THE LAW OF THE ITERATED LOGARITHM FOR STATIONARY PROCESSES SATISFYING MIXING CONDITIONS

By Hiroshi Oodaira and Ken-ichi Yoshihara

0. Summary.

The law of the iterated logarithm for various stochastic sequences has long been studied by many authors. Recently, Iosifescu proved in [5] that the law holds for stationary sequences satisfying the uniformly strong mixing condition and Reznik showed in [8] that the one is also valid for stationary processes satisfying the strong mixing condition. But, the conditions used in [5] and [8] are slightly stringent. The purpose of this paper is to weaken those conditions, that is, to prove the law under as similar as possible requirements to the conditions in [3].

1. Definitions and notations.

Let $\left\{x_{j},-\infty<j<\infty\right\}$ be processes which are strictly stationary and satisfy one of the following conditions:

$$
\begin{equation*}
\sup _{A \in \mathcal{M}_{-\infty}^{k}, B \in \mathcal{S H}_{k+n}^{\infty}} \frac{1}{P(A)}|P(A \cap B)-P(A) P(B)|=\varphi(n) \rightarrow 0(n \rightarrow \infty) \tag{I}
\end{equation*}
$$

or
(II)

$$
\sup _{A \in \mathcal{H}_{-\infty}^{k}, B \in \mathscr{H}_{k+n}^{\infty}}|P(A \cap B)-P(A) P(B)|=\alpha(n) \rightarrow 0(n \rightarrow \infty),
$$

where \mathscr{M}_{a}^{b} denotes the σ-algebra generated by events of the type

$$
\left\{\left(x_{i_{1}}, \cdots, x_{i_{k}}\right) \in E\right\}, \quad a \leqq i_{1}<\cdots<i_{k} \leqq b
$$

and E is a k-dimensional Borel set. In line with [4], we shall call Condition (I) the uniformly strong mixing (u.s.m.) condition and (II) the strong mixing (s.m.) codition.

In what follows, we assume that all processes $\left\{x_{j}\right\}$ are strictly stationary, $E x_{j}=0$ and $E x_{j}^{2}<\infty$. We shall agree to denote by the letter K_{\imath} a quantity bounded in absolute value.

Received October 15, 1970.

2. A sufficient condition for the validity of the law of the iterated logarithm.

In this and next sections, we write

$$
S_{n}=x_{1}+\cdots+x_{n}, \quad \sigma_{n}^{2}=\operatorname{var}\left(S_{n}\right)
$$

and put

$$
\sigma^{2}=E x_{0}^{2}+2 \sum_{j=1}^{\infty} E x_{0} x_{j}
$$

if the series converges. We shall use σ^{2} only when σ^{2} is positive.
Theorem 1. Let the strictly stationary process $\left\{x_{j}\right\}$ satisfy the s.m. condition. Suppose that $\sum \alpha(n)<\infty$ and

$$
\begin{equation*}
\sigma_{n}^{2}=n \sigma^{2}(1+o(1)) \quad\left(\sigma^{2}>0\right) . \tag{1}
\end{equation*}
$$

Then, the process $\left\{x_{j}\right\}$ obeys the law of the iterated logarithm, if the following requirements are fulfilled for some $\rho>0$ and for all sufficiently large n :

$$
\begin{equation*}
\sup _{-\infty<z<\infty}\left|P\left(\mathrm{~S}_{n}<z \sigma \sqrt{n}\right)-\Phi(z)\right|=O\left(\frac{1}{(\log n)^{1+\rho}}\right) \tag{i}
\end{equation*}
$$

where

$$
\begin{gather*}
\Phi(z)=\frac{1}{\sqrt{2 \pi}} \int_{-\infty}^{2} e^{-t^{2 / 2}} d t \\
P\left(\max _{1 \leq j \leq n}\left|S_{j}\right| \geqq b \chi(n)\right)=O\left(\frac{1}{(\log n)^{1+\rho}}\right) \tag{ii}
\end{gather*}
$$

where $b>1$ is an arbitrary number and

$$
\begin{equation*}
\chi(n)=\left(2 \sigma^{2} n \log \log n\right)^{1 / 2} . \tag{2}
\end{equation*}
$$

Proof. We will use the method of the proof in [7]. The assertion will be proved if we show that for any $\varepsilon>0$

$$
\begin{equation*}
P\left(\left|S_{n}\right|>(1+\varepsilon) \chi(n) \text { i.o. }\right)=0 \tag{3}
\end{equation*}
$$

and

$$
\begin{equation*}
P\left(\left|S_{n}\right|>(1-\varepsilon) \chi(n) \text { i.o. }\right)=1 . \tag{4}
\end{equation*}
$$

Firstly, we shall prove (3). For an arbitrarily chosen positive number τ, there exists a non-decreasing sequence of positive integers such that

$$
\begin{equation*}
\left(n_{k}-1\right) \sigma^{2} \leqq(1+\tau)^{k}<n_{k} \sigma^{2} \tag{5}
\end{equation*}
$$

for $k=k_{0}+1, k_{0}+2, \cdots$, where k_{0} is a positive integer. So, for all sufficiently large k

$$
\begin{equation*}
n_{k} \sim \frac{1}{\sigma^{2}}(1+\tau)^{k} \tag{6}
\end{equation*}
$$

and

$$
\begin{equation*}
n_{k}-n_{k-1}=n_{k}\left(1-\frac{n_{k-1}}{n_{k}}\right) \sim n_{k} \frac{\tau}{1+\tau} \tag{7}
\end{equation*}
$$

From (ii)

$$
P\left(\max _{1 \leqq j \leqq n_{k}}\left|S_{j}\right|>(1+\gamma) \chi\left(n_{k}\right)\right) \leqq K\left(\log n_{k}\right)^{-(1+\rho)}<K[k \log (1+\tau)]^{-\left(1+\gamma_{1}\right)}
$$

for any $\gamma(>0), \gamma_{1}\left(0<\gamma_{1}<\rho\right)$ and for all k sufficiently large. Thus

$$
\begin{equation*}
\sum_{k} P\left(\max _{1 \leqq j \leqq n_{k}}\left|S_{j}\right|>(1+\gamma) \chi\left(n_{k}\right)\right)<\infty \tag{8}
\end{equation*}
$$

We note here that for all sufficiently large k

$$
\frac{\chi\left(n_{k}\right)}{\chi\left(n_{k-1}\right)}<\sqrt{1+2 \tau}
$$

For a fixed number $\gamma(0<\gamma<\varepsilon)$, choose a positive constant τ such that

$$
\frac{1+\varepsilon}{\sqrt{1+2 \tau}}>1+\gamma
$$

Then, from the Borel-Cantelli lemma and (8), we have

$$
\begin{aligned}
& P\left(\left|S_{n}\right|>(1+\varepsilon) \chi(n) \text { i.O. }\right) \leqq P\left(\max _{n_{k-1} \leqq n \leqq n_{k}}\left|S_{n}\right|>(1+\varepsilon) \chi\left(n_{k-1}\right) \text { i.o. }\right) \\
\leqq & P\left(\max _{1 \leqq n \leqq n_{k}}\left|S_{n}\right|>(1+\varepsilon) \chi\left(n_{k-1}\right) \text { i.o. }\right) \\
\leqq & P\left(\max _{1 \leqq n \leqq n_{k}}\left|S_{n}\right|>\frac{1+\varepsilon}{\sqrt{1+2 \tau}} \chi\left(n_{k-1}\right) \text { i.o. }\right) \\
\leqq & P\left(\max _{1 \leqq n \leqq n_{k}}\left|S_{n}\right|>(1+\gamma) \chi\left(n_{k}\right) \text { i.o. }\right)=0 .
\end{aligned}
$$

Thus, (3) holds.
Now, we turn to a proof of (4). For a sufficiently large number $A>0$ and sufficiently small $\delta>0$, let

$$
E_{j}=\left\{\left|S_{A} i\right| \leqq(1-\delta) \chi\left(A^{i}\right), i<j ;\left|S_{A^{j}}\right|>(1-\delta) \chi\left(A^{j}\right)\right\} \quad(j=1,2, \cdots)
$$

