MINIMAL SURFACES WITH M-INDEX 2, T_{1}-INDEX 2 AND T_{2}-INDEX 2

By Takehiro Itoh

For a minimal submanifold of dimension greater than 2 and with M-index 2 in a Riemannian manifold of constant curvature, Ōtsuki [4] gave a condition that its geodesic codimension is 3 and some examples of such minimal submanifolds under certain additional conditions in Euclidean, spherical and hyperbolic non-Euclidean spaces. For a minimal surface with M-index 2 in a Riemannian manifold of constant curvature, the author [2] proved that we may put formally $p=0$ and $n=2$ in the result of [4] when the ambiant spaces are spheres and solved the differential equations. Ōtsuki [5] gave a condition that the geodesic codimension becomes 4 and some examples in space forms.

In the present paper, the author will study minimal surfaces with M-index 2, T_{1}-index 2 and T_{2}-index 2 in a Riemannian manifold of constant curvature, where T_{1}-index and T_{2}-index are analogous to those of O$t s u k i$ [3]. Furthermore, he will give a condition that the geodesic codimension becomes 6 and a general solution of such minimal surfaces.

The author expresses his deep gratitude to Professor T. Ōtsuki who encouraged him and gave him a lot of valuable suggestions.
§ 1. Minimal surfaces with M-index 2. Let $\bar{M}=\bar{M}^{2+\nu}$ be a (2+ע)-dimensional Riemannian manifold of constant curvature \bar{c} and $M=M^{2}$ be a 2 -dimensinal submanifold in \bar{M} with the Riemannian metric induced from \bar{M}, where both manifolds are C^{∞}. Let $\bar{\omega}_{A}, \bar{\omega}_{A B}=-\bar{\omega}_{B A} A, B=1,2, \cdots, 2+\nu$, be the basic and connection forms of \bar{M} on the orthonormal frame bundle $F(\bar{M})$ which satify the structure equations:

$$
\begin{equation*}
d \bar{\omega}_{A}=\sum_{A} \bar{\omega}_{A B} \wedge \bar{\omega}_{B}, \quad d \bar{\omega}_{A B}=\sum_{C} \bar{\omega}_{A C} \wedge \bar{\omega}_{C B}-\bar{c} \bar{\omega}_{A} \wedge \bar{\omega}_{B} . \tag{1.1}
\end{equation*}
$$

Let B be the subbundle of $F(\bar{M})$ over M such that $B \ni b=\left(x, e_{1}, e_{2}, e_{3}, \cdots, e_{2+\nu}\right)$ $\epsilon F(\bar{M})$ and $\left(x, e_{1}, e_{2}\right) \in F(M)$, where $F(M)$ is the orthonormal frame bundle of M. Then, deleting bars of $\bar{\omega}_{A}, \bar{\omega}_{A B}$, on B we have

$$
\begin{align*}
\omega_{\alpha} & =0, \quad \omega_{i \alpha}=\sum_{j} A_{\alpha i j} \omega_{j}, \quad A_{\alpha i j}=A_{\alpha j i}, \tag{1.2}\\
d \omega_{i} & =\omega_{i k} \wedge \omega_{k}, \quad d \omega_{i k}=\sum_{\alpha} \omega_{i \alpha} \wedge \omega_{\alpha k}-\bar{c} \omega_{i} \wedge \omega_{k}, \\
d \omega_{i \alpha} & =\omega_{i k} \wedge \omega_{k \alpha}+\sum_{\beta} \omega_{i \beta} \wedge \omega_{\beta \alpha}, \tag{1.3}\\
d \omega_{\alpha \beta} & =\sum_{\imath} \omega_{\alpha \imath} \wedge \omega_{i \beta}+\sum_{r} \omega_{\alpha \gamma} \wedge \omega_{\gamma \beta},
\end{align*}
$$

Received December 16, 1970.
where $i, j, k=1,2, i \neq k, \alpha, \beta, \gamma=3,4, \cdots, 2+\nu$.
For any point $x \in M$, let N_{x} be the normal space to $M_{x}=T_{x} M$ in $\bar{M}_{x}=T_{x} \bar{M}$. For any $b \in B$, we define a linear mapping ψ_{b} from N_{x} into the set of all symmetric matrices of order 2 by

$$
\begin{equation*}
\psi_{b}\left(\sum_{\alpha} v_{\alpha} e_{\alpha}\right)=\sum_{\alpha} v_{\alpha} A_{\alpha}, \quad A_{\alpha}=\left(A_{\alpha i j}\right) . \tag{1.4}
\end{equation*}
$$

We call the $\operatorname{dim} \psi_{b}(\operatorname{ker} \bar{m})$ at $x M$-index of M at x in \bar{M}, where \bar{m} is a linear mapping from N_{x} into R defined by $\bar{m}\left(\sum_{\alpha} v_{\alpha} e_{\alpha}\right)=(1 / 2)$ trace $\left(\sum_{\alpha} v_{\alpha} A_{\alpha}\right)$.

Now we suppose that M is minimal in \bar{M} and of M-index 2 at each point. Then N_{x} is decomposed as

$$
\begin{equation*}
N_{x}=N_{x}^{\prime}+O, \quad N_{x}^{\prime} \perp O_{x} \tag{1.5}
\end{equation*}
$$

where $O_{x}=\psi_{b}^{-1}(0)$ and $\operatorname{dim} N_{x}^{\prime}=2$, which does not depend on the choice of b over x and is smooth. Let B_{1} be the set of $b \in B$ such that $e_{3}, e_{4} \in N_{x}^{\prime}$. From the definition of M-index, on B_{1} we have

$$
\begin{equation*}
\omega_{i \beta}=0, \quad i=1,2, \quad 4<\beta . \tag{1.6}
\end{equation*}
$$

Lemma 1. On B_{1}, for a fixed $\beta>4$, we have $\omega_{3 \beta} \equiv \omega_{4 \beta} \equiv 0\left(\bmod \omega_{1}, \omega_{2}\right)$ and $\omega_{3 \beta}=\omega_{4 \beta}=0$ or else $\omega_{3 \beta} \wedge \omega_{4 \beta} \neq 0$.

Lemma 2. We can choose a frame $b \in B_{1}$ such that

$$
\begin{equation*}
\omega_{13}=\lambda \omega_{1}, \quad \omega_{23}=-\lambda \omega_{2}, \quad \omega_{14}=\mu \omega_{2}, \quad \omega_{24}=\mu \omega_{1}, \quad \lambda \mu \neq 0 . \tag{1.7}
\end{equation*}
$$

Proof. Rotating 2 -frames $\left(x, e_{1}, e_{2}\right)$ and (x, e_{3}, e_{4}) suitably, we can choose a frame $b \in B_{1}$ such that

$$
\omega_{13}=\lambda \omega_{1}, \quad \omega_{23}=-\lambda \omega_{2}, \quad \lambda \neq 0, \quad\left\langle A_{3}, A_{4}\right\rangle=0 .
$$

Then, putting $\omega_{14}=a \omega_{1}+\mu \omega_{2}$ and $\omega_{24}=\mu \omega_{1}+b \omega_{2}$, we have $\left\langle A_{3}, A_{4}\right\rangle=(1 / 2) \lambda(a-b)=0$. It follows from $\lambda \neq 0$ that $a=b$. On the other hand, since trace $A_{4}=0$, we have $a+b$ $=0$. Hence we have $a=b=0$. Since M-index is $2, \mu$ must not be zero. Q.E.D.

Let B_{2} be the set of all $b \in B_{1}$ satisfying (1.7). Then since M-index is 2 everywhere on M, B_{2} is a smooth submanifold of B_{1}. Making use of (1.3) and (1.6), we have $\omega_{i 3} \wedge \omega_{3 \beta}+\omega_{i 4} \wedge \omega_{4 \beta}=0$. Substituting (1.7) into these equations, we have

$$
\begin{align*}
& \lambda \omega_{1} \wedge \omega_{3 \beta}+\mu \omega_{2} \wedge \omega_{4 \beta}=0, \\
& \lambda \omega_{2} \wedge \omega_{3 \beta}-\mu \omega_{1} \wedge \omega_{4 \beta}=0, \tag{1.8}
\end{align*}
$$

which imply that we can put

$$
\begin{align*}
& \lambda \omega_{3 \beta}=f_{\beta} \omega_{1}+g_{\beta} \omega_{2}, \tag{1.9}\\
& \mu \omega_{4 \beta}=g_{\beta} \omega_{1}-f_{\beta} \omega_{2} .
\end{align*}
$$

Now, by virtue of Lemma 1 , we can define two linear mappings φ_{11} and φ_{12}
corresponding to the normal vector fields e_{3} and e_{4} from M_{x} into O_{x} as follows: for any $X \in M_{x}$

$$
\begin{equation*}
\varphi_{11}(X)=\sum_{\beta} \omega_{3 \beta}(X) e_{\beta}, \quad \varphi_{12}(X)=\sum_{\beta} \omega_{4 \beta}(X) e_{\beta} . \tag{1.10}
\end{equation*}
$$

