ENTIRE FUNCTIONS WITH MAXIMAL DEFICIENCY SUM

By Hideo Mutō

§ 1. Let $f(z)$ be a transcendental meromorphic function in the finite z-plane. The standard symbols of the Nevanlinna theory

$$
m(r, f), n(r, f), N(r, f), T(r, f), \delta(a, f), \cdots
$$

are used throughout the paper.
Denote by λ_{f} the order of $f(z)$ and by μ_{f} its lower order. In addition to the above concepts, we shall consider the total deficiency $\Delta(f)$ of the function $f(z)$:

$$
\Delta(f)=\sum_{a} \delta(a, f)
$$

where the summation is to be extended to all the values a, finite or infinite, such that

$$
\begin{equation*}
\delta(a, f)>0 \tag{1.1}
\end{equation*}
$$

The number of deficient values of $f(z)$, that is the number of a for which (1.1) holds, will be denoted by $\nu(f)(\leqq \infty)$.

The Nevanlinna second fundamental theorem yields that $\Delta(f) \leqq 2$.
Recently Weitsman [9] proved
(A) Let $f(z)$ be a meromorphic function of finite lower order μ_{f} such that $\Delta(f)=2$. Then $\nu(f) \leqq 2 \mu_{f}$.

The aim in this paper is to prove the following result by the ingenious method developed in Weitsman's paper [9]:
(B) Let $f(z)$ be a meromorphic function of finite lower order μ_{f} such that $\Delta(f)=2, \delta(\infty, f)=1$. Then $\nu(f) \leqq \mu_{f}+1$.

The above result (B) was proved by Pfluger [8] and Edrei and Fuchs [6] in the case of $\lambda_{f}<\infty$ (Pfluger proved that $\nu(f) \leqq \lambda_{f}+1$).
§2. An increasing positive sequence

$$
r_{1}, r_{2}, \cdots, r_{m}, \cdots
$$

is said to be a sequence of Pólya peaks, of order $\rho(0 \leqq \rho<\infty)$, of $T(r, f)$, if it is possible to find three sequences

$$
\begin{equation*}
\left\{r_{m}{ }^{\prime}\right\},\left\{r_{m}{ }^{\prime \prime}\right\},\left\{\varepsilon_{m}\right\} \tag{2.1}
\end{equation*}
$$

such that, as $m \rightarrow \infty$,

$$
\begin{equation*}
r_{m}^{\prime} \rightarrow \infty, \frac{r_{m}}{r_{m}^{\prime}} \rightarrow \infty, \frac{r_{m}^{\prime \prime}}{r_{m}} \rightarrow \infty, \varepsilon_{m} \rightarrow 0 \tag{2.2}
\end{equation*}
$$

and such that

$$
\begin{equation*}
T(r, f) \leqq\left(1+\varepsilon_{m}\right)\left(\frac{r}{r_{m}}\right)^{\rho} T\left(r_{m}, f\right) \quad\left(r_{m}{ }^{\prime} \leqq r \leqq r_{m}^{\prime \prime}\right) \tag{2.3}
\end{equation*}
$$

and

$$
\begin{equation*}
T(r, f) \leqq\left(\frac{r}{r_{m}}\right)^{\rho-1 / m} T\left(r_{m}, f\right) \quad\left(r_{0} \leqq r \leqq r_{m}^{\prime}\right) \tag{2.4}
\end{equation*}
$$

where r_{0} is a constant associated with $T(r, f)$.
The main result about Pólya peaks is the following existence theorem:
If $f(z)$ has a finite lower order μ_{f}, then for each finite number ρ satisfying $\mu_{f} \leqq \rho \leqq \lambda_{f}, T(r, f)$ has a sequence $\left\{r_{m}\right\}$ of Pólya peaks of order ρ.

A proof of the existence theorem will be found in [2], [3] and [7].
§3. Our basic tool is the following lemma due to Edrei [2]:
Lemma. Let $f(z)$ be a meromorphic function and let $f(0)=1$. Denote by $\left\{a_{j}\right\}_{\jmath=1}^{\infty}$ the zeros of $f(z)$ and by $\left\{b_{j}\right\}_{j=1}^{\infty}$ its poles. Put

$$
\gamma_{0}=0, \quad \gamma_{m}=\frac{1}{\pi \rho^{m}} \int_{0}^{2 \pi} \log \left|f\left(\rho e^{i \theta}\right)\right| e^{-i m \theta} d \theta \quad(m \geqq 1),
$$

where $\rho(>0)$ is so small that the disc $|z| \leqq \rho$ contains neither zeros nor poles of $f(z)$.

