A REMARK ON DERIVED SPACES

By Tetsuhiro Shimizu

Let G be a locally compact Abelian group, and let μ be the Haar measure on G. If $p \ge 1$, the space of all μ -measurable functions f such that $|f|^p$ is summable is designated by $L_p(G)$.

We denote by $L_p^0(G)$ the set of all $f \in L_p(G)$ such that $||f||_0 = \sup\{||f*h||_p : h \in L_1(G), \|\hat{h}\|_{\infty} \le 1\} < \infty$. Clearly $L_p^0(G)$ is the linear subspace of $L_p(G)$. We call $L_p^0(G)$ the derived space of $L_p(G)$ ([5], p. 72).

The following results were showed by Helgason [3] and Figa-Talamanca [1]. Let G be a locally compact Abelian group.

- 1) If G is a compact, then $L_p^0(G)$ $(1 \le p \le 2)$ is algebraically and topologically isomorphic to $L_2(G)$.
 - 2) If G is non-compact and connected, then $L_p^0(G) = \{0\}$ $(1 \le p < 2)$.
 - 3) If G is non-compact and separable, then $L_1^0(G) = \{0\}$.
 - 4) If G is an infinite discrete group, then $L_p^o(G) = \{0\}$ $(1 \le p < 2)$.

We shall show the following theorem in this short note.

Theorem A. Let G be a non-compact locally compact Abelian group, then $L_p^0(G) = \{0\}$ $(1 \le p < 2)$.

Proof. From the structure theorem of locally compact Abelian groups ([6, p. 95]), we know that G has an open subgroup H which is the direct sum of a compact group and an Euclidean space R^m .

a) Suppose $m \ge 1$. If we shall show that for any compact set K of G there exists an element d of G such that $\{K+kd\}$, $k=0, \pm 1, \pm 2, \cdots$, are pairwise disjoint, then we can prove this theorem by using the similar argument in [1].

Since K is compact, there is a finite set $\{x_i: i=1, 2, \dots, n\}$ of G such that $K \subset \bigcup_{i=1}^n (x_i+H)$. Put $K_0 = \bigcup_{i=1}^n (((x_i+H)\cap K)-x_i)$. Then K_0 is a compact subset of H. Since $m \ge 1$, there is an element $d \in H$ such that $\{K_0 + kd\}$, $k = 0, \pm 1, \pm 2, \dots$, are pairwise disjoint. Clearly, $\{K + kd\}$, $k = 0, \pm 1, \pm 2, \dots$, are also pairwise disjoint.

b) Suppose now m=0. Let $\dot{\mu}$ and μ_0 be the Haar measures on G/H and H respectively such that

$$\int_G f(x) \, d\mu(x) = \int_{G/H} \left(\int_H f(x+y) \, d\mu_0(x) \right) d\dot{\mu}(\dot{y})$$

Received November 12, 1970.

and $||\mu_0||=1$. Let

$$\Phi g(\dot{y}) = \int_{H} g(x+y) \, d\mu_0(x)$$

for each $g \in L_p(G)$, since $||\mu_0|| = 1$, we have that

$$\int_{G/H} |\mathcal{D}g(\dot{y})|^p d\dot{\mu}(\dot{y}) = \int_{G/H} \left| \int_H g(x+y) d\mu_0(x) \right|^p d\dot{\mu}(\dot{y}) \\
\leq \int_{G/H} \left(\int_H |g(x+y)|^p d\mu_0(x) \right) d\dot{\mu}(\dot{y}) = \int_G |g(x)|^p d\mu(x).$$

Therefore, Φ is a norm-decreasing linear operator of $L_p(G)$ into $L_p(G/H)$. On the other hand, if φ is the canonical homomorphism of G to G/H, then $\Psi g(x) = g(\varphi(x))$ belongs to $L_p(G)$ for any $g \in L_p(G/H)$. Indeed,

$$\begin{split} &\int_{\mathcal{G}} |g(\varphi(x))|^p d\mu(x) = \int_{\mathcal{G}/H} \biggl(\int_{H} |g(\varphi(x+y))|^p d\mu_0(x) \biggr) d\dot{\mu}(\dot{y}) \\ &= \int_{\mathcal{G}/H} |g(\dot{y})|^p d\dot{\mu}(\dot{y}) < \infty. \end{split}$$