By means of (1.9), the two linear mappings

$$
\begin{equation*}
\tilde{\varphi}_{11}=\lambda \varphi_{11} \quad \text { and } \quad \tilde{\varphi}_{12}=\mu \varphi_{12} \tag{1.11}
\end{equation*}
$$

have the same images of the tangent unit sphere $S_{x}^{1}=\left\{X \in M_{x}\| \| X \|=1\right\}$ and $\tilde{\varphi}_{11}(X)$ and $\tilde{\varphi}_{12}(X)$ are conjugate to each other with respect to the image. The mappings $\tilde{\varphi}_{11}$ and $\tilde{\varphi}_{12}$ may be called the 1 st torsion operators of M in \bar{M}. We define the second curvature $k_{2}(x)$ of M at x by

$$
k_{2}(x)=\operatorname{Max}_{x \in s_{x}^{1}}\left\|\tilde{\varphi}_{11}(X)\right\|=\operatorname{Max}_{x \in s_{x}^{1}}\left\|\tilde{\varphi}_{12}(X)\right\|
$$

and call the dimension of the image of M_{x} by $\tilde{\varphi}_{11}$ (or $\tilde{\varphi}_{12}$) the 1st torsion index of M at x and denote it by T_{1}-index ${ }_{x} M$. It is trival that T_{1}-index $\leqq 2$ at each point of M. If $k_{2}(x)=0$, then T_{1}-index ${ }_{x} M=0$. Hence if $k_{2}(x)=0$ at each point $x \in M$, then the geodesic codimension of M is 2 . If T_{1}-index $=1$ at each $x \in M$, then the geodesic codimension is 3 , which is the case treated by O$t s u k i$ [4] for a minimal submanifold of general dimension n.
§ 2. Minimal surfaces with M-index 2 and \boldsymbol{T}_{1}-index 2. In this section we will consider minimal surfaces with M-index 2 and T_{1}-index 2 in \bar{M}. Then we can choose a frame $b \in B_{2}$ and local function θ_{1} on M such that

$$
\begin{align*}
& \tilde{\varphi}_{11}\left(e_{1} \cos \theta_{1}+e_{3} \sin \theta_{1}\right)=k_{21} e_{5} \tag{2.1}\\
& \tilde{\varphi}_{11}\left(-e_{1} \sin \theta_{1}+e_{2} \cos \theta_{1}\right)=k_{22} e_{6}
\end{align*}
$$

where $k_{21}=k_{2}>0$ and $k_{22}=\operatorname{Min}_{X \in S_{x}^{1}}\left\|\tilde{\varphi}_{11}(X)\right\|=\operatorname{Min}_{X \in S_{x}^{1}}\left\|\tilde{\varphi}_{12}(X)\right\|$. If $k_{21} \neq k_{22}$, then k_{21} and k_{22} are differentiable functions on M. We suppose that they are differentiable functions. Let B_{3} be the set of all such frames $b \in B_{2}$. Then B_{3} is a submanifold of B_{2}. On B_{3} we have

$$
\omega_{35}=\frac{k_{21}}{\lambda}\left(\cos \theta_{1} \omega_{1}+\sin \theta_{1} \omega_{2}\right),
$$

$$
\begin{equation*}
\omega_{35}=\frac{k_{22}}{\lambda}\left(-\sin \theta_{1} \omega_{1}+\cos \theta_{1} \omega_{2}\right), \quad \omega_{3 r}=0, \quad 6<\gamma . \tag{2.2}
\end{equation*}
$$

Making use of (1.7) and (2.2), we have

$$
\begin{align*}
& \omega_{45}=\frac{k_{21}}{\mu}\left(\sin \theta_{1} \omega_{1}-\cos \theta_{1} \omega_{2}\right), \\
& \omega_{46}=\frac{k_{22}}{\mu}\left(\cos \theta_{1} \omega_{1}+\sin \theta_{1} \omega_{2}\right), \quad \omega_{4 \gamma}=0, \quad 6<\gamma . \tag{2.3}
\end{align*}
$$

Then, by means of (1.3), (1.7), (2.2) and (2.3), we can verify the following
Lemma 3. Under the above condition, on B_{3} we have

$$
\begin{align*}
& \left\{d \log \lambda-i\left(2 \omega_{12}-\sigma \tilde{\omega}_{1}\right)\right\} \wedge\left(\omega_{1}+i \omega_{2}\right)=0, \tag{2.4}\\
& \left\{d \sigma+i\left(1-\sigma^{2}\right) \tilde{\omega}_{1}\right\} \wedge\left(\omega_{1}+i \omega_{2}\right)=0, \tag{2.5}\\
& d \omega_{12}=-\left(\bar{c}-\lambda^{2}-\mu^{2}\right) \omega_{1} \wedge \omega_{2}, \tag{2.6}\\
& d \tilde{\omega}=-\left(2 \lambda \mu-\frac{k_{21}^{2}+k_{22}^{2}}{\lambda \mu}\right) \omega_{1} \wedge \omega_{2}, \tag{2.7}
\end{align*}
$$

where $\tilde{\omega}_{1}=\omega_{34}$ is the connetion form of the vector bundle $N^{\prime}=\cup_{x \in M} N_{x}^{\prime}$ over M.
Furthermore, making use of (2.2) and (2.3), we have
Lemma 4. On B_{3}, for a fixed $\gamma>6$, we have $\omega_{5_{r}} \equiv \omega_{6_{r}} \equiv 0\left(\bmod \omega_{1}, \omega_{2}\right)$ and $\omega_{5_{r}}$ $=\omega_{6_{r}}=0$ or else $\omega_{5_{r}} \wedge \omega_{6_{T}} \neq 0$.

Now, since T_{1}-index is 2 everywhere on M, the image of M_{x} by $\tilde{\varphi}_{11}$ (or $\tilde{\varphi}_{12}$) spans 2-dimensional subspace in O_{x}, which we denote by $N_{x}^{\prime \prime}$. Let $N^{\prime \prime}=\cup_{x \in M} N_{x}^{\prime \prime}$. Then $N^{\prime \prime}$ is a 2 -dimensional normal vector bundle over M like N^{\prime}. We can orthogonally decompose N_{x} as

$$
\begin{equation*}
N_{x}=N_{x}^{\prime}+N_{x}^{\prime \prime}+O_{x}^{\prime}, \quad O_{x}=N_{x}^{\prime \prime}+O_{x}^{\prime}, \quad N_{x}^{\prime \prime} \perp O_{x}^{\prime} \tag{2.8}
\end{equation*}
$$

By virtue of Lemma 4, we can define two linear mappings φ_{21} and φ_{22} from M_{x} into O_{x}^{\prime} corresponding to the normal vector field e_{5} and e_{6} respectively as follows: for any $X \in M_{x}$

$$
\varphi_{21}(X)=\sum_{6<r} \omega_{5_{r}}(X) e_{r}, \quad \varphi_{22}(X)=\sum_{6<r} \omega_{6_{r}}(X) e_{r} .
$$

On the other hand, since $\omega_{3_{r}}=\omega_{4_{r}}=0$, we have

$$
\begin{aligned}
& \omega_{35} \wedge \omega_{5 r}+\omega_{36} \wedge \omega_{6_{r}}=0, \quad 6<\gamma, \\
& \omega_{45} \wedge \omega_{5 r}+\omega_{46} \wedge \omega_{6 r}=0 .
\end{aligned}
$$