Then, if q is a non-negative integer and if

$$
0<r=|z| \leqq \frac{R}{2},
$$

we have

$$
\begin{align*}
\log |f(z)|= & \operatorname{Re}\left\{\gamma_{0}+\gamma_{1} z+\cdots+\gamma_{q} z^{q}\right\} \tag{3.1}\\
& +\log \left|\prod_{\left|a_{j}\right| \leq R} E\left(\frac{z}{a_{\jmath}}, q\right)\right|-\log \left|\prod_{\left|b_{j}\right| \leq R} E\left(\frac{z}{b_{j}}, q\right)\right|+S_{q}(z, R),
\end{align*}
$$

where

$$
E(u, 0)=1-u ; E(u, q)=(1-u) \exp \left\{u+\frac{u^{2}}{2}+\cdots+\frac{u^{q}}{q}\right\} \quad(q \geqq 1)
$$

and

$$
\begin{equation*}
\left|S_{q}(z, R)\right| \leqq 14\left(\frac{r}{R}\right)^{q+1} T(2 R, f) . \tag{3.2}
\end{equation*}
$$

§4. We shall give a proof of the result (B).
Proof of (B). It was proved that $\Delta(f)<2$, if $\mu_{f}<1$ and $\delta(\infty, f)=1$ [4]. Hence in the following discussion we may assume that $\mu_{f} \geqq 1$.

It is well known that the following inequality

$$
\Delta(f) \leqq 2-\lim _{r \rightarrow \infty, r \notin \varepsilon} \frac{N\left(r, 1 / f^{\prime}\right)+N\left(r, f^{\prime}\right)}{T\left(r, f^{\prime}\right)}
$$

holds with an exceptional set \mathcal{E} of finite measure, if $\delta(\infty, f)=1$. Hence, if $\Delta(f)=2$, then we have

$$
\begin{equation*}
\lim _{r \rightarrow \infty, r \boxminus \varepsilon} \frac{N\left(r, 1 / f^{\prime}\right)+N\left(r, f^{\prime}\right)}{T\left(r, f^{\prime}\right)}=0 . \tag{4.1}
\end{equation*}
$$

Put

$$
\begin{aligned}
& n_{1}(r)=n\left(r, \frac{1}{f^{\prime}}\right)+n\left(r, f^{\prime}\right) \\
& N_{1}(r)=N\left(r, \frac{1}{f^{\prime}}\right)+N\left(r, f^{\prime}\right)
\end{aligned}
$$

Let $\left\{r_{m}\right\}$ be a sequence of Pólya peaks, of order μ_{f}, of $T(r, f)$. Let $\left\{r_{m}{ }^{\prime}\right\},\left\{r_{m}{ }^{\prime \prime}\right\}$ and $\left\{\varepsilon_{m}\right\}$ be three sequences satisfying (2.2), (2.3) and (2.4).

By (4.1), there is a sequence $\left\{\eta_{m}\right\}$ such that

$$
\begin{equation*}
\operatorname{Sup}_{r_{m}^{\prime} \leqq t, t \notin \mathcal{E}} \frac{N_{1}(t)}{T\left(t, f^{\prime}\right)}<\eta_{m}, \quad \lim _{m \rightarrow \infty} \eta_{m}=0 . \tag{4.2}
\end{equation*}
$$

In the following lines we shall study the asymptotic behavior of $f^{\prime}(z)$ around the sequence $\left\{r_{m}\right\}$.

We use the fact that $\mu_{f}=\mu_{f^{\prime}}$, which was proved by Chuang [1]. We set

$$
\begin{equation*}
q=\left[\mu_{f^{\prime}}\right] \tag{4.3}
\end{equation*}
$$