It is evident that $\Phi \Psi g = g$ for all $g \in L_p(G/H)$. For $f, g \in C_c(G)$, let

$$F(f, g, x; y, \dot{z}) = \int_{H} f(x + y - u - z) g(u + z) d\mu_{0}(u), \quad (x \in G, y \in H, \dot{z} \in G/H).$$

Suppose that K_g is a compact support of g, then $F(f, g, x; y, \dot{z})=0$ for all $z \notin (K_g + H)$. Since $K_g + H$ is compact, there exists a finite subset $\{z_1, \dots, z_n\}$ of G such that $K_g + H \subset \bigcup_{i=1}^n (z_i + H)$. Thus, we have that if $\dot{z} \notin \{\dot{z}_1, \dots, z_n\}$, then $F(f, g, x; y, \dot{z})=0$ for all $y \in H$ and $\mathfrak{O}g(\dot{z})=0$. Hence, it follows that

$$\begin{split} \varPhi(f*g)(\dot{x}) &= \int_{H} \int_{G} f(x+y-z) \, g(z) \, d\mu(z) \, d\mu_{0}(y) \\ &= \int_{H} \int_{G/H} \int_{H} f(x+y-z-u) \, g(z+u) \, d\mu_{0}(u) \, d\dot{\mu}(\dot{z}) \, d\mu_{0}(y) \\ &= \int_{H} \sum_{i=1}^{n} F(f, \, g, \, x \, ; \, y, \, \dot{z}_{i}) \, d\mu_{0}(y) \\ &= \sum_{i=1}^{n} \int_{H} F(f, \, g, \, x \, ; \, y, \, \dot{z}_{i}) \, d\mu_{0}(y) \\ &= \sum_{i=1}^{n} \int_{H} \int_{H} f(x+y-z_{i}-u) \, g(z_{i}+u) \, d\mu_{0}(u) \, d_{0}\mu(y) \\ &= \sum_{i=1}^{n} \int_{H} \int_{H} f(x+y-z_{i}-u) \, g(z_{i}+u) \, d\mu_{0}(y) \, d\mu_{0}(u) \end{split}$$

$$\begin{split} &= \sum_{i=1}^n \int_H f(x+y-z_i-u) \, d\mu_0(y) \int_H g(z_i+u) \, d\mu_0(u) \\ &= \sum_{i=1}^n \Phi f(\dot{x}-\dot{z}_i) \, \Phi g(\dot{z}_i) \\ &= \int_{G/H} \Phi f(\dot{x}-\dot{z}) \, \Phi g(\dot{z}) \, d\dot{\mu}(\dot{z}) \\ &= \Phi f * \Phi g(\dot{x}). \end{split}$$

Since $C_c(G)$ is dense in $L_p(G)$ $(1 \le p < 2)$, we have that if $f \in L_p(G)$ and $g \in L_1(G)$, then $\Phi(f*g) = \Phi(f*\Phi)g$.

Let Γ be the dual group of G, and let Λ be the anihilator of H. For any $h \in L_1(G/H)$, it is evident that $\widehat{\Psi}h(\gamma) = \widehat{h}(\gamma)$ for any $\gamma \in \Lambda$ and $\widehat{\Psi}h(\gamma) = 0$ for any $\gamma \in \Gamma \setminus \Lambda$. Therefore, if $f \in L_p^p(G)$ and $h \in L_1(G/H)$, then

$$||\Phi f * h||_p = ||\Phi (f * \Psi h)||_p \le ||f * \Psi h||_p \le ||f||_0 ||\widehat{\Psi} h||_{\infty} = ||f||_0 ||\widehat{h}||_{\infty}.$$

Consequently, $\Phi f \in L_p^0(G/H)$ for any $f \in L_p^0(G)$.