Substituting (2.2) and (2.3) into these equations, we may put

$$
\begin{align*}
& k_{21} \omega_{5_{r}}=a_{r}\left(\cos \theta_{1} \omega_{1}+\sin \theta_{1} \omega_{2}\right)+b_{r}\left(-\sin \theta_{1} \omega_{1}+\cos \theta_{1} \omega_{2}\right), \\
& k_{22} \omega_{6_{r}}=b_{r}\left(\cos \theta_{1} \omega_{1}+\sin \theta_{1} \omega_{2}\right)-a_{r}\left(-\sin \theta_{1} \omega_{1}+\cos \theta_{1} \omega_{2}\right), \tag{2.9}
\end{align*}
$$

which imply that the two linear mappings

$$
\tilde{\varphi}_{21}=k_{21} \varphi_{21} \quad \text { and } \quad \tilde{\varphi}_{22}=k_{22} \varphi_{22}
$$

have the same images of S_{x}^{1} in M_{x}. We call $\tilde{\varphi}_{21}$ and $\tilde{\varphi}_{22}$ the |second torsion operators of M in \bar{M}. We define the third curvature $k_{3}(x)$ of M at x by

$$
\begin{equation*}
k_{3}(x)=\operatorname{Max}_{X \in S_{x}^{1}}\left\|\tilde{\varphi}_{21}(X)\right\|=\operatorname{Max}_{X \in S_{x}^{1}}\left\|\tilde{\varphi}_{22}(X)\right\| \tag{2.10}
\end{equation*}
$$

and call the dimension of the image of M_{x} by $\tilde{\varphi}_{21}$ (or $\tilde{\varphi}_{22}$) the second torsion index of M at x, which we denote by T_{2}-index ${ }_{x} M$. It is trivial that $k_{3}(x)=0$ if and only if T_{2}-index ${ }_{x} M=0$. If $k_{3}(x)=0$ identically on M, then the geodesic codimension of M is 4. If T_{2}-index is identically 1 on M, the geodesic codimension will be 5. In the next section we shall give a condition for the geodedsic codimension to be 6 when T_{2}-index is identically 2 on M.
§3. Minimal surfaces with M-index $2, \boldsymbol{T}_{1}$-index 2 and \boldsymbol{T}_{2}-index 2. In this section we shall consider the minimal surfaces with M-index $2, T_{1}$-index 2 and T_{2}-index 2 and give a condition that the geodesic codimension is 6 . Under the above conditions, we can choose a frame $b \in B_{3}$ and a local function θ_{2} on M such that

$$
\begin{align*}
& \tilde{\varphi}_{21}\left(e_{1} \cos \theta_{2}+e_{2} \sin \theta_{2}\right)=k_{31} e_{7} \\
& \tilde{\varphi}_{21}\left(-e_{1} \sin \theta_{2}+e_{2} \cos \theta_{2}\right)=k_{32} e_{8} \tag{3.1}
\end{align*}
$$

where $k_{31}=k_{3}>0$ and $k_{32}=\operatorname{Min}_{X \in S_{x}^{1}}\left\|\tilde{\varphi}_{21}(X)\right\|=\operatorname{Min}_{X \in S_{x}^{1}}\left\|\tilde{\varphi}_{22}(X)\right\|$. If $k_{31} \neq k_{32}$, then both k_{31} and k_{32} are differentiable functions on M. From now on, we suppose that they are differentiable functions on M. Then, B_{4} being the set of all such frames of B_{3}, B_{4} is a smooth submanifold of B_{3}. On B_{4} we have

$$
\begin{align*}
& \omega_{57}=\frac{k_{31}}{k_{21}}\left(\cos \theta_{2} \omega_{1}+\sin \theta_{2} \omega_{2}\right), \tag{3.2}\\
& \omega_{58}=\frac{k_{31}}{k_{21}}\left(-\sin \theta_{2} \omega_{1}+\cos \theta_{2} \omega_{2}\right), \quad \omega_{5 r}=0, \quad 8<\gamma .
\end{align*}
$$

From (3.2) and (2.9), we get

$$
\begin{align*}
& \omega_{67}=\frac{k_{31}}{k_{22}}\left(\sin \theta_{2} \omega_{1}-\cos \theta_{2} \omega_{2}\right), \\
& \omega_{68}=\frac{k_{32}}{k_{22}}\left(\cos \theta_{2} \omega_{1}+\sin \theta_{2} \omega_{2}\right), \quad \omega_{6 r}=0, \quad 8<\gamma \tag{3.3}
\end{align*}
$$

Making use of (3.2) and (3.3), we have the following
Lemma 5. On B_{4}, for a fixed $\gamma>8$, we have $\omega_{7_{\gamma}} \equiv \omega_{8_{r}} \equiv 0\left(\bmod \omega_{1}, \omega_{2}\right)$ and $\omega_{7_{\gamma}}=$ $\omega_{8_{r}}=0$ or else $\omega_{7_{r}} \wedge \omega_{8_{r}} \neq 0$.

Proof. Since $\omega_{5 r}=\omega_{6 r}=0$, we have

$$
\omega_{57} \wedge \omega_{7 \gamma}+\omega_{58} \wedge \omega_{8_{\gamma}}=\omega_{67} \wedge \omega_{7 \gamma}+\omega_{68} \wedge \omega_{8 \gamma}=0
$$

Substituting (3.2) and (3.3) into these equations, we get

$$
\begin{aligned}
& k_{31}\left(\cos \theta_{2} \omega_{1}+\sin \theta_{2} \omega_{2}\right) \wedge \omega_{7 r}+k_{32}\left(-\sin \theta_{2} \omega_{1}+\cos \theta_{2} \omega_{2}\right) \wedge \omega_{8 \gamma}=0, \\
& k_{31}\left(-\sin \theta_{2} \omega_{1}+\cos \theta_{2} \omega_{2}\right) \wedge \omega_{7 \gamma}-k_{32}\left(\cos \theta_{2} \omega_{1}+\sin \theta_{2} \omega_{2}\right) \wedge \omega_{87}=0,
\end{aligned}
$$

which imply that we may put

$$
\begin{align*}
& k_{31} \omega_{7 r}=a_{r}^{\prime}\left(\cos \theta_{2} \omega_{1}+\sin \theta_{2} \omega_{2}\right)+b_{r}^{\prime}\left(-\sin \theta_{2} \omega_{1}+\cos \theta_{2} \omega_{2}\right), \\
& k_{32} \omega_{8 r}=b_{r}^{\prime}\left(\cos \theta_{2} \omega_{1}+\sin \theta_{2} \omega_{2}\right)-a_{r}^{\prime}\left(-\sin \theta_{2} \omega_{1}+\cos \theta_{2} \omega_{2}\right) . \tag{3.4}
\end{align*}
$$

Then we have $k_{31} k_{32} \omega_{7_{7}} \wedge \omega_{8_{7}}=-\left(a_{r}^{\prime 2}+b_{r}^{\prime 2}\right) \omega_{1} \wedge \omega_{2}$, which completes the proof.
Now, since T_{2}-index is identically 2 on M, the image of M_{x} by $\tilde{\varphi}_{21}$ (or $\tilde{\varphi}_{22}$) spans 2 -dimensional linear subspace in O_{x}^{\prime}, which we denote by $N_{x}^{\prime \prime}$. Then we can decompose N_{x} as follows:

$$
\begin{equation*}
N_{x}=N_{x}^{\prime}+N_{x}^{\prime \prime}+N_{x}^{\prime \prime \prime}+O_{x}^{\prime \prime}, \quad O_{x}=N_{x}^{\prime \prime}+N_{x}^{\prime \prime \prime}+O_{x}^{\prime \prime}, \quad O_{x}^{\prime}=N_{x}^{\prime \prime \prime}+O_{x}^{\prime \prime}, \quad N_{x}^{\prime \prime \prime} \perp O_{x}^{\prime \prime} \tag{3.5}
\end{equation*}
$$

By virtue of Lemma 5, we can define two linear mappings φ_{31} and φ_{32} from M_{x} into $O_{x}^{\prime \prime}$ corresponding to the normal vector fields e_{7} and e_{8} respectively as follows: for any $X \in M_{x}$

$$
\varphi_{31}(X)=\sum_{8<r} \omega_{7_{r}}(X) e_{r}, \quad \varphi_{32}(X)=\sum_{8<r} \omega_{8 r}(X) e_{r} .
$$

By means of (3.4) we have two linear mappings

$$
\begin{equation*}
\tilde{\varphi}_{31}=k_{31} \varphi_{31} \quad \text { and } \quad \tilde{\varphi}_{32}=k_{32} \varphi_{32} \tag{3.6}
\end{equation*}
$$

which have the same images of S_{x}^{1}. We call $\tilde{\varphi}_{31}$ and $\tilde{\varphi}_{32}$ the third torsion operators of M in \bar{M}. We define the forth curvature $k_{4}(x)$ of M at x by

$$
\begin{equation*}
k_{4}(x)=\operatorname{Max}_{X \in S_{x}^{1}}\left\|\tilde{\varphi}_{31}(X)\right\|=\operatorname{Max}_{X \in S_{x}^{1}}\left\|\tilde{\varphi}_{32}(X)\right\| \tag{3.7}
\end{equation*}
$$

and call the dimension of the image of M_{x} by $\tilde{\varphi}_{31}$ (or $\tilde{\varphi}_{32}$) the third torsion index of M at x and denote it by T_{3}-index ${ }_{x} M$. Then we get a condition that the geodesic codimension is 6 as follows:

Theorem 1. Let $M=M^{2}$ be a minimal surface with M-index $2, T_{1}$-index 2 and T_{2}-index 2 in \bar{M}. The geodesic codimension of M is 6 if and only if T_{3}-index $x_{x} M$ $=0$ at each point $x \in M$.