Put

$$
R_{m}=\frac{1}{4 \alpha} \min \left\{\eta_{m}{ }^{-1 /\left(4 h^{\prime} f\right)} r_{m}, r_{m}{ }^{\prime \prime}\right\}
$$

where $\alpha=\exp (1 /(q+1))$.
Denote by $\left\{a_{j}\right\}_{j=1}^{\infty}$ the non-zero zeros of $f^{\prime}(z)$ and by $\left\{b_{j}\right\}_{j=1}^{\infty}$ its non-zero poles. Set

$$
C(r)=\gamma_{q}+\frac{1}{q}\left\{\sum_{\left|a_{j}\right| \leqq r} \frac{1}{a_{j}^{q}}-\sum_{\left|b_{j}\right| \leq r} \frac{1}{b_{j}^{q}}\right\},
$$

where γ_{q} is defined by

$$
\gamma_{q}=\frac{1}{\pi \rho^{q}} \int_{0}^{2 \pi} \log \left|\tilde{f}^{\prime}\left(\rho e^{i \theta}\right)\right| e^{-\imath q \theta} d \theta
$$

with a suitable function $\tilde{f}^{\prime}(z)$ such that $\tilde{f}^{\prime}(z)=A z^{\prime} f^{\prime}(z), \tilde{f}^{\prime}(0)=1$ and a positive number $\rho<\min _{\mathcal{J}}\left\{\left|a_{j}\right|,\left|b_{j}\right|\right\}$.

With q defined by (4.3) we apply the lemma stated in $\S 3$ for $f^{\prime}(z)$. Then, for $r=|z| \leqq R / 2$,

$$
\begin{aligned}
\log \left|f^{\prime}(z)\right|= & \operatorname{Re}\left\{\gamma_{0}+\gamma_{1} z+\cdots+\gamma_{q} z^{q}\right\}+\log \left|\prod_{\left|a_{j}\right| \leqq R} E\left(\frac{z}{a_{\jmath}}, q\right)\right| \\
& -\log \left|\prod_{\left|b_{j}\right| \leqq R} E\left(\frac{z}{b_{\jmath}}, q\right)\right|+S_{q}^{\prime}(z, R)+O(\log r),
\end{aligned}
$$

where

$$
\left|S_{q}^{\prime}(z, R)\right| \leqq 14\left(\frac{r}{R}\right)^{q+1} T\left(2 R, f^{\prime}\right)
$$

Hence

$$
\log \left|f^{\prime}(z)\right|-\operatorname{Re}\left\{C(r) z^{q}\right\}-S_{q}{ }^{\prime}(z, R)=\log |g|
$$

$$
\begin{align*}
= & \log \left|\prod_{\left|a_{j}\right| \leqq r} E\left(\frac{z}{a_{j}}, q-1\right)\right|-\log \left|\prod_{\left|b_{j}\right| \leqq r} E\left(\frac{z}{b_{j}}, q-1\right)\right| \tag{4.4}\\
& \left.+\log \left|\prod_{r<|a| \leqq R} E\left(\frac{z}{a_{j}}, q\right)\right|-\left.\log \right|_{r<\left|b_{j}\right| \leqq R} E\left(\frac{z}{b_{j}}, q\right) \right\rvert\,+O\left(r^{q-1}+\log r\right) .
\end{align*}
$$

Put

$$
\phi(t)=\frac{1}{2 \pi} \int_{0}^{2 \pi} \frac{d \theta}{\left|t e^{i \theta}-1\right|} \quad(t \neq 1)
$$

Then we get the following inequality [5]:

$$
\begin{equation*}
\frac{1}{2 \pi} \int_{0}^{2 \pi}|\log | E\left(\frac{r e^{i \theta}}{a}, p\right)| | d \theta \leqq r^{p} \int_{|a|}^{\infty} t^{-p-1} \phi\left(\frac{t}{r}\right) d t \tag{4.5}
\end{equation*}
$$

We set

$$
\begin{equation*}
\alpha_{m}=\left(\frac{r_{m}}{R_{m}}\right)^{-\left(q+1-\mu_{f}\right) /(2 q+2)} \tag{4.6}
\end{equation*}
$$

$$
\begin{equation*}
\beta_{m}=\eta_{m}^{-1 /\left(2 \mu^{\mu}\right)} \tag{4.7}
\end{equation*}
$$

$$
\begin{equation*}
\gamma_{m}=\delta_{m}{ }^{-1 /\left(2 \mu_{f}-2 / m\right)}, \tag{4.8}
\end{equation*}
$$

where

$$
\delta_{m}=\int_{\left|d_{1}\right| / R_{m} \alpha}^{r_{m} / r_{m^{\alpha}}} t^{\mu} f-q-1 / m b(t) d t, \quad\left|d_{1}\right|=\min _{j}\left(\left|a_{j}\right|,\left|b_{j}\right|\right) .
$$

Further we define

$$
\begin{equation*}
\sigma_{m}=\min \left\{\alpha_{m}, \beta_{m}, \gamma_{m}\right\} \tag{4.9}
\end{equation*}
$$

$$
\begin{equation*}
r_{m}^{*}=\frac{1}{4 \alpha} \min \left\{\sigma_{m} \gamma_{m}, R_{m}+r_{m}\right\} . \tag{4.10}
\end{equation*}
$$

