ENTIRE FUNCTIONS WITH MAXIMAL DEFICIENCY SUM

By Hideo Mutō

§ 1. Let f(z) be a transcendental meromorphic function in the finite z-plane. The standard symbols of the Nevanlinna theory

$$m(r, f)$$
, $n(r, f)$, $N(r, f)$, $T(r, f)$, $\delta(a, f)$, ...

are used throughout the paper.

Denote by λ_f the order of f(z) and by μ_f its lower order. In addition to the above concepts, we shall consider the total deficiency $\Delta(f)$ of the function f(z):

$$\Delta(f) = \sum_{a} \delta(a, f),$$

where the summation is to be extended to all the values a, finite or infinite, such that

$$\delta(a, f) > 0.$$

The number of deficient values of f(z), that is the number of a for which (1.1) holds, will be denoted by $\nu(f)$ ($\leq \infty$).

The Nevanlinna second fundamental theorem yields that $\Delta(f) \leq 2$.

Recently Weitsman [9] proved

(A) Let f(z) be a meromorphic function of finite lower order μ_f such that $\Delta(f)=2$. Then $\nu(f)\leq 2\mu_f$.

The aim in this paper is to prove the following result by the ingenious method developed in Weitsman's paper [9]:

(B) Let f(z) be a meromorphic function of finite lower order μ_f such that $\Delta(f)=2$, $\delta(\infty,f)=1$. Then $\nu(f)\leq \mu_f+1$.

The above result (B) was proved by Pfluger [8] and Edrei and Fuchs [6] in the case of $\lambda_f < \infty$ (Pfluger proved that $\nu(f) \leq \lambda_f + 1$).

§ 2. An increasing positive sequence

$$\gamma_1, \gamma_2, \cdots, \gamma_m, \cdots$$

is said to be a sequence of Pólya peaks, of order ρ ($0 \le \rho < \infty$), of T(r, f), if it is possible to find three sequences

Received December 24, 1970

506

HIDEO MUTŌ

$$(2. 1) {rm'}, {rm''}, {\varepsilonm}$$

such that, as $m \to \infty$,

$$(2.2) r_{m}' \rightarrow \infty, \ \frac{r_{m}}{r_{m'}} \rightarrow \infty, \ \frac{{r_{m}}''}{r_{m}} \rightarrow \infty, \ \varepsilon_{m} \rightarrow 0,$$

and such that

$$(2.3) T(r,f) \leq (1+\varepsilon_m) \left(\frac{r}{r_m}\right)^{\rho} T(r_m,f) (r_m' \leq r \leq r_m'')$$

and

$$(2.4) T(r,f) \leq \left(\frac{r}{r_m}\right)^{\rho-1/m} T(r_m,f) (r_0 \leq r \leq r_m'),$$

where r_0 is a constant associated with T(r, f).

The main result about Pólya peaks is the following existence theorem:

If f(z) has a finite lower order μ_f , then for each finite number ρ satisfying $\mu_f \leq \rho \leq \lambda_f$, T(r, f) has a sequence $\{r_m\}$ of Pólya peaks of order ρ .

A proof of the existence theorem will be found in [2], [3] and [7].

§ 3. Our basic tool is the following lemma due to Edrei [2]:

LEMMA. Let f(z) be a meromorphic function and let f(0)=1. Denote by $\{a_j\}_{j=1}^{\infty}$ the zeros of f(z) and by $\{b_j\}_{j=1}^{\infty}$ its poles. Put

$$\gamma_0 = 0$$
, $\gamma_m = \frac{1}{\pi \rho^m} \int_0^{2\pi} \log |f(\rho e^{i\theta})| e^{-im\theta} d\theta$ $(m \ge 1)$,

where $\rho(>0)$ is so small that the disc $|z| \le \rho$ contains neither zeros nor poles of f(z).