Proof. The necessity is trival. Let us suppose that T_{3}-index ${ }_{x} M=0$ at each point x of M. Then we have $\omega_{7_{r}}=\omega_{8_{r}}=0,8<\gamma$. It follows from (3.2), (3.3), (2.2), (2.3) and (1.6) that the geodesic codimension is $6 . \quad$ Q.E.D.
§4. Minimal surfaces with M-index $2, T_{1}$-index $2, T_{2}$-index 2 and T_{3}-index 0 . We shall consider minimal surfaces with M-index 2 , T_{1}-index $2, T_{2}$-index 2 and $T_{3^{-}}$ index 0 . Then, by virtue of Theorem 1, we may put $\nu=6$, i.e., $\bar{M}=\bar{M}^{8}$. Making use of (2.2), (2.3), (3.2) and (3.3), we have the following

Lemma 6. Under the above conditions, on B_{5} we have the following equations

$$
\begin{align*}
& d \tilde{\omega}_{2}=d \omega_{56}=\left(\frac{k_{31}^{2}+k_{32}^{2}}{k_{21} k_{22}}-k_{21} k_{22}\left(\frac{1}{\lambda^{2}}+\frac{1}{\mu^{2}}\right)\right) \omega_{1} \wedge \omega_{2} \tag{4.1}\\
& d \tilde{\omega}_{3}=d \omega_{78}=-k_{31} k_{32}\left(\frac{1}{k_{21}^{2}}+\frac{1}{k_{22}^{2}}\right) \omega_{1} \wedge \omega_{2} . \tag{4.2}
\end{align*}
$$

Theorem 2. Let M be a minimal surface with M-index $2, T_{1}$-index $2, T_{2}$-index 2 and T_{3}-index 0 in a Riemannian manifald of constant curvature \bar{c}. If we have

$$
\tilde{\omega}_{1} \neq 0, \quad \sigma=\mu / \lambda=\text { constant on } M,
$$

(β) M is of constant curvature c,
(r)

$$
k_{2}=\text { constant and } k_{3}=\text { constant on } M,
$$

then we have

$$
\begin{equation*}
\sigma=1 \quad \text { or } \quad-1 \tag{4.3}
\end{equation*}
$$

$$
\begin{equation*}
c=\bar{c}-2 \lambda^{2}, \tag{4.4}
\end{equation*}
$$

$$
\begin{equation*}
\tilde{\omega}_{1}=2 \omega_{12}, \quad \tilde{\omega}_{2}=d \theta_{1}+3 \omega_{12}, \quad \tilde{\omega}_{3}=d \theta_{1}+d \theta_{2}+4 \omega_{12}, \tag{4.5}
\end{equation*}
$$

$$
\begin{equation*}
k_{2}=k_{21}=k_{22} \quad \text { and } \quad k_{3}=k_{31}=k_{32}, \tag{4.6}
\end{equation*}
$$

$$
\begin{equation*}
\lambda^{2}=\frac{9}{2} c, \quad \frac{k_{2}^{2}}{\lambda^{2}}=\frac{7}{2} c, \quad \frac{k_{3}^{2}}{k_{2}^{2}}=2 c \quad \text { and } \quad \bar{c}=10 c . \tag{4.7}
\end{equation*}
$$

Furthermore the Frenet formula of M is

$$
\begin{aligned}
& d x=R\left(\left(e_{1}^{*}+i e_{2}^{*}\right)\left(\omega_{1}^{*}-i \omega_{2}^{*}\right)\right), \\
& \bar{D}\left(e_{1}^{*}+i e_{2}^{*}\right)=-i\left(e_{1}^{*}+i e_{2}^{*}\right) \omega_{12}^{*}+\lambda\left(e_{3}^{*}+i e_{4}^{*}\right)\left(\omega_{1}^{*}-i \omega_{2}^{*}\right),
\end{aligned}
$$

(4. 8) $\bar{D}\left(e_{3}^{*}+i e_{4}^{*}\right)=-2 i\left(e_{3}^{*}+i e_{4}^{*}\right) \omega_{12}^{*}-\lambda\left(e_{1}^{*}+i e_{2}^{*}\right)\left(\omega_{1}^{*}+i \omega_{2}^{*}\right)+\frac{k_{2}}{\lambda}\left(e_{5}^{*}+i e_{6}^{*}\right)\left(\omega_{1}^{*}-i \omega_{2}^{*}\right)$,

$$
\begin{aligned}
& \bar{D}\left(e_{5}^{*}+i e_{6}^{*}\right)=-3 i\left(e_{5}^{*}+i e_{6}^{*}\right) \omega_{12}^{*}-\frac{k_{2}}{\lambda}\left(e_{3}^{*}+i e_{4}^{*}\right)\left(\omega_{1}^{*}+i \omega_{2}^{*}\right)+\frac{k_{3}}{k_{2}}\left(e_{7}^{*}+i e_{8}^{*}\right)\left(\omega_{1}^{*}-i \omega_{2}^{*}\right), \\
& \bar{D}\left(e_{7}^{*}+i e_{8}^{*}\right)=-4 i\left(e_{7}^{*}+i e_{8}^{*}\right) \omega_{12}^{*}-\frac{k_{3}}{k_{2}}\left(e_{5}^{*}+i e_{6}^{*}\right)\left(\omega_{1}^{*}+i \omega_{2}^{*}\right),
\end{aligned}
$$

where $e_{j}^{*}=e_{j}(j=1, \cdots, 4), e_{5}^{*}+i e_{6}^{*}=e^{i \theta_{1}}\left(e_{5}+i e_{6}\right), e_{7}^{*}+i e_{8}^{*}=e^{i\left(\theta_{1}+\theta_{2}\right)}\left(e_{7}+i e_{8}\right)$.
Proof. From (α) and (2.5) we have $\sigma^{2}=1$. Hence we have $\lambda^{2}=\mu^{2}$, which together with (2.6) implies that $c=\bar{c}-2 \lambda^{2}$. We may suppose $\sigma=1$. Since we have $\lambda=$ const. from (4.4), (2.4) implies $\tilde{\omega}_{1}=2 \omega_{12}$. From (2.7) and (4.5), we get

$$
\begin{equation*}
2 c=2 \lambda^{2}-\frac{k_{21}^{2}+k_{22}^{2}}{\lambda^{2}} . \tag{4.9}
\end{equation*}
$$

Since $k_{2}=k_{21}$ is constant, so is k_{22}. Thus, since $\lambda=\mu$ is constant, $k_{21}=$ constant and $k_{22}=$ constant, making use of (2.2) and (2.3), we have

$$
\begin{align*}
& k_{21}\left(d \theta_{1}+\omega_{12}+\tilde{\omega}_{1}\right)-k_{22} \tilde{\omega}_{2}=0, \tag{4.10}\\
& k_{22}\left(d \theta_{1}+\omega_{12}+\tilde{\omega}_{1}\right)-k_{21} \tilde{\omega}_{2}=0 .
\end{align*}
$$

Hence, making use of $\tilde{\omega}_{1}=2 \omega_{12}$ and (4.1), we have

$$
\begin{equation*}
3 k_{21} c=k_{22}\left\{\frac{2 k_{21} k_{22}}{\lambda^{2}}-\frac{k_{31}^{2}+k_{32}^{2}}{k_{21} k_{22}}\right\}, \tag{4.11}
\end{equation*}
$$

$$
\begin{equation*}
3 k_{22} c=k_{21}\left\{\frac{2 k_{21} k_{22}}{\lambda^{2}}-\frac{k_{31}^{2}+k_{32}^{2}}{k_{21} k_{22}}\right\}, \tag{4.12}
\end{equation*}
$$

which together with $k_{3}=k_{31}=$ constant imply that k_{32} is constant and hence we have

$$
\begin{equation*}
c=\frac{1}{3}\left\{\frac{2 k_{21}^{2}}{\lambda^{2}}-\frac{k_{31}^{2}+k_{32}^{2}}{k_{22}^{2}}\right\}=\frac{1}{3}\left\{\frac{2 k_{22}^{2}}{\lambda^{2}}-\frac{k_{31}^{2}+k_{32}^{2}}{k_{21}^{2}}\right\} . \tag{4.13}
\end{equation*}
$$

From the second equality of (4.13), we have

$$
\begin{equation*}
\left(k_{21}^{2}-k_{22}^{2}\right)\left\{\frac{2 k_{21} k_{22}}{\lambda^{2}}-\frac{k_{31}^{2}+k_{32}^{2}}{k_{21} k_{22}}\right\}=0 \tag{4.14}
\end{equation*}
$$

Now we assume that

$$
\frac{2 k_{21} k_{22}}{\lambda^{2}}-\frac{k_{21}^{2}+k_{32}^{2}}{k_{21} k_{22}}=0 .
$$