By (4.6), (4.7) and (4.8), $\sigma_{m} \rightarrow \infty$, as $m \rightarrow \infty$. By (4.5) we have, as $r \rightarrow \infty$,
(4. 11)

$$
\begin{aligned}
& \quad m(r, g)+m\left(r, \frac{1}{g}\right) \\
& \leqq r^{q-1} \int_{\left|d_{1}\right|}^{r} n_{1}(t) t^{-q} \phi\left(\frac{t}{r}\right) d t+r^{q-1} n_{1}(r) \int_{r}^{\infty} t^{-q} \phi\left(\frac{t}{r}\right) d t \\
& \quad+r^{q} \int_{r}^{\infty}\left\{n_{1}^{*}(t)-n_{1}(r)\right\} t^{-q-1} \phi\left(\frac{t}{r}\right) d t+O\left(r^{q-1}+\log r\right)
\end{aligned}
$$

where

$$
n_{1}^{*}(t)= \begin{cases}n_{1}(t), & t \leqq R \\ n_{1}(R), & t>R\end{cases}
$$

By making use of (4.2) we have

$$
\begin{equation*}
n_{1}(t) \leqq(q+1) N_{1}(\alpha t) \leqq(q+1) \eta_{m} T\left(\alpha t, f^{\prime}\right), \tag{4.12}
\end{equation*}
$$

if $\alpha t \notin \mathcal{E}, \alpha t \geqq r_{m}{ }^{\prime}$. Since $\delta(\infty, f)=1$, we obtain, as $t \rightarrow \infty$,

$$
\begin{equation*}
T\left(t, f^{\prime}\right) \leqq(1+o(1)) T(t, f) \tag{4.13}
\end{equation*}
$$

if $t \notin \mathcal{E}$.
In the following discussion we assume that $r \in\left[r_{m}, r_{m}{ }^{*}\right]$. Hence $T\left(r_{m}, f\right)$ $\leqq T(r, f)$. Put

$$
\begin{aligned}
r^{q-1} \int_{\left|d_{1}\right|}^{r} n_{1}(t) t^{-q} \phi\left(\frac{t}{r}\right) d t & =r^{q-1}\left\{\int_{\left|d_{1}\right|}^{\left(r_{0}-1\right) / \alpha}+\int_{\left(r_{0}-1\right) / \alpha}^{\left(r_{m^{\prime}}-1\right) / \alpha}+\int_{\left(r_{m^{\prime}}-1\right) / \alpha}^{r}\right\} \\
& \equiv I_{m}{ }^{1}+I_{m}{ }^{2}+I_{m}{ }^{3},
\end{aligned}
$$

where r_{0} is a sufficiently large value such that (2.4), (4.13) and $N_{1}(t) \leqq 2 T\left(t, f^{\prime}\right)$ hold for all $t \geqq\left(r_{0}-1\right) / \alpha, t \notin \mathcal{E}$. Then

$$
\begin{equation*}
I_{m}^{1}=O\left(r^{q-1}\right) \tag{4.14}
\end{equation*}
$$

Since \mathcal{E} is a set of finite measure, we can find a point u such that $u \notin \mathcal{E}$, $u \in[t, t+1]$, if t is sufficiently large. Hence $T\left(\alpha t, f^{\prime}\right) \leqq(1+o(1)) T(\alpha t+1, f)$, if t is sufficiently large. Thus, by (2.4), (4.8), (4.10), (4.12) and (4.13), we get

$$
\begin{align*}
I_{m}{ }^{2} & \leqq(q+1) r^{q-1} \int_{\left(r_{0}-1\right) / \alpha}^{\left(r_{m^{\prime}}-1\right) / \alpha} N_{1}(\alpha t) t^{-q} \phi\left(\frac{t}{r}\right) d t \\
& \leqq 2(q+1) r^{q-1} \int_{\left(r_{0}-1\right) / \alpha}^{\left(r_{m^{\prime}}-1\right) / \alpha} T\left(\alpha t+1, f^{\prime}\right) t^{-q} \phi\left(\frac{t}{r}\right) d t \\
& \leqq 4(q+1) r^{q-1} \int_{\left(r_{0}-1\right) / \alpha}^{\left(r_{m}^{\prime}-1\right) / \alpha} T(\alpha t+2, f) t^{-q} \phi\left(\frac{t}{r}\right) d t \tag{4.15}\\
& \leqq 4(q+1) T\left(r_{m}, f\right) r^{q-1} \int_{\left(r_{0}-1\right) / \alpha}^{\left(r_{m}^{\prime}-1\right) / \alpha}\left(\frac{\alpha t+2}{r_{m}}\right)^{\mu_{f}-1 / m} t^{-q} \phi\left(\frac{t}{r}\right) d t
\end{align*}
$$