Then, if q is a non-negative integer and if

$$0 < r = |z| \leq \frac{R}{2}$$

we have

(3. 1)
$$\log |f(z)| = \operatorname{Re} \left\{ \gamma_0 + \gamma_1 z + \dots + \gamma_q z^q \right\}$$

$$+ \log \left| \prod_{|a_j| \le R} E\left(\frac{z}{a_j}, q\right) \right| - \log \left| \prod_{|b_j| \le R} E\left(\frac{z}{b_j}, q\right) \right| + S_q(z, R),$$

where

$$E(u, 0) = 1 - u$$
; $E(u, q) = (1 - u) \exp \left\{ u + \frac{u^2}{2} + \dots + \frac{u^q}{q} \right\}$ $(q \ge 1)$

and

(3. 2)
$$|S_q(z,R)| \leq 14 \left(\frac{r}{R}\right)^{q+1} T(2R,f).$$

§ 4. We shall give a proof of the result (B).

Proof of (B). It was proved that $\Delta(f) < 2$, if $\mu_f < 1$ and $\delta(\infty, f) = 1$ [4]. Hence in the following discussion we may assume that $\mu_f \ge 1$.

It is well known that the following inequality

$$\Delta(f) \leq 2 - \overline{\lim}_{r \to \infty, r \notin \mathcal{E}} \frac{N(r, 1/f') + N(r, f')}{T(r, f')}$$

holds with an exceptional set \mathcal{E} of finite measure, if $\delta(\infty, f)=1$. Hence, if $\Delta(f)=2$, then we have

(4. 1)
$$\lim_{r \to \infty, r \notin \mathcal{E}} \frac{N(r, 1/f') + N(r, f')}{T(r, f')} = 0.$$

Put

$$n_1(r) = n\left(r, \frac{1}{f'}\right) + n(r, f'),$$

$$N_1(r) = N\left(r, \frac{1}{f'}\right) + N(r, f').$$

Let $\{r_m\}$ be a sequence of Pólya peaks, of order μ_f , of T(r, f). Let $\{r_m'\}$, $\{r_m''\}$ and $\{\varepsilon_m\}$ be three sequences satisfying (2.2), (2.3) and (2.4).

By (4.1), there is a sequence $\{\eta_m\}$ such that

$$(4.2) \qquad \qquad \sup_{t_{m}' \leq t, t \notin \mathcal{E}} \frac{N_1(t)}{T(t, f')} < \eta_m, \qquad \lim_{m \to \infty} \eta_m = 0.$$

In the following lines we shall study the asymptotic behavior of f'(z) around the sequence $\{r_m\}$.

We use the fact that $\mu_f = \mu_{f'}$, which was proved by Chuang [1]. We set

(4. 3)
$$q = [\mu_{f'}].$$

Put

$$R_m = \frac{1}{4\alpha} \min \{ \eta_m^{-1/(4\mu_f)} r_m, r_m'' \},$$

where $\alpha = \exp(1/(q+1))$.

Denote by $\{a_j\}_{j=1}^{\infty}$ the non-zero zeros of f'(z) and by $\{b_j\}_{j=1}^{\infty}$ its non-zero poles. Set

$$C(r) = \gamma_q + \frac{1}{q} \left\{ \sum_{|a_j| \le r} \frac{1}{a_j^q} - \sum_{|b_j| \le r} \frac{1}{b_j^q} \right\},$$

where γ_q is defined by

$$\gamma_q = \frac{1}{\pi \rho^q} \int_0^{2\pi} \log |\tilde{f}'(\rho e^{i\theta})| e^{-iq\theta} d\theta$$

with a suitable function $\tilde{f}'(z)$ such that $\tilde{f}'(z) = Az^l f'(z)$, $\tilde{f}'(0) = 1$ and a positive number $\rho < \min_j \{|a_j|, |b_j|\}$.

With q defined by (4.3) we apply the lemma stated in § 3 for f'(z). Then, for $r=|z| \le R/2$,

$$\log |f'(z)| = \operatorname{Re} \left\{ \gamma_0 + \gamma_1 z + \dots + \gamma_q z^q \right\} + \log \left| \prod_{|a_j| \le R} E\left(\frac{z}{a_j}, q\right) \right|$$

$$-\log \left| \prod_{|b_j| \le R} E\left(\frac{z}{b_j}, q\right) \right| + S_q'(z, R) + O(\log r),$$