Let γ be a positive number such that for some $\varepsilon^{\prime}>0,2 / \sqrt{A}+\gamma+\varepsilon^{\prime}<\delta$. From the s.m. condition (II)

$$
\begin{gather*}
\quad P\left(\left\{\left|S_{A^{i}}\right| \leqq(1-\delta) \chi\left(A^{i}\right), i<j\right\} \cap\left\{\left|S_{A^{j}}-S_{A^{j-1}+\left[A^{j / 2}\right]}\right|>(1-\gamma) \chi\left(A^{j}\right)\right\}\right) \\
\geqq P\left(\left|S_{A^{i}}\right| \leqq(1-\delta) \chi\left(A_{i}\right), i<j\right) \cdot P\left(\left|S_{A^{\jmath}}-S_{A^{j-1}+\left[A^{j / 2}\right]}\right|>(1-\gamma) \chi\left(A^{j}\right)\right)-\alpha\left(\left[A^{j / 2}\right]\right) . \tag{9}
\end{gather*}
$$

While, from (i)

$$
P\left(\left|S_{n}\right|>b \chi(n)\right) \geqq \frac{K_{0}}{(\log n)(\log \log n)}
$$

holds for any $b>1$ and for all n sufficiently large. So, noting that $A^{j}-\left(A^{\jmath-1}\right.$ $\left.+\left[A^{j / 2}\right]\right)>A^{j} / 2$ for all sufficiently large A, we have

$$
\begin{align*}
v_{j} & =P\left(\left|S_{A^{j}}-S_{A^{\jmath-1}+\left[A^{j / 2} 3\right.}\right|>(1-\gamma) \chi\left(A^{j}\right)\right) \\
& \geqq P\left(\left|S_{A^{j}-A^{j-1}-\left[A^{j / 2}\right]}\right|>2(1-\gamma) \chi\left(\left[\frac{A^{j}}{2}\right]\right)\right) \tag{10}\\
& \geqq P\left(\left|S_{A^{j}-A^{j-1}-\left[A^{j / 2} 3\right.}\right|>2(1-\gamma) \chi\left(A^{j}-A^{\jmath-1}-\left[A^{j / 2}\right]\right)\right) \geqq \frac{K_{1}}{j \log j}
\end{align*}
$$

and, moreover, from Chebyshev's inequality

$$
\begin{equation*}
P\left(\left|S_{A^{\rho-1}+\left[A^{j / 2}\right]}-S_{A^{j-1}}\right| \geqq \varepsilon^{\prime} \chi\left(A^{j}\right)\right) \leqq K_{2} A^{-j / 2} . \tag{11}
\end{equation*}
$$

So, using the method of the proof of Theorem 1.1 in [8], we have

$$
P\left(\left|S_{A^{i}}\right|>(1-\delta) \chi\left(A^{i}\right) \text { for some } i, 1 \leqq i \leqq k\right) \rightarrow 1(k \rightarrow \infty) \text {, }
$$

which implies (4). Hence, the proof is completed.
Remark 1. For the process $\left\{x_{j}\right\}$, satisfying the s.m. condition, the requirement (ii) is fulfilled if (i) holds and there exists a function $r=r(n)$ such that $r(n) \rightarrow \infty$ and

$$
\begin{equation*}
\max \left(\frac{n}{r} P\left(\left|x_{1}\right|+\cdots+\left|x_{r}\right| \geqq \varepsilon \chi(n), \frac{n}{r} \alpha(r)\right)=O\left(\frac{1}{(\log n)^{1+\rho}}\right)\right. \tag{12}
\end{equation*}
$$

for any $\varepsilon(0<\varepsilon<(b-1) / b)$ where $b>1$ is an arbitrarily fixed number.
Proof. We use the method in [6]. For any $b>1$, let

$$
E_{j}=\left\{\left|S_{i}\right|<b \chi(n), i<j ;\left|S_{j}\right| \geqq b \chi(n)\right\} \quad(j=1, \cdots, n)
$$

and $k=[n / r]$. It follows from the s.m. condition that for any $a>0$

$$
\begin{align*}
& P\left(\max _{1 \leqq j \leqq n}\left|S_{j}\right| \geqq b \chi(n)\right)=P\left(\bigcup_{j=1}^{n} E_{j}\right) \\
\leqq & P\left(\left|S_{n}\right| \geqq b(1-\varepsilon) \chi(n)\right)+\sum_{\imath=0}^{k-2} P\left(\bigcup_{j=1}^{r}\left[E_{\imath r+j} \cup\left\{\left|S_{n}-S_{i r+j}\right| \geqq \varepsilon b \chi(n)\right\}\right]\right) \\
& +{ }_{l=(k-1) r+1}^{n} P\left(E_{l} \cap\left\{\left|S_{n}-S_{l}\right| \geqq \varepsilon \chi(n)\right\}\right) \\
\leqq & P\left(\left|S_{n}\right| \geqq b(1-\varepsilon) \chi(n)\right)+\sum_{l=0}^{k-2} P\left(\left(\bigcup_{j=1}^{r} E_{\imath r+j}\right) \cap\left\{\left|S_{n}-S_{(i+2) r}\right| \geqq \frac{\varepsilon}{2} \chi(n)\right\}\right) \tag{13}
\end{align*}
$$

$$
\begin{aligned}
& +\sum_{i=0}^{k-2} P\left(\bigcup_{j=1}^{r}\left[E_{i r+j} \cup\left\{\left|S_{(i+2) r}-S_{i r+j}\right| \geqq \frac{\varepsilon}{2} \chi(n)\right\}\right]\right) \\
& +\sum_{l=(k-1) r+1}^{n} P\left(E_{l} \cap\left\{\left|S_{n}-S_{l}\right| \geqq \varepsilon \chi(n)\right\}\right) \\
& \leqq P\left(\left|S_{n}\right| \geqq b(1-\varepsilon) \chi(n)\right)+\sum_{i=0}^{k-2} P\left(\bigcup_{j=1}^{r} E_{i r+j}\right) P\left(\left|S_{n}-S_{(i+2) r}\right| \geqq \frac{\varepsilon}{2} \chi(n)\right) \\
& +k \alpha(r)+(k+1) P\left(\left|x_{1}\right|+\cdots+\left|x_{2 r}\right| \geqq \frac{\varepsilon}{2} \chi(n)\right) .
\end{aligned}
$$

Since for any $i(0 \leqq i \leqq k-1)$

$$
P\left(\left|S_{n}-S_{(i+2) r}\right| \geqq \varepsilon \chi(n)\right)=P\left(\left|S_{n-(i+2) r}\right| \geqq \varepsilon \chi(n)\right) \leqq \frac{\sigma_{n-(i+2) r}^{2}}{\varepsilon^{2}\{\chi(n)\}^{2}} \rightarrow 0,
$$

so for sufficiently large n

$$
\begin{equation*}
P\left(\left|S_{n}-S_{(i+2) r}\right| \geqq \varepsilon \chi(n)\right) \leqq \frac{1}{2} . \tag{14}
\end{equation*}
$$

Thus, from (12), (13) and (14)

$$
\begin{aligned}
& P\left(\max _{1 \leq j \leq n}\left|S_{j}\right| \geqq b \chi(n)\right) \\
\leqq & P\left(\left|S_{n}\right| \geqq b(1-\varepsilon) \chi(n)\right)+\frac{1}{2} P\left(\max _{1 \leq j \leq n}\left|S_{j}\right| \geqq b \chi(n)\right)+O\left(\frac{1}{(\log n)^{1+\rho}}\right) .
\end{aligned}
$$

Hence, from (i) we have

$$
P\left(\max _{1 \leq j \leq n}\left|S_{j}\right| \geqq b \chi(n)\right)=O\left(\frac{1}{(\log n)^{1+\rho_{1}}}\right)
$$

where ρ_{1} is a positive constant.
Remark 2. For the process $\left\{x_{j}\right\}$, satisfying the u.s.m. condition (I), the requirement (ii) is satisfied if (i) holds and there exists a function $r=r(n)$ such that $r(n) \rightarrow \infty$ and

$$
\begin{equation*}
\frac{n}{r} P\left(\left|x_{1}\right|+\cdots+\left|x_{r}\right| \geqq \varepsilon X(n)\right)=O\left(\frac{1}{(\log n)^{1+\rho}}\right) \tag{15}
\end{equation*}
$$

for any $\varepsilon(0<\varepsilon<(b-1) / b)$ where $b>1$ is an arbitrarily fixed number.
3. The law of the iterated logarithm for the process $\left\{\boldsymbol{x}_{j}\right\}$ satisfying one of the conditions (I) or (II).