$$
\leqq 4(q+1)(2 \alpha)^{\mu_{f}-1 / m}\left(\frac{r}{r_{m}}\right)^{\mu_{f}-1 / m} \delta_{m} T(r, f)=o(T(r, f)) .
$$

Similary we have

$$
\begin{align*}
I_{m}{ }^{3} & \leqq(q+1) r^{q-1} \int_{\left(r_{m^{\prime}}-1\right) / \alpha}^{r} N_{1}(\alpha t) t^{-q} \phi\left(\frac{t}{r}\right) d t \\
& \leqq(q+1) \eta_{m} r^{q-1} \int_{\left(r_{\left.m^{\prime}-1\right) / \alpha}\right.}^{r} T\left(\alpha t+1, f^{\prime}\right) t^{-q} \phi\left(\frac{t}{r}\right) d t \tag{4.16}\\
& \leqq 2(q+1) \eta_{m}\left(1+\varepsilon_{m}\right) T\left(r_{m}, f\right) r^{q-1} \int_{\left(r_{\left.m^{\prime}-1\right) / \alpha}\right.}^{r}\left(\frac{\alpha t+2}{r_{m}}\right)^{\mu_{f}} t^{-q} \phi\left(\frac{t}{r}\right) d t \\
& \leqq 2(q+1)(2 \alpha)^{\mu} f_{\eta_{m}}\left(1+\varepsilon_{m}\right) \sigma_{m}{ }^{\mu_{f}} T(r, f) \int_{r_{m}^{\prime} / r}^{1} t^{\mu} f-q \phi(t) d t=o(T(r, f)),
\end{align*}
$$

since

$$
\int_{0}^{1} t^{\mu} f-q \phi(t) d t \leqq \int_{0}^{1} t^{-1 / 2} \phi(t) d t<\infty .
$$

Since $q \geqq 1$, as above, we have

$$
\begin{align*}
& r^{q-1} n_{1}(r) \int_{r}^{\infty} t^{-q} \phi\left(\frac{t}{r}\right) d t \leqq 2(q+1) \eta_{m} T(\alpha r+2, f) r^{q-1} \int_{r}^{\infty} t^{-q} \phi\left(\frac{t}{r}\right) d t \tag{4.17}\\
\leqq & 2(q+1)(2 \alpha)^{\mu} f\left(1+\varepsilon_{m}\right) \eta_{m} \sigma_{m}{ }^{\mu} f T(r, f) \int_{1}^{\infty} t^{-1 / 2} \phi(t) d t=o(T(r, f)) .
\end{align*}
$$

We apply (4.11) with $R=R_{m}$. Put

$$
r^{q} \int_{r}^{\infty}\left\{n_{1}{ }^{*}(t)-n_{1}(r)\right\} t^{-q-1} \phi\left(\frac{t}{r}\right) d t=r^{q}\left\{\int_{r}^{R_{m}}+\int_{R_{m}}^{\infty}\right\} \equiv I_{m}{ }^{4}+I_{m}{ }^{5}
$$

Then, as above, we get

$$
\begin{align*}
& I_{m}{ }^{5} \leqq r^{q} \eta_{1}\left(R_{m}\right) \int_{R_{m}}^{\infty} t^{-q-1} \phi\left(\frac{t}{r}\right) d t \tag{4.18}\\
& \leqq 2(q+1)(2 \alpha)^{\mu} f\left(1+\varepsilon_{m}\right) \eta_{m}{ }^{3 / 4} T(r, f) \int_{R_{m} / r}^{\infty} t^{-1 / 2} \phi(t) d t=o(T(r, f)), \\
& I_{m}{ }^{4} \leqq(q+1) r^{q} \int_{r}^{R_{m}} N_{1}(\alpha t) t^{-q-1} \phi\left(\frac{t}{r}\right) d t \\
& \leqq 2(q+1)(2 \alpha)^{\alpha} f\left(1+\varepsilon_{m}\right) \eta_{m}{ }^{1 / 2} T(r, f) \int_{1}^{R_{m} / r} t^{-q-1} \phi(t) d t=o(T(r, f)), \tag{4.19}\\
& 14\left(\frac{r}{R_{m}}\right)^{q+1} T\left(2 R_{m}, f^{\prime}\right) \leqq 28\left(\frac{r}{R_{m}}\right)^{q+1} T\left(2 R_{m}+1, f\right)
\end{align*}
$$