where

$$|S_q'(z, R)| \le 14 \left(\frac{r}{R}\right)^{q+1} T(2R, f').$$

Hence

$$\log |f'(z)| - \text{Re} \{C(r)z^q\} - S_q'(z, R) = \log |g|$$

$$(4.4) = \log \left| \prod_{|a_{j}| \le r} E\left(\frac{z}{a_{j}}, q - 1\right) \right| - \log \left| \prod_{|b_{j}| \le r} E\left(\frac{z}{b_{j}}, q - 1\right) \right|$$

$$+ \log \left| \prod_{r < |a| \le R} E\left(\frac{z}{a_{j}}, q\right) \right| - \log \left| \prod_{r < |b_{j}| \le R} E\left(\frac{z}{b_{j}}, q\right) \right| + O(r^{q-1} + \log r).$$

Put

$$\phi(t) = \frac{1}{2\pi} \int_0^{2\pi} \frac{d\theta}{|te^{i\theta} - 1|} \qquad (t \neq 1).$$

Then we get the following inequality [5]:

$$(4.5) \frac{1}{2\pi} \int_0^{2\pi} \left| \log \left| E\left(\frac{re^{i\theta}}{a}, p\right) \right| \right| d\theta \leq r^p \int_{|a|}^{\infty} t^{-p-1} \phi\left(\frac{t}{r}\right) dt.$$

We set

(4.6)
$$\alpha_m = \left(\frac{r_m}{R_m}\right)^{-(q+1-\mu_f)/(2q+2)},$$

(4.7)
$$\beta_m = \eta_m^{-1/(2\mu_f)},$$

(4.8)
$$\gamma_m = \delta_m^{-1/(2\mu_{f-2/m})},$$

where

$$\delta_m = \int_{|d_1|/R_m^{\alpha}}^{r_m'/r_m^{\alpha}} t^{\mu_{f-q-1/m}} \phi(t) \, dt, \quad |d_1| = \min_{j} (|a_j|, |b_j|).$$

Further we define

$$(4. 9) \sigma_m = \min \{\alpha_m, \beta_m, \gamma_m\},$$

(4. 10)
$$r_m * = \frac{1}{4\alpha} \min \{ \sigma_m r_m, R_m + r_m \}.$$

By (4.6), (4.7) and (4.8), $\sigma_m \to \infty$, as $m \to \infty$. By (4.5) we have, as $r \to \infty$,

where

$$n_1^*(t) = \begin{cases} n_1(t), & t \leq R, \\ n_1(R), & t > R. \end{cases}$$

By making use of (4.2) we have

(4. 12)
$$n_1(t) \leq (q+1)N_1(\alpha t) \leq (q+1)\eta_m T(\alpha t, f'),$$

if $\alpha t \notin \mathcal{E}$, $\alpha t \ge r_m'$. Since $\delta(\infty, f) = 1$, we obtain, as $t \to \infty$,

$$(4. 13) T(t, f') \leq (1 + o(1))T(t, f),$$

if $t \notin \mathcal{E}$.

In the following discussion we assume that $r \in [r_m, r_m^*]$. Hence $T(r_m, f) \le T(r, f)$. Put

$$r^{q-1} \int_{|d_1|}^r n_1(t) t^{-q} \phi\left(\frac{t}{r}\right) dt = r^{q-1} \left\{ \int_{|d_1|}^{(r_0-1)/\alpha} + \int_{(r_0-1)/\alpha}^{(r_{m'}-1)/\alpha} + \int_{(r_{m'}-1)/\alpha}^r \right\}$$

$$\equiv I_m^{-1} + I_m^{-2} + I_m^{-3},$$

where r_0 is a sufficiently large value such that (2.4), (4.13) and $N_1(t) \leq 2T(t, f')$ hold for all $t \geq (r_0 - 1)/\alpha$, $t \notin \mathcal{E}$. Then

$$(4. 14) I_m^1 = O(r^{q-1}).$$

Since \mathcal{E} is a set of finite measure, we can find a point u such that $u \notin \mathcal{E}$, $u \in [t, t+1]$, if t is sufficiently large. Hence $T(\alpha t, f') \leq (1+o(1)) T(\alpha t+1, f)$, if t is sufficiently large. Thus, by (2. 4), (4. 8), (4. 10), (4. 12) and (4. 13), we get