From (4.11) and (4.12), we have $c=0$. On the other hand, making use of (3.2) (3.3), we have

$$
\begin{align*}
d \omega_{57} & =\frac{k_{31}}{k_{21}} d \theta_{2} \wedge\left(-\sin \theta_{2} \omega_{1}+\cos \theta_{2} \omega_{2}\right)+\frac{k_{31}}{k_{21}} \omega_{12} \wedge\left(\cos \theta_{2} \omega_{2}-\sin \theta_{2} \omega_{1}\right) \\
& =\frac{k_{31}}{k_{22}} \tilde{\omega}_{2} \wedge\left(\sin \theta_{2} \omega_{1}-\cos \theta_{2} \omega_{2}\right)+\frac{k_{32}}{k_{21}} \tilde{\omega}_{3} \wedge\left(-\sin \theta_{2} \omega_{1}+\cos \theta_{2} \omega_{2}\right), \\
d \omega_{58} & =\frac{k_{32}}{k_{21}} d \theta_{2} \wedge\left(-\cos \theta_{2} \omega_{1}-\sin \theta_{2} \omega_{2}\right)-\frac{k_{32}}{k_{21}} \omega_{12} \wedge\left(\sin \theta_{2} \omega_{2}+\cos \theta_{2} \omega_{1}\right) \\
& =\frac{k_{32}}{k_{22}} \tilde{\omega}_{2} \wedge\left(\cos \theta_{2} \omega_{1}+\sin \theta_{2} \omega_{2}\right)-\frac{k_{31}}{k_{21}} \tilde{\omega}_{3} \wedge\left(\cos \theta_{2} \omega_{1}+\sin \theta_{2} \omega_{2}\right), \\
d \omega_{67} & =\frac{k_{31}}{k_{22}} d \theta_{2} \wedge\left(\cos \theta_{2} \omega_{1}+\sin \theta_{2} \omega_{2}\right)+\frac{k_{31}}{k_{22}} \omega_{12} \wedge\left(\cos \theta_{2} \omega_{2}+\sin \theta_{2} \omega_{1}\right) \tag{4.15}\\
& =-\frac{k_{31}}{k_{21}} \tilde{\omega}_{2} \wedge\left(\cos \theta_{2} \omega_{1}+\sin \theta_{2} \omega_{2}\right)+\frac{k_{32}}{k_{22}} \tilde{\omega}_{3} \wedge\left(\cos \theta_{2} \omega_{1}+\sin \theta_{2} \omega_{2}\right),
\end{align*}
$$

$$
\begin{aligned}
d \omega_{68} & =\frac{k_{32}}{k_{22}} d \theta_{2} \wedge\left(-\sin \theta_{2} \omega_{1}+\cos \theta_{2} \omega_{2}\right)+\frac{k_{32}}{k_{22}} \omega_{12} \wedge\left(\cos \theta_{2} \omega_{2}-\sin \theta_{2} \omega_{1}\right) \\
& =-\frac{k_{32}}{k_{21}} \tilde{\omega}_{2} \wedge\left(\cos \theta_{2} \omega_{2}-\sin \theta_{2} \omega_{1}\right)-\frac{k_{31}}{k_{22}} \tilde{\omega}_{3} \wedge\left(\sin \theta_{2} \omega_{1}-\cos \theta_{2} \omega_{2}\right) .
\end{aligned}
$$

Hence, if we suppose that $k_{21}=k_{22}$, we have

$$
\begin{align*}
& k_{31}\left(d \theta_{2}+\omega_{12}+\tilde{\omega}_{2}\right)-k_{32} \tilde{\omega}_{3}=0, \tag{4.16}\\
& k_{32}\left(d \theta_{2}+\omega_{12}+\tilde{\omega}_{2}\right)-k_{31} \tilde{\omega}_{3}=0 .
\end{align*}
$$

From (4. 10), we have

$$
\tilde{\omega}_{2}=d \theta_{1}+\omega_{12}+\tilde{\omega}_{1}=d \theta_{1}+3 \omega_{12} .
$$

This together with (4.2), (4.16) implies that

$$
\begin{equation*}
4 k_{31} c=\frac{2 k_{31} k_{32}^{2}}{k_{2}^{2}} \quad \text { and } \quad 4 k_{32} c=\frac{2 k_{31}^{2} k_{32}}{k_{2}^{2}} \tag{4.17}
\end{equation*}
$$

which contradict $c=0$. Thus it must be $k_{21} \neq k_{22}$ when

$$
\frac{2 k_{21} k_{22}}{\lambda^{2}}-\frac{k_{31}^{2}+k_{32}^{2}}{k_{21} k_{22}}=0
$$

Then, from (4.10) we get $\tilde{\omega}_{2}=0$ and $d 0_{1}+\omega_{12}+\tilde{\omega}_{1}=0$. Since $\tilde{\omega}_{2}=0$, (4.15) implies

$$
k_{31}\left(d \theta_{2}+\omega_{12}\right)-k_{32} \tilde{\omega}_{3}=k_{32}\left(d \theta_{2}+\omega_{12}\right)-k_{31} \tilde{\omega}_{3}=0 .
$$

Making use of (4.2), we get

$$
c=k_{32}^{2}\left(\frac{1}{k_{21}^{2}}+\frac{1}{k_{22}^{2}}\right)=k_{31}^{2}\left(\frac{1}{k_{21}^{2}}+\frac{1}{k_{22}^{2}}\right),
$$

which contradicts $c=0$. Thus it must be

$$
\frac{2 k_{21} k_{22}}{\lambda^{2}}-\frac{k_{31}^{2}+k_{32}^{2}}{k_{21} k_{22}} \neq 0,
$$

and hence $k_{2}=k_{21}=k_{22}$. Then from (4.17) we have

$$
c=\frac{k_{32}^{2}}{2 k_{2}^{2}}=\frac{k_{31}^{2}}{2 k_{2}^{2}},
$$

which implies $k_{32}=k_{31}=k_{3}$ and $k_{3}^{2} / k_{2}^{2}=2 c$. From $\tilde{\omega}_{1}=2 \omega_{12}$, (4.10) and (4.16), we have $\tilde{\omega}_{2}=d \theta_{1}+3 \omega_{12}$ and $\tilde{\omega}_{3}=d \theta_{1}+d \theta_{2}+4 \omega_{12}$. From (4.1) and (4.5), we have $c=$ $(2 / 3)\left(k_{2}^{2} / \lambda^{2}-k_{3}^{2} / k_{2}^{2}\right)$, which together with $k_{3}^{2} / k_{2}^{2}=2 c$ implies that $k^{2} / \lambda^{2}=(7 / 2) c$. Substituting this equality into (4.9), we have $2 c=2 \lambda^{2}-7 c$ and hence $\lambda^{2}=(9 / 2) c$. Furthermore, from (4.4) and $\lambda^{2}=(9 / 2) c$ we have $\bar{c}=c+2 \lambda^{2}=10 c$.

Now we choose a new frame $b^{*}=\left(x, e_{1}^{*}, e_{2}^{*}, e_{3}^{*} \cdots, e_{3}^{*}\right)$ such that $e_{j}^{*}=e_{j}, j=1,2$,
$\cdots, 4, e_{5}^{*}+i e_{6}^{*}=e^{i \theta_{1}}\left(e_{5}+i e_{6}\right), e_{7}^{*}+i e_{8}^{*}={ }^{i\left(\theta_{1}+o_{2}\right)}\left(e_{7}+i e_{8}\right)$. Then, with respect to this new frame we have

$$
\begin{array}{ll}
\omega_{35}^{*}=\frac{k_{2}}{\lambda} \omega_{1}^{*}, & \omega_{36}^{*}=\frac{k_{2}}{\lambda} \omega_{2}^{*}, \quad \omega_{2}^{*}=3 \omega_{12}^{*}, \\
\omega_{45}^{*}=-\frac{k_{2}}{\lambda} \omega_{2}^{*}, \quad \omega_{46}^{*}=\frac{k_{2}}{\lambda} \omega_{1}^{*},
\end{array}
$$

and

$$
\begin{aligned}
& \omega_{57}^{*}=\frac{k_{3}}{k_{2}} \omega_{1}^{*}, \quad \omega_{58}^{*}=\frac{k_{3}}{k_{2}} \omega_{2}^{*}, \quad \omega_{3}^{*}=4 \omega_{12}^{*}, \\
& \omega_{67}^{*}=-\frac{k_{3}}{k_{2}} \omega_{2}^{*}, \quad \omega_{68}^{*}=\frac{k_{3}}{k_{2}} \omega_{1}^{*} .
\end{aligned}
$$

Therefore the Frenet formula of M is (4.8).
Q.E.D.

Now, in order to solve (4.8), we wish to write (4.8) in terms of an isothermal coorinate of M. Since we may put $\sigma=1$ from (4.7), M may be considered locally the unit sphere S^{2}.

