^{k}$ form the positive orientation of S^{6}. Then from the equation giving the mean curvature vector of M :

$$
H^{\kappa}=\frac{1}{4}\left\{\left(h_{i}{ }^{2} C^{\kappa}+k_{i}{ }^{i} D^{x}\right)\right\},
$$

we have

$$
\begin{equation*}
k_{i}{ }^{2}=0, \tag{3.18}
\end{equation*}
$$

which implies that

$$
k_{j i} k^{j i}=0,
$$

because of (3.13). This shows that $k_{j i}=0$ and consequently

$$
\begin{equation*}
\nabla_{j} v_{i}=\lambda h_{j i}, \tag{3.19}
\end{equation*}
$$

by virtue of (3.10).
Differentiating

$$
v_{i} v^{2}=1-\lambda^{2}
$$

covariantly and taking account of (3.19), we obtain

$$
\begin{equation*}
\nabla_{j} \lambda=-\alpha v_{j} . \tag{3.20}
\end{equation*}
$$

Substituting (3.19) into the Ricci-identity:

$$
\nabla_{k} \nabla_{j} v^{h}-\nabla_{j} \nabla_{k} v^{h}=R_{k j i}{ }^{h} v^{2},
$$

we have

$$
R_{k j i^{h}}{ }^{h} v^{2}=\left(\nabla_{k} \lambda\right) h_{j}{ }^{h}-\left(\nabla_{j} \lambda\right) h_{k}{ }^{h}+\lambda\left(\nabla_{k} h_{j}{ }^{h}-\nabla_{j} h_{k}{ }^{h}\right),
$$

or, using (3.3) with $l_{j}=0$ and (3.20),

$$
\begin{equation*}
R_{k j i h} v^{i}-\alpha v_{j} h_{k h}+\alpha v_{k} h_{j h}=0 . \tag{3.21}
\end{equation*}
$$

On the other hand, transvecting (3.2) with v^{2} and using $k_{j i}=0$, we have

$$
R_{k j i h} v^{2}-\alpha v_{j} h_{k h}+\alpha v_{k} h_{j h}=k\left(g_{k h} v_{j}-g_{j h} v_{k}\right) .
$$

From these and (3.21), we have $k=0$. This contradicts (3.1). Thus, the mean curvature vector vanishes identically on M and consequently

$$
h_{i}{ }^{2}=0, \quad k_{i}{ }^{i}=0 .
$$

So, using (3.13), we have

$$
h_{j i} h^{j i}=0, \quad k_{j i} k^{j i}=0
$$

which implies that

$$
\begin{equation*}
h_{j i}=0, \quad k_{j i}=0 . \tag{3.22}
\end{equation*}
$$

Thus we have
Theorem 3.5. Let M be a submanifold of codimension 2 of S^{6}. If the (f, g, u, v, λ)-structure on M is quasi-normal, $\lambda\left(1-\lambda^{2}\right)$ is almost everywhere non-zero on M, and the linear transformation $h_{j}{ }^{2}$ and $k_{j}{ }^{2}$ which are defined by the second fundrmental tensors commute with $f_{j}{ }^{2}$, then M is totally geodesic.

If the submanifold M is complete, then it is a great sphere.

Bibliography

[1] Blair, D. E., G. D. Ludden, and K. Yano, Induced structures on submanifolds. Kōdaı Math. Sem. Red. 22 (1970), 188-198.
[2] Ki, U-Hang, On certan submanifolds of codimension 2 of a locally Fubinian manifold. Kōdaı Math. Sem. Rep. 24 (1972), 17-27.
[3] Oкumura, M., Totally umbilical submanifolds of a Kählerıan manifold. J. Math. Soc. Japan 19 (1967), 317-327.
[4] Tachibana, S., On almost analytic vectors in certain almost Hermitian manifolds. Tôhoku Math. J. 11 (1959), 351-363.
[5] Yano, K., and U-Hang Kı, On quasi-normal (f, g, u, v, λ)-structures. Kōdai Math. Sem. Rep. 24 (1972), 106-120.
[6] Yano, K., and M. Okumura, On (f, g, u, v, λ)-structures. Kōdaı Math. Sem. Rep. 22 (1970), 401-423.
[7] ——On an cven-dimensıonal Euclidean space. Kōdaı Math. Sem. Rep. 23 (1971), 172-197,

[^0]: Received February 8, 1971.

[^1]: 1) M. Okumura has proved the theorem in the case \widetilde{M} is Kählerian, [3].