$$I_{m}^{2} \leq (q+1)r^{q-1} \int_{(r_{0}-1)/\alpha}^{(r_{m'}-1)/\alpha} N_{1}(\alpha t) t^{-q} \phi\left(\frac{t}{r}\right) dt$$

$$\leq 2(q+1)r^{q-1} \int_{(r_{0}-1)/\alpha}^{(r_{m'}-1)/\alpha} T(\alpha t+1, f') t^{-q} \phi\left(\frac{t}{r}\right) dt$$

$$\leq 4(q+1)r^{q-1} \int_{(r_{0}-1)/\alpha}^{(r_{m'}-1)/\alpha} T(\alpha t+2, f) t^{-q} \phi\left(\frac{t}{r}\right) dt$$

$$\leq 4(q+1)T(r_{m}, f)r^{q-1} \int_{(r_{0}-1)/\alpha}^{(r_{m'}-1)/\alpha} \left(\frac{\alpha t+2}{r_{m}}\right)^{\mu_{f}-1/m} t^{-q} \phi\left(\frac{t}{r}\right) dt$$

$$\leq 4(q+1)(2\alpha)^{\mu_{f-1/m}} \left(\frac{r}{r_m}\right)^{\mu_{f-1/m}} \delta_m T(r,f) = o(T(r,f)).$$

Similary we have

$$I_{m}^{3} \leq (q+1)r^{q-1} \int_{(r_{m'-1})/\alpha}^{r} N_{1}(\alpha t) t^{-q} \phi\left(\frac{t}{r}\right) dt$$

$$\leq (q+1)\eta_{m} r^{q-1} \int_{(r_{m'-1})/\alpha}^{r} T(\alpha t+1, f') t^{-q} \phi\left(\frac{t}{r}\right) dt$$

$$\leq 2(q+1)\eta_{m} (1+\varepsilon_{m}) T(r_{m}, f) r^{q-1} \int_{(r_{m'-1})/\alpha}^{r} \left(\frac{\alpha t+2}{r_{m}}\right)^{\mu_{f}} t^{-q} \phi\left(\frac{t}{r}\right) dt$$

$$\leq 2(q+1)(2\alpha)^{\mu_{f}} \eta_{m} (1+\varepsilon_{m}) \sigma_{m}^{\mu_{f}} T(r, f) \int_{r_{m'}/r}^{1} t^{\mu_{f}-q} \phi(t) dt = o(T(r, f)),$$

since

$$\int_{0}^{1} t^{\mu_{f}-q} \phi(t) dt \leq \int_{0}^{1} t^{-1/2} \phi(t) dt < \infty.$$

Since $q \ge 1$, as above, we have

$$(4. 17) \qquad r^{q-1} n_{1}(r) \int_{r}^{\infty} t^{-q} \phi\left(\frac{t}{r}\right) dt \leq 2(q+1) \eta_{m} T(\alpha r+2, f) r^{q-1} \int_{r}^{\infty} t^{-q} \phi\left(\frac{t}{r}\right) dt$$

$$\leq 2(q+1)(2\alpha)^{\mu} f(1+\varepsilon_{m}) \eta_{m} \sigma_{m}^{\mu} f(r, f) \int_{1}^{\infty} t^{-1/2} \phi(t) dt = o(T(r, f)).$$

We apply (4.11) with $R = R_m$. Put

$$r^q \int_r^\infty \{n_1*(t) - n_1(r)\} t^{-q-1} \phi\left(\frac{t}{r}\right) dt = r^q \left\{\int_r^{R_m} + \int_{R_m}^\infty\right\} \equiv I_m^4 + I_m^5.$$