Let $f_{\gamma}(x) = (-x, \gamma)f(x)$ for any $f \in L_p(G)$ and $\gamma \in \Gamma$. Clearly, if $f \in L_p^0(G)$, then $f_{\gamma} \in L_p^0(G)$. Suppose that there exists a non-zero element $f \in L_p^0(G)$. If γ is an element of Γ such that $\hat{f}(\gamma) \neq 0$, then

$$\begin{split} \widehat{\Phi f_{7}}(0) &= \int_{G/H} \Phi f_{7}(\dot{x}) \, d\dot{\mu}(\dot{x}) \\ &= \int_{G/H} \int_{H} (-(x+y), \gamma) f(x+y) \, d\mu_{0}(y) \, d\dot{\mu}(\dot{x}) = \widehat{f}(\gamma) = 0. \end{split}$$

Thus, we have that $L_p^0(G/H) \neq \{0\}$. But, since G/H is infinite discrete, this is impossible. Therefore, $L_p^0(G) = \{0\}$. This completes the proof.

The following theorem was proved by Gaudry in the case of a locally compact Abelian group with an infinite discrete subgroup.

THEOREM B. Let G be a non-compact locally compact Abelian group. If g is a function on Γ such that $\varphi g \in \bigcup_{1 \leq p < 2} L_p(G)^{\wedge}$, where $L_p(G)^{\wedge} = \{\hat{f} : f \in L_p(G), \hat{f} \text{ is the Fourier transform of } f\}$, for each $\varphi \in C_0(\Gamma)$, then g is zero locally almost evyeywhere.

Proof. From the hypothesis, we can assume g has a compact support K. Then, there is a number p_0 , $1 < p_0 < 2$, such that $\varphi g \in L_{p_0}(G)^{\wedge}$ for all $\varphi \in C_0(\Gamma)$ ([2], p. 486). Let $\varphi_0 \in C_0(\Gamma)$ such that $\varphi_0 \equiv 1$ on K, then $\varphi_0 g = g \in L_{p_0}(G)^{\wedge}$. Let $f \in L_{p_0}(G)$ such that $\widehat{f} = g$ locally almost everywhere. Then $f \in L_{p_0}(G)$ ([1]). Therefore, theorem A shows f is zero. Thus g is zero locally almost everywhere. This completes the proof.

For $s \in G$, τ_s will denote the translation operator defined by $(\tau_s f)(t) = f(ts^{-1})$. A continuous linear operator T from $L_p(G)$ to $L_p(G)$ is called a *multiplier* for $L_p(G)$ whenever $T\tau_s = \tau_s T$ for each $s \in G$. The collection of all mutipliers for $L_p(G)$ will

be denoted by $M(L_p(G))$.

Combining the theorem A with the proof of theorem 5 in [1] we can prove the next theorem.

Theorem C. Let G be a non-compact locally compact Abelian group and suppose $1 , <math>p \neq 2$. If $\varphi \in L_{\infty}(\Gamma)$ corresponds a multiplier T in $M(L_p(G))$ (i.e. $(\widehat{Tf}) = \varphi \widehat{f}$ and has the property that whenever φ is a function for which $|\varphi(\gamma)| \leq |\varphi(\gamma)|$ for each $\gamma \in \Gamma$ then φ corresponds to a multiplier in $M(L_p(G))$, then $\varphi = 0$.

REFERENCES

- [1] Figa-Talamanca, A., On the subspace of L_p invariant under multiplication of transforms by bounded continuous functions. Rend. del Sem. Mat. Univ. Padova 35 (1965), 176–189.
- [2] GAUDRY, G. I., Mutipliers of type (p, q). Pacific J. Math. 18 (1966), 477-488.
- [3] HELGASON, S., Multipliers of Banach algebras. Ann. of Math. 64 (1959), 240-254.
- [4] Hörmander, L., Estimates for translation invariant operator in L_p space. Acta Math. 104 (1960), 93–140.
- [5] LARSEN, L., The multiplier problem. Springer-Verlag, New York (1969).
- [6] Rudin, W., Fourier analysis on groups. Interscience, New York (1962).

DEPARTMENT OF MATHEMATICS,
TOKYO INSTITUTE OF TECHNOLOGY.