Theorem 1. 1 in [8] may be generalized in two ways:
(a) One way is to weaken the requirement $E\left|x_{0}\right|^{2+\delta}<\infty$ retaining the condition $\sum\{\varphi(n)\}^{1 / 2}<\infty$, (Therem 2);
(b) The other is to weaken the requirement $\Sigma\{\varphi(n)\}^{1 / 2}<\infty$ retaining the condition $E\left|x_{0}\right|^{2+\dot{\delta}}<\infty$, (Theorem 3).

Theorem 2. Let the process $\left\{x_{j}\right\}$ satisfying the u.s.m. condition have the following properties:
1°. For all sufficiently large N

$$
\begin{equation*}
\int_{|x|>N} x^{2} d P=O\left(\frac{1}{(\log N)^{5}}\right) \tag{16}
\end{equation*}
$$

2°.

$$
\sum_{j=1}^{\infty}\{\varphi(j)\}^{1 / 2}<\infty .
$$

Then the law of the iterated logarithm is applicable to the process $\left\{x_{j}\right\}$.
Proof. We remark first that from 2°

$$
\sigma_{n}^{2}=n \sigma^{2}(1+o(1))
$$

(cf. [3] and [4]).
Let

$$
f_{N}(x)= \begin{cases}x & (|x| \leqq N), \\ 0 & (|x|>N)\end{cases}
$$

and $\bar{f}_{N}=x-\bar{f}_{N}(x)$. Furthermore, let $r(n)=\left[n^{1 / 3}\right]$ and $N=\left[n^{1 / \epsilon}\right]$. Then forany $\lambda>0$

$$
\begin{aligned}
& P\left(\left|x_{1}\right|+\cdots+\left|x_{r}\right| \geqq 2 \lambda \chi(n)\right) \\
\leqq & P\left(\left|\bar{f}_{N}\left(x_{1}\right)\right|+\cdots+\left|\bar{f}_{N}\left(x_{r}\right)\right| \geqq \lambda \chi(n)\right) \\
& +P\left(\left|f_{N}\left(x_{1}\right)\right|+\cdots+\left|f_{N}\left(x_{r}\right)\right| \geqq \lambda \chi(n)\right) \\
= & P\left(\left|\bar{f}_{N}\left(x_{1}\right)\right|+\cdots+\left|\bar{f}_{N}\left(x_{r}\right)\right| \geqq \lambda \chi(n)\right) \\
\leqq & \frac{1}{\lambda^{2}\{\chi(n)\}^{2}} E\left(\sum_{j=1}^{r}\left|\bar{f}_{N}\left(x_{j}\right)\right|\right)^{2} \\
\leqq & \frac{r}{\lambda^{2}\{\chi(n)\}^{2}}\left\{E\left|\bar{f}_{N}\left(x_{0}\right)\right|^{2}+2 \sum_{j=1}^{r-1} E\left|\bar{f}_{N}\left(x_{0}\right)\right| \cdot\left|\bar{f}_{N}\left(x_{j}\right)\right|\right\} \\
\leqq & \frac{r}{\lambda^{2}\{\chi(n)\}^{2}}\left\{E\left|\bar{f}_{N}\left(x_{0}\right)\right|^{2}+2 r\left(E\left|\bar{f}_{N}\left(x_{0}\right)\right|\right)^{2}+4\left(E\left|\bar{f}_{N}\left(x_{0}\right)\right|^{2}\right) \sum_{j=1}^{r-1}\{\varphi(j)\}^{1 / 2}\right\} \\
\leqq & \frac{r}{\lambda^{2}\{\chi(n)\}^{2}} E\left|\bar{f}_{N}\left(x_{0}\right)\right|^{2}\left\{1+2 r \cdot \frac{1}{N^{2}} E\left|\bar{f}_{N}\left(x_{0}\right)\right|^{2}+4 \sum_{j=1}^{\infty}\{\varphi(j)\}^{1 / 2}\right\} \\
\leqq & K \frac{r}{\{\chi(n)\}^{2}} \cdot \frac{1}{(\log n)^{5}}
\end{aligned}
$$

and so

$$
\frac{n}{r} P\left(\left|x_{1}\right|+\cdots+\left|x_{r}\right| \geqq 2 \lambda \chi(n)\right)=O\left(\frac{1}{(\log n)^{5}}\right) .
$$

Thus, (15) holds.
Next, we shall prove that (i) in Theorem 1 is satisfied. Define

$$
S_{n}^{\prime}=\frac{1}{\sigma \sqrt{n}} \sum_{j=1}^{n}\left(f_{N}\left(x_{j}\right)-E f_{N}\left(x_{j}\right)\right)
$$

and

$$
S_{n}^{\prime \prime}=\frac{1}{\sigma \sqrt{n}} \sum_{j=1}^{n}\left(\bar{f}_{N}\left(x_{j}\right)-E \bar{f}_{N}\left(x_{j}\right)\right) .
$$

For a small $\alpha(0<\alpha<1 / 2)$, put

$$
p(n)=\left[n^{1 / 2+\alpha}\right], \quad q(n)=\left[n^{1 / 2-\alpha}\right], \quad k=\left[\frac{n}{p+q}\right]
$$

and set

$$
T_{n}^{\prime}=\sum_{i=0}^{k-1} \sum_{j=1}^{p} \frac{1}{\sigma \sqrt{n}}\left(f_{N}\left(x_{i(p+q)+j}\right)-E f_{N}\left(x_{i(p+q)+j}\right)\right), \quad T_{n}^{\prime \prime}=\sum_{\imath=0}^{k} \zeta_{\imath}
$$

where

$$
\begin{aligned}
& \zeta_{i}=\sum_{j=1}^{q} \frac{1}{\sigma \sqrt{n}}\left(f_{N}\left(x_{i(p+q)+p+j}\right)-E f_{N}\left(x_{i(p+q)+p+j}\right)\right) \quad(i=0,1, \cdots, k-1), \\
& \zeta_{k}=\sum_{j=k(p+q)+1}^{n} \frac{1}{\sigma \sqrt{n}}\left(f_{N}\left(x_{j}\right)-E f_{N}\left(x_{j}\right)\right) .
\end{aligned}
$$

Then

$$
\begin{align*}
E S_{n}^{\prime 2}= & \frac{1}{\sigma^{2}}\left\{E\left(\bar{f}_{N}\left(x_{0}\right)-E \bar{f}_{N}\left(x_{0}\right)\right)^{2}\right. \\
& \left.+2 \sum_{j=1}^{n-1}\left(1-\frac{j}{n}\right) E\left(\bar{f}_{N}\left(x_{0}\right)-E \bar{f}_{N}\left(x_{0}\right)\right)\left(\bar{f}_{N}\left(x_{j}\right)-E \bar{f}_{N}\left(x_{j}\right)\right)\right\} \tag{17}\\
\leqq & \frac{2}{\sigma^{2}} E \left\lvert\, \bar{f}_{N}\left(x_{0}\right)^{2}\left\{1+2 \sum_{j=1}^{n-1}\{\varphi(j)\}^{1 / 2}\right\}=O\left(\frac{1}{(\log n)^{5}}\right)\right.
\end{align*}
$$

and

$$
\begin{align*}
E T_{n}^{\prime \prime 2}= & E\left(\sum_{i=0}^{k-1} \zeta_{i}\right)^{2} \\
\leqq & \frac{1}{\sigma^{2} n}\left\{(k-1) E \zeta_{0}^{2}+2 k \sum_{i=0}^{k-1}\left|E \zeta_{0} \zeta_{i}\right|+E \zeta_{k}^{2}+2 \sum_{i=0}^{k-1}\left|E \zeta_{i} \zeta_{k}\right|\right\} \\
\leqq & \frac{1}{\sigma^{2} n}\left\{k E \zeta_{0}^{2}+4 k E \zeta_{0}^{2} \cdot \sum_{\imath=1}^{k-1}\{\varphi(i(p+q))\}^{1 / 2}+E \zeta_{k}^{2}\right. \\
& \left.\quad+4 \sum_{\imath=0}^{k-2} \sqrt{E \zeta_{0}^{2}} \sqrt{E \zeta_{k}^{2}}\{\varphi((k-i)(p+q))\}^{1 / 2}+2 \sqrt{E \zeta_{k-1}^{2}} \cdot \sqrt{E \zeta_{k}^{2}}\right\} \tag{18}
\end{align*}
$$