On the other hand, for the unit sphere S^{2}, considering it the Riemann sphere, as is well known, we have the following formulas:

$$
\begin{equation*}
d s^{2}=\frac{4 d z d \bar{z}}{(1+z \bar{z})^{2}}=\omega_{1}^{2}+\omega_{2}^{2}, \tag{4.19}
\end{equation*}
$$

$$
\begin{equation*}
\omega_{1}+i \omega_{2}=\frac{2 d z}{1+z \bar{z}}, \quad \omega_{12}=i \frac{\bar{z} d z-z d \bar{z}}{1+z \bar{z}}, \tag{4.20}
\end{equation*}
$$

where ω_{12} is the connection form of S^{2}.
Hence we may put

$$
\begin{equation*}
\omega_{1}^{*}+i \omega_{2}^{*}=e^{-i \varphi}\left(\omega_{1}+i \omega_{2}\right) . \tag{4.21}
\end{equation*}
$$

Substituting this into

$$
d\left(\omega_{1}^{*}+i \omega_{2}^{*}\right)=-i \omega_{12}^{*} \wedge\left(\omega_{1}^{*}+i \omega_{2}^{*}\right),
$$

we have

$$
\begin{equation*}
\omega_{12}^{*}=\omega_{12}+d \varphi . \tag{4.22}
\end{equation*}
$$

Putting $\xi_{1}=e^{i \varphi}\left(e_{1}^{*}+i e_{2}^{*}\right), \xi_{2}=e^{2 i \varphi}\left(e_{3}^{*}+i e_{4}^{*}\right), \xi_{3}=e^{3 i \varphi}\left(e_{5}^{*}+i e_{6}^{*}\right)$ and $\xi_{4}=e^{4 i \varphi}\left(e_{7}^{*}+i e_{8}^{*}\right)$, (4. 8) can be written as follows:

$$
\left\{\begin{array}{l}
d x=\frac{1}{h}\left(\bar{\xi}_{1} d z+\xi_{1} d \bar{z}\right), \tag{4.23}\\
\bar{D} \xi_{1}=\frac{1}{h} \xi_{1}(\bar{z} d z+z d \bar{z})+\frac{2 \lambda}{h} \xi_{2} d \bar{z}, \\
\bar{D} \xi_{2}=-\frac{2 \lambda}{h} \xi_{1} d z+\frac{2}{h} \xi_{2}(\bar{z} d z+z d \bar{z})+\frac{2 k_{2}}{\lambda h} \xi_{3} d \bar{z}
\end{array}\right.
$$

$$
\left\lvert\, \begin{aligned}
& \bar{D} \xi_{3}=-\frac{2 k_{2}}{\lambda h} \xi_{2} d z+\frac{3}{h} \xi_{3}(\bar{z} d z+z d \bar{z})+\frac{2 k_{3}}{k_{2} h} \xi_{4} d \bar{z} \\
& \bar{D} \xi_{4}=-\frac{2 k_{3}}{k_{2} h} \xi_{3} d z+\frac{4}{h} \xi_{4}(\bar{z} d z+z d \bar{z})
\end{aligned}\right.
$$

§5. Solution of (4.23). In this section, we shall give a solution of (4.23). As stated in $\S 4$, since we put $c=1$, from (4.7) we have

$$
\lambda=\frac{3}{\sqrt{2}}, \quad \frac{k_{2}}{\lambda}=\frac{\sqrt{14}}{2}, \quad \frac{k_{3}}{k_{2}}=\sqrt{2} \quad \text { and } \quad \bar{c}=10 .
$$

Hence we may regard $\bar{M}=\bar{M}^{8}$ as $S^{8}(1 / \sqrt{10}) \subset E^{9}$. Putting

$$
\begin{equation*}
e_{9}=\sqrt{10} x \tag{5.1}
\end{equation*}
$$

we have the Frenet formula of M as follows:

$$
\begin{align*}
& \left\{\begin{array}{l}
d \xi_{1}=-\frac{2 \sqrt{10}}{h} e_{9} d z+\frac{1}{h} \xi_{1}(\bar{z} d z-z d \bar{z})+\frac{3 \sqrt{2}}{h} \xi_{2} d \bar{z}, \\
d \bar{\xi}_{1}=-\frac{2 \sqrt{10}}{h} e_{9} d \bar{z}-\frac{1}{h} \bar{\xi}_{1}(\bar{z} d z-z d \bar{z})+\frac{3 \sqrt{2}}{h} \bar{\xi}_{2} d z,
\end{array}\right. \tag{5.3}\\
& \left\{\begin{array}{l}
d \xi_{2}=-\frac{3 \sqrt{2}}{h} \xi_{1} d z+\frac{2}{h} \xi_{2}(\bar{z} d z-z d \bar{z})+\frac{\sqrt{14}}{h} \xi_{3} d \bar{z}, \\
d \bar{\xi}_{2}=-\frac{3 \sqrt{2}}{h} \bar{\xi}_{1} d \bar{z}-\frac{2}{h} \bar{\xi}_{2}(\bar{z} d z-z d \bar{z})+\frac{\sqrt{14}}{h} \bar{\xi}_{3} d z,
\end{array}\right. \tag{5.4}\\
& \left\{\begin{array}{l}
d \xi_{3}=-\frac{\sqrt{14}}{h} \xi_{2} d z+\frac{3}{h} \xi_{3}(\bar{z} d z-z d \bar{z})+\frac{2 \sqrt{2}}{h} \xi_{4} d \bar{z}, \\
d \bar{\xi}_{3}=-\frac{\sqrt{14}}{h} \bar{\xi}_{2} d \bar{z}-\frac{3}{h} \bar{\xi}_{3}(\bar{z} d z-z d \bar{z})+\frac{2 \sqrt{2}}{h} \bar{\xi}_{4} d z,
\end{array}\right. \tag{5.5}\\
& \left\{\begin{array}{l}
d \xi_{4}=-\frac{2 \sqrt{2}}{h} \xi_{3} d z+\frac{4}{h} \xi_{4}(\bar{z} d z-z d \bar{z}), \\
d \bar{\xi}_{4}=-\frac{2 \sqrt{2}}{h} \bar{\xi}_{3} d \bar{z}-\frac{4}{h} \bar{\xi}_{4}(\bar{z} d z-z d \bar{z}),
\end{array}\right.
\end{align*}
$$

From the first equation of (5.6), we have

$$
\begin{equation*}
\xi_{4}=\frac{1}{h^{4}} F(z) \tag{5.7}
\end{equation*}
$$

where $F(z)$ is a complex analytic vector field. Substituting (5.7) into (5.6), we have

$$
\begin{equation*}
\xi_{3}=\frac{2 \sqrt{2} \bar{z}}{h^{4}} F(z)-\frac{1}{2 \sqrt{2} h^{3}} F^{\prime}(z) \tag{5.8}
\end{equation*}
$$

Making use of (5.7) and (5.8), we can verify

$$
\frac{\partial \xi_{3}}{\partial \bar{z}}=\frac{2 \sqrt{2}}{h} \xi_{4}-\frac{3 z}{h} \xi_{3} .
$$

From the 1st equation of (5.5), we get

$$
\begin{equation*}
\xi_{2}=\frac{2 \sqrt{7} \bar{z}^{2}}{h^{4}} F(z)-\frac{\sqrt{7} \bar{z}}{2 h^{3}} F^{\prime}(z)+\frac{1}{4 \sqrt{7} h^{2}} F^{\prime \prime}(z) \tag{5.9}
\end{equation*}
$$

Making use of (5.8) and (5.9), we can verify that

$$
\frac{\partial \xi_{2}}{\partial \bar{z}}=\frac{\sqrt{14}}{h} \xi_{3}-\frac{2 z}{h} \xi_{2} .
$$

From the 1st equation of (5.4), we get

$$
\begin{equation*}
\xi_{1}=\frac{2 \sqrt{14} \bar{z}^{3}}{h^{4}} F(z)-\frac{3 \sqrt{14} \bar{z}^{2}}{4 h^{3}} F^{\prime}(z)+\frac{3 \bar{z}}{2 \sqrt{14} h^{2}} F^{\prime \prime}(z)-\frac{1}{12 \sqrt{14} h} F^{\prime \prime \prime}(z) \tag{5.10}
\end{equation*}
$$

Making use of (5.9) and (5.10), we can verify

$$
\frac{\partial \xi_{1}}{\partial \bar{z}}=\frac{3 \sqrt{2}}{h} \xi_{2}-\frac{z}{h} \xi_{1} .
$$

From the 1st equation of (5.3), we have

$$
\begin{equation*}
e_{9}=\frac{\sqrt{35} \bar{z}^{4}}{h^{4}} F(z)-\frac{\sqrt{35} \bar{z}^{3}}{2 h^{3}} F^{\prime}(z)+\frac{3 \sqrt{35} \bar{z}^{2}}{28 h^{2}} F^{\prime \prime}(z)-\frac{\sqrt{35} \bar{z}}{84 h} F^{\prime \prime \prime}(z)+\frac{\sqrt{35}}{1680} F^{\prime \prime \prime \prime}(z) . \tag{5.11}
\end{equation*}
$$

From (5.10) and (5.11), we can prove that

$$
\frac{\partial e_{9}}{\partial \bar{z}}=\frac{\sqrt{10}}{h} \xi_{1} .
$$

Thus, if we choose $F(z)$ so that e_{9} is real, then $e_{9}, \xi_{1}, \xi_{2}, \xi_{3}, \xi_{4}$ given by (5.11), \cdots, (5.7) respectively satisfy the equations (5.2), \cdots, (5.6).

