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§0. Introduction.

Blair, Ludden and Yano [1] introduced a structure which is naturally induced
on a submanifold of codimension 2 of an almost complex manifold. Yano and
Okumura [6] introduced what they call an (/, g, u, v, Λ)-structure and gave chara-
cterizations of even-dimensional sphere. In a previous paper [5], Yano and the present
author proved that

THEOREM A. Let M be a complete manifold with normal metric (/, g, u, v, λ)-
structure satisfying

(0. 1)

or, equivalently

(0.2)

where c is a non-zero constant on M. If 2(1—λ2) is an almost everywhere non-zero
function and dim M>2, then M is isometric with an even-dimensional sphere.

In the present paper, using theorem A, we study submanifolds of codimension
2 of an almost Tachibana manifold M.

In § 1, we recall the properties of (/, g, u, v, Λ)-structure of a submanifold of
codimension 2 in M and find differential equations which the induced (/, g, u, v, λ}-
structure satisfies.

We study in §2 totally umbilical submanifolds of codimension 2 of M and in
§3 submanifolds of codimension 2 of β-dimensional sphere S6.

§ 1. Submanifolds of codimension 2 of an almost Tachibana manifold.

In this section, we recall some properties of submanifolds of codimension 2 in
an almost Tachibana manifold as examples of the manifold with (/, g, u, v, Λ)-structure
(cf. [5], [6]). Let M be a (2n+2)-dimensional almost Tachibana manifold covered by
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a system of coordinate neighborhoods (0; y'}, where here and in the sequel the indices
K, λ, μ, v, - run over the range {1, 2, •••, 2w+2}, and let ( F λ

κ , G μ λ ] be the almost
Tachibana structure, that is, F/ is the almost complex structure;

(1.1) F/*7=-«,

and Gμλ a Riemannian metric such that

(1. 2) GrβFμ

rFS = Gp>9

and

(1.3)

where we denote by { μ λ } and Vμ the Christoffel symbols formed with Gμλ and the
operator of covariant differentiation with respect to { μ λ } respectively.

Let M be a 2^-dimensional differentiate manifold which is covered by a system
of coordinate neighborhoods {£/; xh}, where here and in the sequel the indices
h, i,j, ••• run over the range {1, 2, •••, 2n] and which is differentiably immersed in
M as a submanifold of codimension 2 by the equations

(1.4) yκ=yκ(xh).

We put

then £/ is, for each i, a local vector field of M tangent to M and the vectors Bf
are linearly independent in each coordinate neighborhood. Bf is, for each K, a local
1-form of M.

We assume that we can choose two mutually orthogonal unit vectors Cκ and Dκ

of M normal to M in such a way that 2^+2 vectors Bi, Cκ, Dκ give the positive
orientation of M. The transforms Fλ

κBiλ of Biλ by F/ can be expressed as linear
combinations of Bi, Cκ and Dκ, that is,

(1. 5) FfBf =f^hBh

κ + «*€• + vjr,

where /J1 is a tensor field of type (1, 1) and uiy vt are 1-forms on M, and, the
transform Fλ

κCλ of Cλ by Fλ

κ and the transform F/D^ of Dλ by F/ can be written as

(1.6)

respectively, where

vl—υtg
ti

>
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Qji being the Riemannian metric on M induced from that of M, and λ is a func-
tion on M. We can easily verify that λ is a function globally defined on M.

From (1. 2), (1. 5) and (1. 6), we have

//Λ*0ί* = Oji - ty«i - VjVt,

(1.7) ftut=λVi or f*u*=-

/>, = - ̂  or Λ V =

WίW*=^*=l— .A2, #ί0l=0.

If we put

then we can easily verify that fji is skew-symmetric.
We call an (/, g, w, v, "^-structure of M the set of/, g, w, 0 and λ satisfying (1. 7).

An (/, g, u, v, ^-structure is said to be normal if the tensor field SjJ1 of type
(1, 2) defined by

(1. 8) Sjih = Njih + (PjUi - PiUJ)uh + (PjVi - PiVj}vh

vanishes, where N^ is the Nijenhuis tensor formed with fl

h. We denote by {/J
and PI the Christoffel symbols formed with g^ and the operator of covariant
differentiation with respect to {/J respectively.

An (/, g, u, vy ^)-structure is said to be quasi-normal if the condition

(1. 9)

is satisfied, where

(i. 10)

Yano and the present author [5] proved

LEMMA 1. 1. For a manifold with quasi-normal (/, g, u, v, ^-structure, if Λ(l—
is almost everywhere non-zero, then we have

(1. 11) λ(l - λ^PjUi - PM) = UtfSu'j:** - {lUitf + (1 - λ*)K}JC,gfr (JCrfώu'υ* = 0,

and

(1. 12) ^(1-^)(Γ 1̂

where £u denotes the operator of Lie differentiation with respect to the vector
field uh.
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The equations of Gauss of M are

(1. 13)
^

where h^ and kji are the second fundamental tensors of M with respect to the
normals (7 and D" respectively.