$$
\begin{aligned}
\leqq & \frac{1}{\sigma^{2} n}\left\{k \sigma_{q}^{2}+\sigma_{p+q}^{2}+4 k \sigma_{q}^{2} \sum_{\imath=0}^{\infty}\{\varphi(i(p+q))\}^{1 / 2}\right. \\
& \left.+4 k \sigma_{q} \sigma_{p+q}\left(\frac{1}{2 k}+\sum_{i=1}^{\infty}\{\varphi(i(p+q))\}^{1 / 2}\right)\right\} \\
= & O\left(n^{-\gamma_{2}}\right)
\end{aligned}
$$

for some $\gamma_{2}>0$. Since

$$
\begin{aligned}
& \left|E e^{i t S_{n} \prime \sigma \sqrt{n}}-E e^{i t T n_{n}}\right| \\
\leqq & \left|E e^{i t S n^{\prime} \sigma \sqrt{n}}-E e^{i t S n^{\prime}}\right|+\left|E e^{i t S n_{n^{\prime}}}-E e^{i t n_{n^{\prime}}}\right| \\
\leqq & \left.E e\right|^{i t S_{n^{\prime \prime}}^{\prime \prime}}-1|+E| e^{i t T n_{n}^{\prime \prime}}-1 \mid \\
\leqq & |t| \cdot E\left|S_{n}^{\prime \prime}\right|+|t| \cdot E\left|T_{n}^{\prime \prime}\right| \leqq|t|\left\{\sqrt{E\left|S_{n}^{\prime \prime}\right|^{2}}+\sqrt{E\left|T_{n}^{\prime \prime}\right|^{2}}\right\},
\end{aligned}
$$

so, from (17) and (18)

$$
\begin{align*}
I_{1} & =\int_{-(\log n)^{5 / 4}}^{(\log n)^{5 / 4}}\left|\frac{E e^{i t S_{n} / \sigma \sqrt{2}^{n}}-E e^{i t T_{n}}}{t}\right| d t \tag{19}\\
& \leqq \int_{-(\log n)^{5 / 4}}^{(\log n) 5 / 4}\left\{\sqrt{E\left|S_{n}^{\prime \prime}\right|^{2}}+\sqrt{E\left|T_{n}^{\prime \prime}\right|^{2}}\right\} d t=O\left(\frac{1}{(\log n)^{5 / 4}}\right) .
\end{align*}
$$

Furthermore, let $\eta_{0}, \eta_{1}, \cdots, \eta_{k-1}$ be independent random variables distributed in the same way as the corresponding

$$
\frac{1}{\sigma \sqrt{n}} \sum_{j=1}^{p}\left(f_{N}\left(x_{i(p+q)+j}\right)-E f_{N}\left(x_{i(p+q)+j}\right)\right) \quad(j=0,1, \cdots, k-1) .
$$

From Condition (I)

$$
\left|E e^{i t T_{n^{\prime}}}-\prod_{j=0}^{k-1} E e^{i t \eta_{j}}\right| \leqq k \varphi(q)=k \cdot O\left(q^{-2}\right)=O\left(n^{-r_{3}}\right)
$$

for some $\gamma_{3}>0$ and for all n sufficiently large. On the other hand

$$
\left|E e^{i t T_{n^{\prime}}}-\prod_{\jmath=0}^{k-1} E e^{i t \eta_{\jmath}}\right| \leqq \frac{t^{2}}{2}\left(E\left|T_{n}^{\prime}\right|^{2}+k E \eta_{0}^{2}\right)
$$

for all sufficiently small $|t|$. So

$$
\begin{align*}
& I_{2}=\int_{-(\log n)^{5 / 4}}^{(\log n)^{5 / 4}}\left|\frac{E e^{i t T_{n^{\prime}}}-E e^{i t \Sigma_{j=0}^{k=1 \eta_{j}}}}{t}\right| d t \\
& \leqq \int_{-n^{-1 / 4}}^{n-1 / 4}\left|\frac{E e^{i t T_{n^{\prime}}}-E e^{i t \Sigma_{j=0}^{k-1}{ }_{j} j}}{t}\right| d t+\int_{n-1 / 4 \leq|t| \leq(\log n)^{5 / 4}}\left|\frac{E e^{i t T_{n}^{\prime}}-E e^{i t \Sigma_{j=0}^{k-1}{ }^{1} j}}{t}\right| d t \tag{20}
\end{align*}
$$

$$
\begin{aligned}
& \leqq \frac{1}{2}\left(E\left|T_{n}^{\prime}\right|^{2}+k E \eta_{0}^{2}\right) \int_{-n-1 / 4}^{n-1 / 4}|t| d t+O\left(n^{\left.-\gamma_{3}\right)} \int_{n-1 / 4} \quad|t| \leqq(\log n)^{5 / 4}\right.
\end{aligned} \frac{d t}{|t|}
$$

Next, let

$$
\eta_{j}^{\prime}=\frac{\sigma \sqrt{n}}{\sqrt{k E \eta_{0}^{2}}} \eta_{j} \quad(j=0,1, \cdots, k-1) .
$$

Then, by the analogous argument, we have

$$
\begin{equation*}
I_{3}=\int_{-(\log n)^{5 / 4}}^{(\log n)^{5 / 4}}\left|\frac{E e^{i t \sum_{j=0}^{k-1} n_{j}}-E e^{i t \sum_{j=0}^{k=1} 0^{n} j^{\prime}}}{t}\right| d t=O\left(\frac{1}{(\log n)^{5 / 4}}\right) \tag{21}
\end{equation*}
$$

for all sufficiently large n.
Finally, by applying Esseen's lemma to the sum $\sum_{j>0}^{k=1} \eta_{j}^{\prime}$, we obtain

$$
\left|\frac{E e^{i t \Sigma_{j}^{k=1}=\eta^{\prime} j^{\prime}}-e^{-t 2 / 2}}{t}\right| \leqq \frac{K E \mid \eta_{0}^{\prime}{ }^{2+\delta}}{\sigma_{p}^{2+\delta} k^{\delta / 2}}|t|^{1+\delta} e^{-t^{2 / 4}} \leqq K k^{-\delta / 2}|t|^{1+\delta} e^{-t^{2 / 4}}
$$

for all t such that

$$
|t| \leqq \frac{\sqrt{n}\left\{E\left|\eta_{0}^{\prime}\right|^{2}\right\}^{(2+\delta) / 2}}{24 E\left|\eta_{0}^{\prime}\right|^{2+\delta}} \leqq K_{2} \sqrt{n}
$$

(cf. Lemma 1. 9 in [3]). So

$$
\begin{equation*}
I_{4}=\int_{-(\log n) 5 / 4}^{(\log n)^{5 / 4}}\left|\frac{E e^{i t \Sigma_{j=0^{n} j}^{k-1}-e^{-t 2 / 2}}}{t}\right| d t=O\left(k^{-\delta / 2}\right) . \tag{22}
\end{equation*}
$$

Combining (19)-(22), we have from Esseen's theorem

$$
\begin{align*}
& \sup _{-\infty<2<\infty}\left|F\left(S_{n}<z \sigma \sqrt{n}\right)-\Phi(z)\right| \\
& \leqq K_{1} \int_{-(\log n)^{5 / 4}}^{(\log n)^{5 / 4}}\left|\frac{E e^{i t S n^{\prime} \sqrt{n} \sigma}-e^{-t 2 / 2}}{t}\right| d t+\frac{K_{2}}{(\log n)^{5 / 4}} \tag{23}\\
& \leqq K_{1}\left(I_{1}+I_{2}+I_{3}+I_{4}\right)+\frac{K_{2}}{(\log n)^{5 / 4}}=O\left(\frac{1}{(\log n)^{5 / 4}}\right) .
\end{align*}
$$

Thus, from Theorem 1 and Remark 2, we have the theorem.
Theorem 3. The process $\left\{x_{j}\right\}$, satisfying the u.s.m. condition, obeys the law of the iterated logarithm, if the following requirements are fulfilled:
$1^{\circ} . E\left|x_{j}\right|^{2+\delta}<\infty$ for some $\delta>0$;
2°. $\varphi(n)=O\left(1 / n^{1+\epsilon}\right)$ for some $\varepsilon>1 /(1+\delta)$.
Proof. Without loss of generality, we may assume that $\varepsilon \leqq \mathbf{1}$. Let

$$
\begin{equation*}
\rho=\frac{(1+\varepsilon)(1+\delta)-(2+\delta)}{2 \delta(2+\delta)}=\frac{\varepsilon(1+\delta)-1}{2 \delta(2+\delta)}>0 . \tag{24}
\end{equation*}
$$