(4. 20)

$$
\begin{aligned}
& \leqq 28 \cdot 2^{\mu_{f}}\left(\frac{r}{R_{m}}\right)^{q+1}\left(1+\varepsilon_{m}\right)\left(\frac{R_{m}}{r_{m}}\right)^{\mu_{f}} T\left(r_{m}, f\right) \\
& \leqq 28 \cdot 2^{\mu_{f}}\left(1+\varepsilon_{m}\right)\left(\frac{r_{m}}{R_{m}}\right)^{\left(q+1-\mu_{f}\right) / 2} T(r, f)=o(T(r, f)) .
\end{aligned}
$$

Consequently, by (4.14), (4.15), (4.16), (4.17), (4.18), (4.19) and (4.20), we have in $\left[r_{m}, r_{m}{ }^{*}\right]$

$$
\begin{equation*}
m(r, g)+m\left(r, \frac{1}{g}\right)=o(T(r, f)) \tag{4.21}
\end{equation*}
$$

Let $\Gamma(r)$ be the set of θ satisfying

$$
\frac{1}{2 \pi} \int_{\Gamma(r)} \log \left|f^{\prime}\left(r e^{i \theta}\right)\right| d \theta=\frac{1}{2 \pi} \int_{0}^{2 \pi} \log ^{+}\left|f^{\prime}\left(r e^{i \theta}\right)\right| d \theta \equiv m\left(r, f^{\prime}\right)
$$

Then, by (4.4) and (4.21), as $r \rightarrow \infty$ in $\left[r_{m}, r_{m}{ }^{*}\right]$, meas $\Gamma(r) \rightarrow \pi$.
On the other hand, by (4.1) and a lemma in [9], we get

$$
m\left(r, \frac{1}{f^{\prime}}\right) \sim T\left(r, f^{\prime}\right) \sim T(r, f)
$$

as $r \rightarrow \infty, r \notin \mathcal{E}$.
Therefore, in $\left[r_{m}, r_{m}{ }^{*}\right]-\mathcal{E}$, the measure of the set $J(r)$ of 0 satisfying

$$
\frac{1}{2 \pi} \int_{J(r)} \log ^{+}\left|f^{\prime}\left(r e^{i \theta}\right)\right| d \theta \sim T(r, f)
$$

tends to π, as $r \rightarrow \infty$.
By carefully tracing the procedure in [9], especially pp. 137-138, we can see that the number of finite deficient value is at most μ_{f}. Hence $\nu(f) \leqq \mu_{f}+1$, since $\delta(\infty, f)=1$.

References

[1] Chuang, C.-T., Sur la comparaison de la croissance d'une fonction méromorphe et de celle de sa dérvée. Bull. Sci. Math. (2) 75 (1951), 171-190.
[2] Edrei, A., The deficiencies of functions of finite lower order. Duke Math. J. 31 (1964), 1-22.
[3] Edrei, A., Sums of deficiencies of meromorphic functions. J. Analyse Math. 14 (1965), 79-107.
[4] Edrei, A., Locally tauberıan theorems for meromorphic functions of lower order less than one. Trans. Amer. Math. Soc. 140 (1969), 309-332.
[5] Edrei, A., and W. H. J. Fuchs, On the growth of meromorphic functions with several deficient values. Trans. Amer. Math. Soc. 93 (1959), 292-328.
[6] Edrei, A., and W. H. J. Fuchs, Valeurs déficıentes et valeurs asymptotıques des fonctions méromorphes. Comm. Math. Helv. 33 (1959), 258-295.
[7] Edrei, A., and W. H. J. Fuchs, The deficiencies of meromorphic functions of order less than one. Duke Math. J. 27 (1960), 233-249.
[8] Pfluger, A., Zur Defektrelation ganzer Funktionen endlicher Ordnung. Comm. Math. Helv. 19 (1946), 91-104.
[9] Weitsman, A., Meromorphic functions with maximal deficiency sum and a conjecture of F. Nevanlinna. Acta Math. 123 (1969), 115-139.

Department of Mathematics, Tokyo Institute of Technology.