The equations of Weingarten are

[μi
(1.14)

where

and lj is the so-called third fundamental tensor.
Differentiating (1. 5) covarirntly along M and taking account oί (1. 13) and

(1. 14), we get

(1. 15)
= (Pjfih-hjhUi-kj

hvί)Bh

κ+(Pjuί+hjtfl

t-ljvi)Cκ+

Thus, from (1. 3), we have

(1. 16) ΓJ/<

(1. 17) PjUi + PiUj = - hjtfS - hitfΐ - 22k j i + ljvt + kv3,

(1. 18) Fj

In particular, if M is a Kahlerian manifold, that is, if ^7*7=0, then we have
from (1. 15)

From this, we have //^=0. Therefore, from (1. 9), we see that a submanifold of

codimension 2 with quasi-normal (/, g, u, v, Λ) -structure of a Kahlerian manifold is
normal.

§ 2. Totally umbilical submanifolds of conimenson 2 in an almost Tachibana
manifold.

In this section, we consider totally umbilical submanifolds of codimension 2
with normal (/, g, u, v, ^-structure of an almost Tachibana manifold.
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Let M be a submanifold of codimension 2 of an almost Tachibana manifold.
Then the mean curvature vector of M is defined to be

(2.1) H'

and the mean curvature H of M is defined to be the length of H", that is,

(2.2) H2=-^{(hlγ+(kiγ}.

Differentiating (2. 1) covariantly and making use of (1. 13) and (1. 14), we have

If the covariant derivative VjH* of the mean curvature vector field of M is
tangent to M, then

(2. 3) W=/,*Λ Γy*4«= -/,AΛ

We now suppose that M is totally umbilical. Then from (1. 17) we have

(2. 4)

from which, using the second equation of (1. 11), /«#*=(). Similarly we see, from
(1. 18) and the second equation of (1. 12), that 1^=0. Taking the symmetric part
of the first equation of (1. 12) in j and i and using (2. 4), 1^=0 and ^=0, we
find ljUi-\-liUj=Q, from which, /, = () and consequently hi

i= constant, ki

ί= constant
because of (2. 3). Thus the structure is normal (See [5]).

Taking acount of Theorem A and /j=0, we have

THEOLEM 2. 1.15 Let M be a complete totally umbilical submanifold of codimen-
sion 2 with normal (/, g, u, v, ^-structure of an almost Tachibana manifold M.
Suppose that the covariant derivative of the mean curvature vector of M is tangent
to M, the mean curvature of M does not vanish and λ(l—λ2) is almost everywhere
non-zero («>1). Then M is isometric with an even-dimensional sphere.

As a direct consequence of (1. 17), (2. 4), /,=() and Theorem A, we have

THEOREM 2. 2. Let M be a complete totally umbilical submanifold (n>V) of
codimension 2 of an almost Tachibana manifold. If the (/, g, u, v, X)- structure on M
is nomal, hi* or k£ is non-vanishing constant and λ(l—λ2) is an almost everywhere
non-zero function, then M is isometric with an even-dimensional sphere.

1) M. Okumura has proved the theorem in the case M is Kahlerian, [3].
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§ 3. Submanif olds of codimension 2 of a 6-dimensional sphere.

Let M be an almost Tachibana manifold of constant curvature, that is, 6-
dimensional sphere S6, [4]. Its curvature form is given by

(3. 1) Rιlμλκ==k(GvκGμl — GμκGvl),

k being a positive constant.
In this section, we consider a submanifold of codimension 2 of S6. Substituting

(3. 1) into the Gauss, Codazzi, Ricci-equations;

RvμλκBkBjμBiλBh

κ = Rkjih - hkhhji + hjhhki - kkhkji + kjhkkτ,

RvμλκBk

vBjμBiλDκ = V kkji — \

we have respectively

(3. 2) Rkjih — hkhhji + hjhhki — kkhkji + kjhkkl = k(gkhQji —

and

P* Aji - Fjhkί - Ikkji + ίjkki = 0,
(3. 3)

ji - Ijhfo = 0,

and

(3. 4) Γ^-Γy/t+A

Now, we consider a submanifold M of codimension 2 of an almost Tachibana
manifold satisfying the fallowing conditions;

(3. 5) /,ΆιΛ=A//Λ

(3. 6) //At*=A//Λ

Ve see that (3. 5) and (3. 6) are global conditions over the submanifold M

LEMMA 3. 1. For (/, g, u, v, λ}-structure of M with (3. 5) and (3. 6), if λ does
not vanssh almost everywhere, we have

(3. 7) hjίu
ί=(xUjt

and

(3. 8) kjiUl=(xUj, kjiVί=άVj,

where a and a are scalar s of M [2].