We define $f_{N}(x)$ and $\bar{f}_{N}(x)$ as before. For any positive integer j, put $N_{J}=j^{\rho}$. Then from the inequalities in [3]

$$
\begin{aligned}
\left|E x_{0} x_{j}\right| \leqq & \left|E x_{0}\left(f_{N_{j}}\left(x_{j}\right)-E f_{N_{j}}\left(x_{j}\right)\right)\right|+\left|E x_{0}\left(\bar{f}_{N_{j}}\left(x_{j}\right)-E \bar{f}_{N_{j}}\left(x_{j}\right)\right)\right| \\
\leqq & 4 N_{j} E\left|x_{0}\right| \varphi(j)+2\left(E\left|x_{0}\right|^{2+\delta}\right)^{1 /(2+\delta)}\left(E \mid \bar{f}_{N_{j}}\left(x_{j}\right)\right. \\
& \left.-\left.E \bar{f}_{N_{j}}\left(x_{j}\right)\right|^{(2+\delta) /(1+\delta)}\right)^{(1+\delta) /(2+\delta)}\{\varphi(j)\}^{(1+\delta) /(2+\delta)} \\
\leqq & 4 N_{j} E\left|x_{0}\right| \varphi(j)+4 N_{j}^{-\delta} E\left|x_{0}\right|^{2+\delta}\{\varphi(j)\}^{(1+\delta) /(2+\delta)} \\
\leqq & 4 E\left|x_{0}\right| \frac{1}{j^{1+(ใ-\delta)}}+4 E\left|x_{0}\right|^{2+\delta} \frac{1}{j^{(1+\epsilon)(1+\delta) /(2+\delta)+\rho \delta}} .
\end{aligned}
$$

Since $\varepsilon-\rho>0$ and

$$
\left\{(1+\varepsilon) \frac{1+\delta}{2+\delta}+\rho \delta\right\}-1=\frac{3\{\varepsilon(1+\delta)-1\}}{2(2+\delta)}>0
$$

so

$$
\begin{equation*}
\sum_{j=1}^{\infty}\left|E x_{0} x_{j}\right| \leqq \sum_{j=1}^{\infty}\left\{4 E\left|x_{0}\right| \cdot \frac{1}{j^{1+(6-\rho)}}+4 E\left|x_{0}\right|^{2+\delta} \frac{1}{j^{(1+\delta)(1+\delta) /(2+\delta)+\rho \delta}}\right\}<\infty . \tag{25}
\end{equation*}
$$

Thus, the series

$$
\sigma^{2}=E x_{0}^{2}+2 \sum_{j=1}^{\infty} E x_{0} x_{j}
$$

converges absolutely.
Next, we shall show that for some $\gamma>0$

$$
\begin{equation*}
\sigma_{n}^{2}=n \sigma^{2}\left(1+O\left(n^{-r}\right)\right) . \tag{26}
\end{equation*}
$$

It follows from (25) that

$$
\begin{aligned}
& \left|\sigma^{2}-\frac{1}{n} E S_{n}^{2}\right| \leqq 2 \sum_{j=n}^{\infty}\left|E x_{0} x_{j}\right|+\frac{2}{n} \sum_{j=1}^{n-1} j\left|E x_{0} x_{j}\right| \\
& \leqq \\
& \leqq\left\{E\left|x_{0}\right| \sum_{j=n}^{\infty} \frac{1}{j^{1+(\varepsilon-\rho)}}+E\left|x_{0}\right|^{2+\delta} \sum_{j=n}^{\infty} \frac{1}{j^{(1+\epsilon)(1+\delta) /(2+\delta)+\rho \delta}}\right\} \\
& \quad+\frac{8}{n}\left\{E\left|x_{0}\right| \sum_{j=1}^{n-1} \frac{1}{j^{(\varepsilon-\rho)}}+E\left|x_{0}\right|^{2+\delta} \sum_{j=1}^{n-1} \frac{1}{j^{3(\varepsilon(1+\delta)-1) / 2(2+\delta)}}\right\}
\end{aligned}
$$

and so we have (26).
Now, we define p, q and k by the formulas

$$
p=\left[n^{1 / 2+\alpha}\right], \quad q=\left[n^{1 / 2-\alpha}\right], \quad k=\left[\frac{n}{p+q}\right] \quad(\alpha>0)
$$

and set

$$
\begin{aligned}
& \xi_{i}=\sum_{j=i(p+q)+1}^{(i+1) p+2 q} x_{j}, \quad i=0,1, \cdots, k-1 ; \\
& \eta_{i}=\sum_{j=(i+1) p+2 q+1}^{(i+1)(p+q)} x_{j}, \quad i=0,1, \cdots, k-1 ; \quad \eta_{k}=\sum_{j=k(p+q)+1}^{n} x_{j} .
\end{aligned}
$$

Then, it follows from (26) that for some $\gamma>0$

$$
\left|\frac{D\left(\sum_{i=0}^{k-1} \xi_{i}^{\prime}\right)}{n \sigma^{2}}-1\right| \leqq C n^{-r}
$$

and

$$
\left|E \exp \left(i t \frac{1}{\sigma \sqrt{n}} \sum_{j=0}^{k-1} \xi_{j}\right)-\prod_{j=0}^{k-1} E \exp \left(i t \frac{\xi_{j}}{\sigma \sqrt{n}}\right)\right| \leqq 4 k \varphi(q) \leqq C n^{-r}
$$

where $\xi_{0}^{\prime}, \xi_{1}^{\prime}, \cdots, \xi_{k-1}^{\prime}$ are independent random variables distributed in the same way as the corresponding ξ_{i}. Thus, the method of the proof of Lemma 1 in [8] can be completely carried over to this case, and we obtain the theorem.

Two theorems below are concerned with the processes satisfying the s.m. condition.

Theorem 4. The process $\left\{x_{j}\right\}$, satisfying the s.m. condition, obeys the law of the iterated logarithm if the following requirements are fulfilled:

1. $\left|x_{j}\right|<c$ with probability one;
2. $\alpha(n)=O\left(1 / n^{1+e}\right)$ for some $\varepsilon>0$.

Proof. Define p, q, k and r by

$$
p(n)=\left[n^{1 / 2} \log ^{3} n\right], \quad q(n)=r(n)=\left[n^{1 / 2} \log ^{-3} n\right], \quad k(n)=\left[\frac{n}{p+q}\right] .
$$

Then, for any $b>0$

$$
\frac{n}{r} P\left(\left|x_{1}\right|+\cdots+\left|x_{r}\right| \geqq b \chi(n)\right)=0
$$

and for some $\gamma_{1}>0$

$$
\frac{n}{r} \alpha(r) \leqq K_{1} n^{1 / 2}(\log n)^{3} \frac{1}{\left(n^{1 / 2}(\log n)^{-3}\right)^{1+\epsilon}}=O\left(n^{-r_{1}}\right) .
$$

So, (12) holds. Thus, from Remark 1 to Theorem 1, it is enough to prove Condition (i) in Theorem 1. Put $\xi_{0}, \cdots, \xi_{k-1}, \xi_{0}^{\prime}, \cdots, \xi_{k-1}^{\prime}, \eta_{0}, \cdots, \eta_{k}, S_{n}^{\prime}, S_{n}^{\prime \prime}$ as the same ones in the proof of Theorem 3.