Then, as above, we get

$$I_{m}^{5} \leq r^{q} n_{1}(R_{m}) \int_{R_{m}}^{\infty} t^{-q-1} \phi\left(\frac{t}{r}\right) dt$$

$$\leq 2(q+1)(2\alpha)^{\mu} f(1+\varepsilon_{m}) \eta_{m}^{3/4} T(r, f) \int_{R_{m}/r}^{\infty} t^{-1/2} \phi(t) dt = o(T(r, f)),$$

$$I_{m}^{4} \leq (q+1)r^{q} \int_{r}^{R_{m}} N_{1}(\alpha t) t^{-q-1} \phi\left(\frac{t}{r}\right) dt$$

$$\leq 2(q+1)(2\alpha)^{\mu} f(1+\varepsilon_{m}) \eta_{m}^{1/2} T(r, f) \int_{1}^{R_{m}/r} t^{-q-1} \phi(t) dt = o(T(r, f)),$$

$$14\left(\frac{r}{R_{m}}\right)^{q+1} T(2R_{m}, f') \leq 28\left(\frac{r}{R_{m}}\right)^{q+1} T(2R_{m}+1, f)$$

(4. 20)
$$\leq 28 \cdot 2^{\mu} f \left(\frac{r}{R_m}\right)^{q+1} (1+\varepsilon_m) \left(\frac{R_m}{r_m}\right)^{\mu} T(r_m, f)$$

$$\leq 28 \cdot 2^{\mu} f (1+\varepsilon_m) \left(\frac{r_m}{R_m}\right)^{(q+1-\mu_f)/2} T(r, f) = o(T(r, f)).$$

Consequently, by (4.14), (4.15), (4.16), (4.17), (4.18), (4.19) and (4.20), we have in $[r_m, r_m^*]$

(4. 21)
$$m(r, g) + m\left(r, \frac{1}{g}\right) = o(T(r, f)).$$

Let $\Gamma(r)$ be the set of θ satisfying

$$\frac{1}{2\pi}\int_{\Gamma(r)}\log|f'(re^{i\theta})|d\theta=\frac{1}{2\pi}\int_0^{2\pi}\log^+|f'(re^{i\theta})|d\theta\equiv m(r,f').$$

Then, by (4.4) and (4.21), as $r \to \infty$ in $[r_m, r_m^*]$, meas $\Gamma(r) \to \pi$.

On the other hand, by (4.1) and a lemma in [9], we get

$$m\left(r, \frac{1}{f'}\right) \sim T(r, f') \sim T(r, f),$$

as $r \rightarrow \infty$, $r \notin \mathcal{E}$.

Therefore, in $[r_m, r_m^*] - \mathcal{E}$, the measure of the set J(r) of θ satisfying

$$\frac{1}{2\pi} \int_{J(r)} \log^+ |f'(re^{i\theta})| d\theta \sim T(r, f)$$

tends to π , as $r \rightarrow \infty$.

By carefully tracing the procedure in [9], especially pp. 137-138, we can see that the number of finite deficient value is at most μ_f . Hence $\nu(f) \leq \mu_f + 1$, since $\delta(\infty, f) = 1$.

REFERENCES

- [1] Chuang, C.-T., Sur la comparaison de la croissance d'une fonction méromorphe et de celle de sa dérvée. Bull. Sci. Math. (2) 75 (1951), 171-190.
- [2] Edrei, A., The deficiencies of functions of finite lower order. Duke Math. J. 31 (1964), 1-22.
- [3] Edrei, A., Sums of deficiencies of meromorphic functions. J. Analyse Math. 14 (1965), 79-107.
- [4] Edrei, A., Locally tauberian theorems for meromorphic functions of lower order less than one. Trans. Amer. Math. Soc. 140 (1969), 309-332.
- [5] EDREI, A., AND W. H. J. FUCHS, On the growth of meromorphic functions with several deficient values. Trans. Amer. Math. Soc. 93 (1959), 292–328.
- [6] EDREI, A., AND W. H. J. FUCHS, Valeurs déficientes et valeurs asymptotiques des fonctions méromorphes. Comm. Math. Helv. 33 (1959), 258-295.

- [7] Edrei, A., and W. H. J. Fuchs, The deficiencies of meromorphic functions of order less than one. Duke Math. J. 27 (1960), 233-249.
- [8] Pfluger, A., Zur Defektrelation ganzer Funktionen endlicher Ordnung. Comm. Math. Helv. 19 (1946), 91-104.
- [9] Weitsman, A., Meromorphic functions with maximal deficiency sum and a conjecture of F. Nevanlinna. Acta Math. 123 (1969), 115-139.

DEPARTMENT OF MATHEMATICS, TOKYO INSTITUTE OF TECHNOLOGY.