LEMMA 3. 2, Let Mbe a submanifold of codimension 2 of an almost Tachibana
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manifold. If the (/, g, u, v, λ}-structure on M is quais-normal and satisfies (3. 5)
and (3. 6), and assume that λ(l—λ2) is almost everywhere non-zero, then we have

(3.9) VjUi=-hj*K-Xksi>

(3.10) Vfli^-kfitf+λhji,

Proof. By assumptions, (1. 17) and (1.18) can be respectively written as

Substituting the equations above into the first equations of (1. 11), (1. 12) res-
pectively, we have

(3. 11) Py«i-Pί«,= -2Ayi/t' + - - ( U j f S l t - U t

(3. 12) ?&-?#,=

by virtue of Lemma 3. 1, from which, taking the symmetric part in j and ϊ and
using the second equations of (1. 11) and (1. 12), ljUi+liUj=u and liVj+lj Vi—Q and
consequently /,=0. Thus (3. 9) and (3. 10) proved.

LEMMA 3. 3. Let Mbe a submanifold of codimension 2 of S6. If the (/, g, u, v, λ)-
structure on M is quasi-normal and satisfies (3. 5) and (3. 6), and assume that Λ(l— Λ2)
is almost everywhere non-zero on M, then we have

(3. 13) hίW = ah*, kilkt

h = akf,

and a and a are both constants.

Proof. Differentiating the first equation of (3. 7) covariantly, we obtain

or, using (3. 9),

(Γ*A^)«* + hvWft - λkj] = (Pka}Uj + a( - huff - λkkj\

and consequently, taking the skew-symmetric part, we have

hjjiifft - hiJiffϊ = (Pka)Uj - (Vja)uk - ahuff + ahjtfιf

because of Vkhji — Vjhκ%=§, hjtk1c
t=hktk:ι

t, or, using (3. 5),

(3. 14) 2A^<A*ί/t*

from which, transvecting with uk,
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that is,

(3.15) (l-

Thus, VjCί being proportional to uj, we find from (3. 14)

since hi} and ft commute.
Transvecting this equation with fh

k, we find

or, using (3. 7),

Differentiating the second equation of (3. 7) covariantly and taking account of
(3. 10), we find

(WH-Wy*//^^

from which, taking the skew-symmetric part

because of the equation of Conazzi (3. 3) with /j=0.
Transvecting the above equation with v3 and making use of (1. 7), (3. 7) and

(3. 8), we obtain

(3.16) (l-λψja = (vΨka}vJ.

From (3. 15) and (3. 16), we see that a is constant.
Similarly we can prove

kfkP = akih, a = constant.

LEMMA 3. 4. Under the same assumptions as those in Lemma 3. 3, the mean
curvature of M is constant.

Proof. Let a' be an eigenvalue of hih at a point of M and p* the eigenvector
corresponding to a.' at the point. Then we have

Applying this hh* and taking account of (3. 13), we find

aa'pJ=a'*p*,

from which

α'=α or α'=0.

Thus the only eigenvalue of hj1 is a or 0 and consequently the eigenvalues of
hih are constant.



ON CERTAIN SUBMANIFOLDS OF CODIMENSION 2 129

Similarly we can prove that kf has only two constant eigenvalues a and 0.

Let r and 5 be multiplicities of the eigenvalues a of hih and ά of kih respec-
tively. Then a and a being constant, r and s are also constant. So we have

hi

l=raί ki

ί=sά.

Substituting these into the equation giving the mean curvature of M;

(3.17) #2=-^W)2 + (^)2},

we have H= const. This complets the proof of the lemma.

We now assume that the mean curvature vector does not vanish everywhere
on M and choose the second unit normal Dκ in such a way that Bf, Cκ, Dκ form
the positive orientation of S6. Then from the equation giving the mean curvature
vector of M:

we have

(3. 18) Ai*=0,

which implies that

kjik»=Q,

because of (3. 13). This shows that kjt=Q and consequently

(3. 19) PjVi=Miji,

by virtue of (3. 10).
Differentiating

ViV*=l — λ2

covariantly and taking account of (3. 19), we obtain

(3.20) Fj^-aVj.

Substituting (3. 19) into the Ricci-identity :

WjVh-V/kv
h = Rkji

hv\

we have

or, using (3. 3) with /,=0 and (3. 20),

(3. 21) RkjihV* - aVjhkh + aVkhjh = 0.

On the other hand, transvecting (3. 2) with vl and using kji=0t we have
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From these and (3. 21), we have &=0. This contradicts (3. 1). Thus, the mean
curvature vector vanishes identically on M and consequently

*,»=<), #=0.

So, using (3. 13), we have

hj^=Q9 kjik^=0

which implies that

(3. 22) hji=Q, kji=Q.

Thus we have

THEOREM 3. 5. Let M be a submanifold of codimension 2 of S6. If the
(ft 0> u> v> ^-structure on M is quasi-normal, λ(l—λ2) is almost everywhere non-zero
on M, and the linear transformation hf and kf which are defined by the second
fundrmental tensors commute with //, then M is totally geodesic.

If the submanifold M is complete, then it is a great sphere.
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