Since from Condition (II)

$$
\left|E\left(\exp i t \frac{\xi_{0}+\cdots+\xi_{k-1}}{\sqrt{n} \sigma}\right)-\prod_{j=0}^{k-1} E\left(\exp i t \frac{\xi_{\rho}}{n}\right)\right| \leqq k \alpha(q)=O\left(n^{-r_{r}}\right),
$$

so from Esseen's lemma

$$
\begin{equation*}
\int_{-(\log n)^{3 / 2}}^{(\log n)^{3 / 2}}\left|E e^{i t} \frac{\sum_{j=0^{\prime} j / \sqrt{n} \sigma}^{k-1}-E e^{i t \sum_{j=0}^{k-1} \xi_{j} / \sqrt{n} \sigma}}{t}\right| d t=O\left(n^{-r_{2}}\right) \tag{27}
\end{equation*}
$$

for some $\gamma_{2}>0$.
Secondly, from the proof of Lemma 18. 5.2 in [4]

$$
E\left(\sum_{j=1}^{n} x_{j}\right)^{4}=O\left(n^{2} \sum_{j=1}^{n} j \alpha(j)\right)=O\left(n^{3-\vartheta}\right)
$$

So, if we choose a positive number δ such that $0<\delta<2$ and $\delta(1+\varepsilon)>2$, then from Esseen's lemma

$$
\begin{align*}
& \int_{-(\log n)^{3 / 2}}^{(\log n)^{3 / 2}}\left|\frac{E e^{i t \sum_{j=0}^{k-1} \xi^{\prime} j^{\prime} / \sqrt{k E \xi_{0}{ }^{2}}}-e^{-t 2 / 2}}{t}\right| d t \tag{28}\\
\leqq & \frac{K_{1} E\left|\xi_{0}\right|^{2+\delta}}{k^{\delta / 2} a_{p}^{2+\delta}} \leqq \frac{K_{1}\left\{E \xi_{0}^{4}\right\}^{(2+\delta) / 4}}{k^{\delta / 2} \sigma_{p}^{2+\delta}}=\frac{K_{1}\left(p^{3-\varepsilon}\right)^{(2+\delta) / 4}}{k^{\delta / 2}(p(1+o(1))}=O\left(n^{-\varepsilon / 4}\right) .
\end{align*}
$$

Finally,

$$
\begin{aligned}
& \left|E\left(\sum_{l=0}^{k-1} \xi_{i}\right)-k E \xi_{0}\right| \leqq 2 k \sum_{j=1}^{k-1}\left|E \xi_{0} \xi_{j}\right| \\
\leqq & 2 k \sum_{j=1}^{k-1} \sum_{l=1}^{p} \sum_{l=1}^{p}\left|E x_{i} x_{j(p+q)+l}\right| \\
\leqq & K_{1} k p^{2} \sum_{j=2}^{k-1} \alpha((j-1)(p+q))+K_{2} k p \sum_{l=1}^{p} \alpha(q+l) \\
\leqq & K_{3} \frac{k p}{(p+q)^{\epsilon}}+K_{4} \frac{k p}{q^{1+\epsilon}}
\end{aligned}
$$

and

$$
\begin{aligned}
& E\left(\sum_{j=0}^{k} \eta_{j}\right)^{2}=(k-1) E \eta_{0}^{2}+2 k \sum_{j=1}^{k-1}\left(1-\frac{j}{k}\right) E \eta_{0} \eta_{j}+E \eta_{k}^{2}+2 \sum_{j=1}^{k-1} E \eta_{j} \eta_{k} \\
\leqq & (k-1) E \eta_{0}^{2}+2 k \sum_{i=1}^{k-2} \sum_{l=1}^{q} \sum_{l=1}^{q}\left|E x_{p+i} x_{j(p+q)+l}\right|+\sigma_{p+q}^{2}+2 \sum_{j=1}^{k-1} \sum_{i=1}^{q} \sum_{l=1}^{n-k(p+q)}\left|E x_{j(p+q)+i} x_{k(p+q)+l}\right| \\
\leqq & k \sigma_{q}^{2}+K_{5} \frac{k q}{(p+q)^{\varepsilon}}+K_{6} \frac{k q^{2}}{p^{1+\epsilon}}+\sigma_{p+q}^{2} .
\end{aligned}
$$

Hence, we have

$$
\begin{equation*}
\left|\frac{k E \xi_{0}^{2}}{\sigma_{n}^{2}}-1\right| \leqq K_{7}\left\{\left|\frac{k E \xi_{0}^{2}}{n \sigma^{2}}-E S_{n}^{\prime 2}\right|+2 \sqrt{E S_{n}^{\prime 2} E S_{n}^{\prime \prime 2}}+E S_{n}^{\prime \prime 2}\right\}=O\left(\frac{1}{(\log n)^{3 / 2}}\right) \tag{29}
\end{equation*}
$$

On the other hand,

$$
\begin{align*}
& \left|\frac{\sigma_{n}^{2}}{n \sigma^{2}}-1\right|=\frac{1}{\sigma^{2}}\left\{2 \sum_{j=1}^{n-1} \frac{j}{n}\left|E x_{0} x_{j}\right|+2 \sum_{j=n}^{\infty}\left|E x_{0} x_{j}\right|\right\} \tag{30}\\
\leqq & \frac{1}{\sigma^{2}}\left\{\frac{K_{8}}{n} \sum_{j=1}^{n-1} j \alpha(j)+K_{9} \sum_{j=n}^{\infty} \alpha(j)\right\}=O\left(n^{-\epsilon / 2}\right) .
\end{align*}
$$

Combining (29) and (30) and using Esseen's lemma, we have

$$
\begin{equation*}
\int_{-(\log n)^{3 / 2}}^{(\log n)^{3 / 2}}\left|\frac{E e^{i t \sum_{j=0}^{k-1} \varepsilon^{\prime} / \sqrt{n} \sigma}-E e^{i t \Sigma_{j=0}^{k=1} \xi^{\prime} / \sqrt{k E E_{0}{ }^{2}}}}{t}\right| d t=O\left(\frac{1}{(\log n)^{3 / 2}}\right) . \tag{31}
\end{equation*}
$$

Thus, from (27), (28) and (31), Condition (i) in Theorem 1 follows, and the proof is completed.

Theorem 5. The process $\left\{x_{j}\right\}$, satisfying s.m. condition, obeys the law of the iterated logarithm if the following requirements are fulfilled for some δ and δ^{\prime} such that $0<\delta^{\prime}<\delta$:
$1^{\circ} . E\left|x_{j}\right|^{2+\delta}<\infty ;$
2°. $\sum_{n=1}^{\infty}\{\alpha(n)\}^{\sigma^{\prime \prime}\left(2+\sigma^{\prime}\right)}<\infty$.
Proof. Define $f_{N}(x)$ and $\bar{f}_{N}(x)$ as before. Let

$$
N=n^{1 / 2\left(1+\sigma^{\prime}\right)}(\log n)^{-3}
$$

and

$$
r(n)=\left[n^{b^{\prime} / 2\left(1+\sigma^{\prime}\right)}(\log n)^{3}\right]
$$

Then, for any $b>0$

$$
\begin{aligned}
& \frac{n}{r} P\left(\left|x_{1}\right|+\cdots+\left|x_{r}\right| \geqq b \chi(n)\right)=\frac{n}{r} P\left(\left|\bar{f}_{N}\left(x_{1}\right)\right|+\cdots+\left|\bar{f}_{N}\left(x_{r}\right)\right| \geqq b \chi(n)\right) \\
\leqq & \frac{n}{b^{2}\{\chi(n)\}^{2} r} E\left(\sum_{j=1}^{r}\left|\bar{f}_{N}\left(x_{j}\right)\right|\right)^{2} \leqq \frac{n}{b^{2}\{\chi(n)\}^{2}}\left\{E\left|\bar{f}_{N}\left(x_{0}\right)\right|^{2}+2 \sum_{j=1}^{r-1} E\left|\bar{f}_{N}\left(x_{0}\right)\right| \cdot\left|\bar{f}_{N}\left(x_{j}\right)\right|\right\} \\
\leqq & \frac{n}{b^{2}\{\chi(n)\}^{2}}\left[E\left|\bar{f}_{N}\left(x_{0}\right)\right|^{2}+2 \sum_{i=1}^{r-1}\left\{\left(E\left|\bar{f}_{N}\left(x_{0}\right)\right|\right)^{2}+8\left(E\left|\bar{f}_{N}\left(x_{0}\right)\right|^{\left.2+\delta^{\prime}\right)^{\prime}\left(2+\delta^{\prime}\right)}(\alpha(i))^{\delta^{\prime} \prime\left(2+\delta^{\prime}\right)}\right\}\right]\right. \\
\leqq & \frac{n}{b^{2}\{\chi(n)\}^{2}}\left\{\frac{1}{N^{\delta}} E \left\lvert\, \bar{f}_{N}\left(\left.x_{0}\right|^{2+\delta}+\frac{2 r}{N^{2(1+\delta)}}\left(E\left|\bar{f}_{N}\left(x_{0}\right)\right|^{2+\delta}\right)^{2}+\frac{K_{1}}{N^{2\left(\delta-\delta^{\prime}\right)}}\left(E\left|\bar{f}_{N}\left(x_{0}\right)\right|^{2+\delta}\right)^{1 /\left(2+\delta^{\prime}\right)}\right\}\right.\right. \\
= & O\left(n^{-r}\right)
\end{aligned}
$$

holds for some $\gamma>0$ and

$$
\frac{n}{r} \alpha(r)=\frac{n}{r} O\left(r^{-\left(2+\delta^{\prime}\right) / \delta^{\prime}}\right)=O\left(\frac{1}{(\log n)^{3}}\right)
$$