From now on, we will search for $F(z)$ such that e_{9} is real. Since $h=1+z \bar{z}$ is real, e_{9} is real if and only if

$$
\begin{align*}
\frac{1680}{\sqrt{35}} h^{4} e_{9}= & 1680 \bar{z}^{4} F(z)-840 \bar{z}^{3}(1+z \bar{z}) F^{\prime}(z)+180 \bar{z}^{2}(1+z \bar{z})^{2} F^{\prime \prime}(z) \\
& -20 \bar{z}(1+z \bar{z})^{3} F^{\prime \prime \prime \prime}(z)+(1+z \bar{z})^{4} F^{\prime \prime \prime \prime}(z)=: G(z, \bar{z}) \tag{5.12}
\end{align*}
$$

is real. Then $G(z, \bar{z})$ is a polynomial of degree at most $4 \mathrm{in} z$ as well as in \bar{z} since $G(z, \bar{z})=\overline{G(z, \bar{z})}$. We have easily from (5.12)

$$
\begin{aligned}
G(z, \bar{z})= & \left\{1680 F(z)-840 z F^{\prime}(z)+180 z^{2} F^{\prime \prime}(z)-20 z^{3} F^{\prime \prime \prime \prime}(z)+z^{4} F^{\prime \prime \prime}(z)\right\} \bar{z}^{4} \\
& -\left\{840 F^{\prime}(z)-360 z F^{\prime \prime}(z)+60 z^{2} F^{\prime \prime \prime}(z)-4 z^{3} F^{\prime \prime \prime \prime}(z)\right\} \bar{z}^{3} \\
& +\left\{180 F^{\prime \prime \prime}(z)-60 z F^{\prime \prime \prime}(z)+6 z^{2} F^{\prime \prime \prime \prime}(z)\right\} \bar{z}^{2} \\
& -\left\{20 F^{\prime \prime \prime}(z)-4 z F^{\prime \prime \prime \prime}(z)\right\} \bar{z}+F^{\prime \prime \prime}(z),
\end{aligned}
$$

which implies that $F^{\prime \prime \prime \prime}(z)$ is a polynomial in z, because $G(z, \bar{z})$ is a vector valued polynomial in z and \bar{z}. Hence we may put

$$
\begin{equation*}
F(z)=A_{0}+A_{1} z+\cdots+A_{m} z^{m} \tag{5.13}
\end{equation*}
$$

where $A_{0}, A_{1}, \cdots, A_{m}$ are constant vectors in C^{5}. Then we have

$$
\begin{aligned}
G(z, \bar{z})= & \left\{1680 A_{0}+840 A_{1} z+\cdots+(m-5)(m-6)(m-7)(m-8) A_{m} z^{m}\right\} \bar{z}^{4} \\
& -\left\{840 A_{1}+960 A_{2} z+\cdots+4 m(6-m)(m-7)(m-8) A_{m} z^{m-1}\right\} \bar{z}^{3} \\
& +\left\{360 A_{2}+720 A_{3} z+\cdots+6 m(m-1)(m-7)(m-8) A_{m} z^{m-2}\right\} \bar{z}_{2} \\
& -\left\{120 A_{3}+384 A_{4} z+\cdots+4 m(1-m)(m-2)(m-8) A_{m} z^{m-3}\right\} \bar{z} \\
& +24 A_{4}+120 A_{5} z+\cdots+m(m-1)(m-2)(m-3) A_{m} z^{m-4} .
\end{aligned}
$$

Since $G(z, \bar{z})$ is a polynomial in \bar{z} and z of degree at most 4 , the polynomial in the first \{ \} lacks the terms of degree $5,6,7,8$ in z. Hence we may suppose $m=8$. Then we have

$$
\begin{align*}
G(z, \bar{z})= & \left(1680 A_{0}+840 A_{1} z+360 A_{2} z^{2}+120 A_{3} z^{3}+24 A_{4} z^{4}\right) \bar{z}^{4} \\
& -\left(840 A_{1}+960 A_{2} z+720 A_{3} z^{2}+384 A_{4} z^{3}+120 A_{5} z^{4}\right) \bar{z}^{3} \\
& +\left(360 A_{2}+720 A_{3} z+864 A_{4} z^{2}+720 A_{5} z^{3}+360 A_{6} z^{4}\right) \bar{z}^{2} \tag{5.14}\\
& -\left(120 A_{3}+384 A_{4} z+720 A_{6} z^{2}+960 A_{6} z^{3}+840 A_{7} z^{4}\right) \bar{z} \\
& +24 A_{4}+120 A_{5} z+360 A_{6} z^{2}+840 A_{7} z^{3}+1680 A_{8} z^{4},
\end{align*}
$$

which implies that $G(z, \bar{z})=\overline{G(z, \bar{z})}$ is satisfied if and only if

$$
\begin{equation*}
A_{4}=\bar{A}_{4}, \quad A_{5}=-\bar{A}_{3}, \quad A_{6}=\bar{A}_{2}, \quad A_{7}=-\bar{A}_{1}, \quad A_{8}=\bar{A}_{0} . \tag{5.15}
\end{equation*}
$$

Making use of (5.12), (5.14) and (5.15), we have

$$
\begin{align*}
e_{9}=\frac{\sqrt{35}}{70 h^{4}}\{ & A_{4}\left(1-16 z \bar{z}+36 z^{2} \bar{z}^{2}-16 z^{3} \bar{z}^{3}+z^{4} \bar{z}^{4}\right) \\
& -5\left(\bar{A}_{3} z+A_{3} \bar{z}\right)\left(1-6 z \bar{z}+6 z^{2} \bar{z}^{2}-z^{3} \bar{z}^{3}\right) \tag{5.16}\\
& +5\left(\bar{A}_{2} z^{2}+A_{2} \bar{z}^{2}\right)\left(3-8 z \bar{z}+3 z^{2} \bar{z}^{2}\right) \\
& \left.-35\left(\bar{A}_{1} z^{3}+A_{1} \bar{z}^{3}\right)(1-z \bar{z})+70\left(\bar{A}_{0} z^{4}+A_{0} \bar{z}^{4}\right)\right\} .
\end{align*}
$$

From (5.7), (5.8), (5.9) and (5.10), we have

$$
\begin{align*}
& \xi_{4}=\frac{1}{h^{4}}\left\{A_{4} z^{4}+\left(A_{3} z^{3}-\bar{A}_{3} z^{5}\right)+\left(A_{2} z^{2}+\bar{A}_{2} z^{6}\right)+\left(A_{1} z-\bar{A}_{1} z^{7}\right)+A_{0}+\bar{A}_{0} z^{8}\right\} \tag{5.17}\\
& \xi_{3}=\frac{1}{2 \sqrt{2} h^{4}}\left\{4 \bar{z} F(z)-(1+z \bar{z}) F^{\prime}(z)\right\} \\
& \xi_{2}=\frac{1}{4 \sqrt{7} h^{4}}\left\{56 \bar{z}^{2} F(z)-14 \bar{z}(1+z \bar{z}) F^{\prime}(z)+(1+z \bar{z})^{2} F^{\prime \prime}(z)\right\} \tag{5.19}\\
& \begin{array}{r}
\xi_{1}=\frac{1}{12 \sqrt{14} h^{4}}\left\{336 \bar{z}^{3} F(z)-126 \bar{z}^{2}(1+z \bar{z}) F^{\prime}(z)\right. \\
\left.\quad+18 \bar{z}(1+z \bar{z})^{2} F^{\prime \prime}(z)-(1+z \bar{z})^{3} F^{\prime \prime \prime \prime}(z)\right\} .
\end{array} \tag{5.20}
\end{align*}
$$