Hence, Remark 1 to Theorem 1 it suffices to show

$$
\sup _{-\infty<z<\infty}\left|P\left(\sum_{i=1}^{n} x_{i}<\sqrt{n} \sigma z\right)-\Phi(z)\right|=O\left(\frac{1}{(\log n)^{3}}\right) .
$$

Define p, q and k by

$$
p(n)=\left[n^{1 / 2+\alpha}\right], \quad q(n)=\left[n^{1 / 2-\alpha}\right] \quad \text { and } \quad k(n)=\left[\frac{n}{p+q}\right]
$$

where α is a small positive number. Let $N^{\prime}=n^{\delta^{\prime} / 16\left(1+\delta^{\prime}\right)}$ if $0<\delta \leqq 2$ and $N^{\prime}=n^{1 / 16\left(1+\delta^{\prime}\right)}$ if $\delta>2$. Put

$$
\begin{aligned}
S_{n}^{\prime} & =\frac{1}{\sigma \sqrt{n}} \sum_{j=1}^{n}\left(f_{N^{\prime}}\left(x_{j}\right)-E f_{N^{\prime}}\left(x_{j}\right)\right), \quad S_{n}^{\prime \prime}=\frac{1}{\sigma \sqrt{n}} \sum_{j=1}^{n}\left(\bar{f}_{N^{\prime}}\left(x_{j}\right)-E \bar{f}_{N^{\prime}}\left(x_{j}\right)\right), \\
\zeta_{i} & =\sum_{j=1}^{p}\left(f_{N^{\prime}}\left(x_{(i-1)(p+q)+j)}\right)-E f_{N^{\prime}}\left(x_{(i-1)(p+q)+j}\right)\right) \quad(i=1,2, \cdots, k), \\
T_{n}^{\prime} & =\frac{1}{\sqrt{n} \sigma} \sum_{i=1}^{n} \zeta_{\imath}, T_{n}^{\prime \prime}=S_{n}^{\prime}-T_{n}^{\prime} .
\end{aligned}
$$

Then, it is easily proved that for some $\gamma>0$
(32)

$$
E\left|S_{n}^{\prime \prime}\right|^{2} \leqq \frac{1}{\sigma^{2}}\left\{\frac{1}{N^{\prime \delta}} E\left|\bar{f}_{N^{\prime}}\left(x_{0}\right)\right|^{2+\delta}+\frac{K_{1}}{N^{\prime 2\left(\delta-\bar{\sigma}^{\prime}\right) /\left(2+\dot{\sigma}^{\prime}\right)}}\left(E\left|\bar{f}_{N^{\prime}}\left(x_{0}\right)\right|^{2+\delta}\right)^{2 /\left(2+\dot{\sigma}^{\prime}\right)}\right\}=O\left(n^{-r}\right),
$$

$$
E\left|T_{n}^{\prime \prime}\right|^{2}=O\left(n^{-r}\right) \quad \text { and } \quad\left|E T_{n}^{\prime 2}-1\right|=O\left(n^{-r}\right)
$$

Now, let $f_{n}(t)$ be the characteristic function of $S_{n} / \sqrt{n} \sigma$. Then

$$
\begin{aligned}
& \left|f_{n}(t)-e^{-t^{2} / 2}\right| \leqq\left|f_{n}(t)-E e^{i t 5_{n^{\prime}}}\right|+\left|E e^{i t S_{n^{\prime}}}-E e^{i t T_{n^{\prime}}}\right| \\
& +\left|E e^{i t T_{n^{\prime}}}-\prod_{j=1}^{k} E e^{i t 5_{j} / \sqrt{k E 0_{0} a^{2}}}\right|+\left|e^{-t^{2 / 2}}-\prod_{j=1}^{k} E e^{i t t_{j / j} \sqrt{k E 5_{0}}}\right|
\end{aligned}
$$

$$
\begin{align*}
& \leqq|t| E\left|S_{n}^{\prime \prime}\right|+|t| E\left|T_{n}^{\prime \prime}\right|+\left|E e^{i t T n^{\prime}}-\prod_{j=1}^{k} E e^{i t t_{j} / \sqrt{k E \zeta_{0}}}\right| \tag{33}\\
& \quad+\left|e^{-t^{2} / 2}-\prod_{j=1}^{k} E e^{i t \zeta_{j} / \sqrt{k E 5_{0}}}\right|
\end{align*}
$$

From Esseen's lemma

$$
\begin{equation*}
\left|e^{-t^{2 / 2}}-\prod_{j=1}^{k} E e^{i t_{j} / \sqrt{\overline{k E 5} 0^{2}}}\right| \leqq K \frac{E\left|\zeta_{0}\right|^{2+\delta}}{k^{2 / \delta}\left(E \zeta_{0}^{2}\right)^{(2+\delta) / 2}}|t|^{2+\delta} e^{-t^{2 / 4}} \tag{34}
\end{equation*}
$$

holds for all t such that

$$
|t| \leqq \sqrt{n} / 24 \frac{E\left|\zeta_{0}\right|^{2+\delta}}{\left(E \zeta_{0}^{2}\right)^{(2+\delta) / 2}} .
$$

Since

$$
\begin{aligned}
E \zeta_{0}^{4} & \leqq K_{1}\left(N^{\prime}\right)^{4} p^{2} \sum_{j=1}^{p} j \alpha(j) \leqq K_{1}\left(N^{\prime}\right)^{4} p^{2} \sum_{j=1}^{p} j^{-2 / \delta^{\prime}} \\
& \leqq K_{2}\left(N^{\prime}\right)^{4} p^{2} \max \left(1, p^{-2 / \delta^{\prime}}\right)
\end{aligned}
$$

and

$$
E \zeta_{0}^{2}=p \sigma^{2}(1+o(1))
$$

for all sufficiently large n, so

$$
\frac{E\left|\zeta_{0}\right|^{2+\delta}}{k^{\rho / 2}\left(E \zeta_{0}^{2}\right)^{(2+\rho) / 2}} \leqq \frac{\left(E \zeta_{0}^{4}\right)^{(2+\delta) / 4}}{k^{\rho / 2}\left(E \zeta_{0}^{2}\right)^{(2+\rho) / 2}}=O\left(n^{-r}\right)
$$

holds for all sufficiently large n where $\rho=\min (2, \delta)$ and γ is a positive number.
Consequently, from (34)

$$
\begin{equation*}
\left|e^{-t^{2 / 2}}-\prod_{\jmath=1}^{k} E e^{i t \zeta_{j} / \sqrt{k E 5_{0}{ }^{2}}}\right| \leqq K n^{-r}|t|^{2+\delta} e^{-t^{2 / 4}} \tag{35}
\end{equation*}
$$

holds for all sufficiently large n and for all t such that $|t| \leqq \sqrt{ } \bar{n}$. From Condition (II)

$$
\begin{equation*}
\left|E e^{i t T_{n^{\prime}}}-\prod_{j=1}^{k} E e^{i t t_{j} / \sqrt{k E t_{0}^{2}}}\right| \leqq k \alpha(q)=n^{1 / 2-\alpha} \cdot o\left(\left\{n^{1 / 2-\alpha}\right\}-\left(2+\delta^{\prime}\right) / \delta^{\prime}\right) . \tag{36}
\end{equation*}
$$

Using (31)-(36), we have

$$
\begin{align*}
& \left|P\left(x_{1}+\cdots+x_{n}<z \sigma \sqrt{n}\right)-\Phi(z)\right| \\
\leqq & \int_{-(\log n)^{3}}^{(\log n)^{3}}\left|\frac{f_{n}(t)-e^{-t t^{2 / 2}}}{t}\right| d t+\frac{C}{(\log n)^{3}} \\
\leqq & \int_{-(\log n)^{3}}^{(\log n)^{3}} K n^{-\tau}|t|^{1+\delta} d t+\int_{-(\log n)^{3}}^{(\log n)^{3}}\left\{E\left|S_{n}^{\prime \prime}\right|+E\left|T_{n}^{\prime \prime}\right|\right\} d t \tag{37}\\
& +C_{2}\left\{\int_{0 \leqq|t| \leqq n-1 / 4} d t+\int_{n^{-1 / 4 \leq|t| \mid \leq(\log n)^{3}}} \frac{k \alpha(q)}{|t|} d t\right\}+\frac{C_{1}}{(\log n)^{3}} \\
= & O\left(\frac{1}{(\log n)^{3}}\right) .
\end{align*}
$$

Hence, from Theorem 1, we have the theorem.