Now we must find the conditions that $\xi_{1}, \xi_{2}, \xi_{3}, \xi_{4}$ and e_{9} form an orthonormal frame. In the following calculation, " \equiv " denotes the equality modulus the quantities:

$$
e_{9} \cdot \xi_{j}, \quad e_{9} \cdot \bar{\xi}_{j}, \quad \xi_{j} \cdot \xi_{j}, \quad \bar{\xi}_{j} \cdot \bar{\xi}_{j}, \quad \xi_{j} \cdot \xi_{k}, \quad \xi_{j} \cdot \bar{\xi}_{k}, \quad \bar{\xi}_{j} \cdot \bar{\xi}_{k}
$$

where $j, k=1,2, \cdots, 4$ and $j \neq k$. Then we have easily the relations:

$$
\begin{gathered}
d\left(e_{9} \cdot e_{9}\right) \equiv d\left(e_{9} \cdot \xi_{l}\right) \equiv d\left(\xi_{j} \cdot \xi_{k}\right) \equiv d\left(\xi_{j} \cdot \bar{\xi}_{j}\right) \equiv d\left(\xi_{1} \cdot \bar{\xi}_{3}\right) \equiv d\left(\xi_{1} \cdot \bar{\xi}_{4}\right) \equiv d\left(\xi_{2} \cdot \bar{\xi}_{4}\right) \equiv 0, \\
\quad l=2,3,4, \quad j, k=1, \cdots, 4, \\
d\left(e_{9} \cdot \xi_{1}\right) \equiv \frac{\sqrt{10}}{h}\left(\xi_{1} \cdot \bar{\xi}_{1}-2 e_{9} \cdot e_{9}\right) d z \\
d\left(\xi_{1} \cdot \bar{\xi}_{2}\right) \equiv \frac{3 \sqrt{2}}{h}\left(\xi_{2} \cdot \bar{\xi}_{2}-\xi_{1} \cdot \bar{\xi}_{1}\right) d \bar{z} \equiv d \overline{\left(\bar{\xi}_{1} \cdot \xi_{2}\right)} \\
d\left(\xi_{2} \cdot \bar{\xi}_{3}\right) \equiv \frac{\sqrt{14}}{h}\left(\xi_{3} \cdot \bar{\xi}_{3}-\xi_{2} \cdot \bar{\xi}_{2}\right) d \bar{z} \equiv d \overline{\left(\overline{\xi_{2}} \cdot \xi_{3}\right)} \\
d\left(\xi_{3} \cdot \bar{\xi}_{4}\right) \equiv \frac{2 \sqrt{2}}{h}\left(\xi_{4} \cdot \bar{\xi}_{4}-\xi_{3} \cdot \bar{\xi}_{3}\right) d \bar{z} \equiv d \overline{\left(\bar{\xi}_{3} \cdot \xi_{4}\right)},
\end{gathered}
$$

from which we see that $e_{9} \cdot e_{9}, \xi_{j} \cdot \bar{\xi}_{j}(j=1, \cdots, 4)$ are constants. Hence, if we can choose $A_{0}, A_{1}, A_{2}, A_{3}, A_{4}$ such that $e_{9} \cdot e_{9}=1$ and $\xi_{j} \cdot \bar{\xi}_{j}=2(j=1, \cdots, 4)$ at $z=0$, then the above quantities are all zero. It is sufficient to give conditions that e_{9}, ξ_{1}, ξ_{2}, ξ_{3} and ξ_{4} form an orthonormal frame at $z=0$. From (5.16), (5.17), (5.18), (5.19) and (5.20), at $z=0$, we have

$$
e_{9}=\frac{\sqrt{35}}{70} A_{4}, \quad \xi_{1}=-\frac{A_{3}}{2 \sqrt{14}}, \quad \xi_{2}=\frac{A_{2}}{2 \sqrt{7}}, \quad \xi_{3}=-\frac{A_{1}}{2 \sqrt{2}}, \quad \xi_{4}=A_{0} .
$$

Thus we have the conditions for $A_{0}, A_{1}, \cdots, A_{4}$:

$$
\left\{\begin{array}{rll}
A_{4}=\bar{A}_{4}, & A_{j} \cdot A_{j}=0 & (j=0,1,2,3), \tag{5.21}\\
A_{4} \cdot A_{4}=140, & A_{3} \cdot \bar{A}_{3}=112, & A_{2} \cdot \bar{A}_{2}=56 \quad A_{1} \cdot \bar{A}_{1}=16, \quad A_{0} \cdot \bar{A}_{0}=2, \\
A_{4} \cdot A_{j}=0, & A_{3} \cdot \bar{A}_{l}=0, & A_{3} \cdot \bar{A}_{l}=0 \quad(j=0,1, \cdots, 3) \quad(l=0,1,2)
\end{array}\right.
$$

$$
\left(A_{2} \cdot A_{1}=A_{2} \cdot \bar{A}_{1}=A_{2} \cdot A_{0}=A_{2} \cdot \bar{A}_{0}=A_{1} \cdot A_{0}=A_{1} \cdot \bar{A}_{0}=0\right.
$$

Now we give the equation of M using the above result. First of all, we choose five constant vectors $A_{0}, A_{1}, A_{2}, A_{3}, A_{4}$ in C^{5} which satisfy the conditions (5.21) and determine e_{9} given by (5.16) which is a real unit vector field in $E^{10} \cong C^{5}$. Since we may consider $x=(1 / \sqrt{ } \overline{10}) e_{9}$, we have a general solution of (4.23) as follows:

$$
\begin{align*}
x= & \frac{1}{10 \sqrt{14}(1+z \bar{z})^{4}}\left\{\left(1-16 z \bar{z}+36 z^{2} \bar{z}^{2}-16 z^{3} \bar{z}^{3}+z^{4} \bar{z}^{4}\right) A_{4}\right. \\
& -5\left(1-6 z \bar{z}+6 z^{2} \bar{z}^{2}-z^{3} \bar{z}^{3}\right)\left(\bar{A}_{3} z+A_{3} \bar{z}\right) \\
& +5\left(3-8 z \bar{z}+3 z^{2} \bar{z}^{2}\right)\left(\bar{A}_{2} z+A_{2} \bar{z}\right) \tag{5.22}\\
& \left.-35(1-z \bar{z})\left(\bar{A}_{1} z^{3}+A_{1} \bar{z}^{3}\right)+70\left(\bar{A}_{0} z^{4}+A_{0} \bar{z}^{4}\right)\right\} .
\end{align*}
$$

If we put

$$
\begin{array}{cl}
A_{4}=2 \sqrt{35} \frac{\partial}{\partial x_{9}}, \quad A_{3}=-2 \sqrt{14}\left(\frac{\partial}{\partial x_{1}}+i \frac{\partial}{\partial x_{2}}\right), & A_{2}=2 \sqrt{7}\left(\frac{\partial}{\partial x_{3}}+i \frac{\partial}{\partial x_{4}}\right) \\
A_{1}=-2 \sqrt{2}\left(\frac{\partial}{\partial x_{5}}+i \frac{\partial}{\partial x_{6}}\right) \quad \text { and } \quad A_{0}=\frac{\partial}{\partial x_{7}}+i \frac{\partial}{\partial x_{8}},
\end{array}
$$

we can write (5.22) in the cannonical coordinates $x_{1}, x_{2}, \cdots, x_{9}$ as follows:

$$
\begin{aligned}
& x_{1}=\frac{1-6 z \bar{z}+6 \bar{z}^{2} z^{2}-z^{3} \bar{z}^{3}}{(1+z \bar{z})^{4}}(z+\bar{z}), \\
& x_{2}=-i \frac{1-6 z \bar{z}+6 z^{2} \bar{z}^{2}-z^{3} \bar{z}^{3}}{(1+z \bar{z})^{4}}(z-\bar{z}), \\
& x_{3}=\frac{3-8 z \bar{z}+3 z^{2} \bar{z}^{2}}{\sqrt{2}(1+z \bar{z})^{4}}\left(z^{2}+\bar{z}^{2}\right), \\
& x_{4}=-i \frac{3-8 z \bar{z}+3 z^{2} \bar{z}^{2}}{\sqrt{2}(1+z \bar{z})^{4}}\left(z^{2}-\bar{z}^{2}\right), \\
& x_{5}=\frac{\sqrt{7}(1-z \bar{z})}{(1+z \bar{z})^{4}}\left(z^{3}+\bar{z}^{3}\right), \\
& x_{6}=-i \frac{\sqrt{7}(1-z \bar{z})}{(1+z \bar{z})^{4}}\left(z^{3}-\bar{z}^{3}\right), \\
& x_{7}=\frac{\sqrt{7}}{2(1+z \bar{z})^{4}}\left(z^{4}+\bar{z}^{4}\right), \\
& x_{8}=-\frac{\sqrt{7} i}{2(1+z \bar{z})^{4}}\left(z^{4}-\bar{z}^{4}\right), \\
& x_{9}=\frac{1-16 z z+36 z^{2} \bar{z}^{2}-16 z^{3} \bar{z}^{3}+z^{4} \bar{z}^{4}}{\sqrt{10}(1+z \bar{z})^{4}}
\end{aligned}
$$

References

[1] Iтон, T., Complete surfaces in E^{4} with constant mean curvature. Kōdai Math. Sem. Rep. 22 (1970), 150-158.
[2] , A note on minimal submanifolds with M-index 2. Kōdai Math. Sem. Rep. 23 (1971), 204-207.
[3] Ōtsuki, T., Theory of surfaces in Euclidean spaces. mimeographed note (1968).
[4] , On Minimal submanifolds with M-index 2. To appear in J. Diff. Geometry.
[5] -, Minimal submanifolds with M-index 2 in Riemmannian manifolds of constant curvature. Tôhoku Math. J. 23 (1971), 371-402.

Department of Mathematics, Tokyo Institute of Technology.