4. Functions of processes.

Let $\left\{x_{j}, j=0, \pm 1, \pm 2, \cdots\right\}$ be strictly stationary and satisfy one of the requirements (I) or (II). Let f be a measurable mapping from the space of doubly infinitely sequences $\left(\cdots, \alpha_{-1}, \alpha_{0}, \alpha_{1}, \cdots\right)$ of real numbers into the real line. Define random variables

$$
\begin{equation*}
f_{\jmath}=f\left(\cdots, x_{\jmath-1}, x_{\jmath}, x_{\jmath+1}, \cdots\right) \tag{39}
\end{equation*}
$$

where x_{j} occupies the 0th place in the argument of f. It is obvious that $\left\{f_{j}\right\}$ is a strictly stationary process. We shall prove theorems establishing the law of the iterated logarithm for the process $\left\{f_{j}\right\}$ (see [3] and [4]).

Let

$$
\begin{equation*}
S_{i}=f_{1}+\cdots+f_{2} \tag{40}
\end{equation*}
$$

and

$$
\begin{equation*}
\sigma^{2}=E f_{0}^{2}+2 \sum_{j=1}^{\infty} E f_{0} f_{j} \tag{41}
\end{equation*}
$$

if the series converges. In what follows, we use σ^{2} only when σ^{2} is positive.
The following theorem is a generalization of Theorem 1. 2 in [8].
Theorem 6. Let the stationary process $\left\{x_{j}\right\}$ satisfy the u.s.m. condition and let the process $\left\{f_{j}\right\}$ be obtained by the method indicated above. Further, let the following requirements be fulfilled:

1. $E f=0$ and $E|f|^{2+\delta}<\infty$ for some $\delta>0$;
2. $\varphi(n)=O\left(\frac{1}{n^{1+\epsilon}}\right) \quad$ for some $\quad \varepsilon>\frac{1}{1+\delta}$;
3. $E\left\{\left|f-E\left\{f \mid \mathcal{M}_{-k}^{k}\right\}\right|^{2}\right\}=\psi(k)=O\left(n^{-2-\delta_{1}}\right)$ for some $\delta_{1}>0$.

Then, the processs $\left\{f_{j}\right\}$ obeys the law of the iterated logarithm.
Proof. The series in (41) converges under the conditions of Theorem 6. (cf. [3]). In fact, as in [8] (cf. [3] and [4]), let

$$
\xi_{j}^{(s)}=E\left\{f_{j} \mid \mathscr{M}_{s-j}^{s+j}\right\}
$$

and

$$
\eta_{j}^{(s)}=f_{j}-\xi_{j}^{(s)}
$$

Then the stationary process $\left\{\xi_{j}^{(s)}\right\}$ satisfies Condition (I) with the function $\varphi_{s}(n)=1$ for $n \leqq 2 s, \varphi_{s}(n)=\varphi(n-2 s)$ for $n>2 s$. Since

$$
E\left|\xi_{j}^{(s)}\right|^{2+\delta}=E\left\{\left|E\left\{f_{j} \mid \mathscr{M}_{s-j}^{s+j}\right\}\right|^{2+\delta}\right\} \leqq E\left\{E\left\{\left|f_{j}\right|^{2+\delta} \mid \mathscr{M}_{s}^{s+j, j}\right\}\right\}=E|f|^{2+\delta}<\infty
$$

the stationary process $\left\{\xi_{j}^{(s)}\right\}$ satisfies all the conditions of Theorem 3. Furthermore, as before,

$$
\begin{align*}
& \left|E f_{0} f_{j}\right|=\left|E\left(\xi_{0}^{[[j / 3])}+\eta_{0}^{[[j / 3])}\right)\left(\xi_{j}^{[j / 3])}+\eta_{j}^{[[j / 3]}\right)\right| \\
& \leqq\left|E \xi_{0}^{([j / 3])} \xi_{j}^{([j / 3])}\right|+2\left\{E\left|\xi_{0}^{([j / 3])}\right|^{2}\right\}^{1 / 2}\left\{E\left|\eta_{0}^{([j / 3])}\right|^{2}\right\}^{1 / 2}+\left\{E\left|\eta_{0}^{([j / 3])}\right|^{2}\right\} \\
& \leqq 4 E\left|\xi_{0}^{[j / 3])}\right|\left(\frac{3}{j}\right)^{1+(\epsilon-\rho)}+4 E\left|\xi_{0}^{([j / 3])}\right|^{2+\delta} \cdot\left(\frac{3}{j}\right)^{(1+e)(1+\delta) /(2+\delta)+\rho \delta} \tag{42}\\
& +2\left\{E\left|\xi_{0}^{([j / 3])}\right|^{2}\right\}^{1 / 2}\left\{\psi\left(\left[\frac{j}{3}\right]\right)\right\}^{1 / 2}+\psi\left(\left[\frac{j}{3}\right]\right)
\end{align*}
$$

$$
\leqq K\left[\left(\frac{3}{j}\right)^{1+(\varepsilon-\rho)}+\left(\frac{3}{j}\right)^{(1+\varepsilon)(1+\grave{\delta}) /(2+\delta)+\rho \delta}+\left\{\psi\left(\left[\frac{j}{3}\right]\right)\right\}^{1 / 2}\right]
$$

where

$$
\rho=\frac{\varepsilon(1+\delta)-1}{2 \delta(2+\delta)}>0 .
$$

It follows from (42) that the series in (41) converges.
Moreover, from (42) we easily obtain that

$$
\sigma_{n}^{2}=n \sigma^{2}(1+o(1))
$$

Next, we shall prove that

$$
\begin{equation*}
P\left(\max _{1 \leq j \leq n}\left|S_{j}\right| \geqq 6 a \chi(n)\right) \leqq 2 P\left(\left|S_{n}\right| \geqq \alpha \chi(n)\right)+O\left(\frac{1}{(\log n)^{3}}\right) \tag{43}
\end{equation*}
$$

holds for all sufficiently large n. Let

$$
r(n)=n^{\delta / 2(2+\delta)} \cdot(\log n)^{-3}
$$

and

$$
g_{j}(N)=\left\{\begin{array}{ll}
f_{j} & \left(\left|f_{j}\right| \leqq N\right), \\
0 & \left(\left|f_{j}\right|>N\right) ;
\end{array} \quad \bar{g}_{j}(N)=f_{j}-g_{j}(N) \quad(j=0,1,2, \cdots)\right.
$$

where $N=n^{1 /(2+\delta)}$. Then

$$
\begin{aligned}
& \frac{n}{r} P\left(\left|f_{1}\right|+\cdots+\left|f_{r}\right| \geqq b \chi(n)\right) \\
\leqq & \frac{n}{r}\left\{P\left(\left|\bar{g}_{1}(N)\right|+\cdots+\left|\bar{g}_{r}(N)\right| \geqq \frac{b}{2} \chi(n)\right)\right. \\
& \left.+P\left(\left|g_{1}(N)\right|+\cdots+\left|g_{r}(N)\right| \geqq \frac{b}{2} \chi(n)\right)\right\} \\
\leqq & \frac{n}{r} \frac{4}{b^{2} n \sigma^{2}} E\left(\left|\bar{g}_{1}(N)\right|+\cdots+\left|\bar{g}_{r}(N)\right|\right)^{2} \\
\leqq & \frac{n}{r} \frac{4 r}{b^{2} n \sigma^{2}} E\left|\bar{g}_{0}(N)\right|^{2}(1+2 r) \\
\leqq & \frac{K}{N^{\delta}}(1+2 r)=O\left(n^{-\delta / 2(2+\delta)}\right) .
\end{aligned}
$$

Now, as in [1], define

$$
U_{i}=E\left\{S_{i-2 r} \mid \mathscr{M}_{-\infty}^{i-r}\right\}
$$

and

$$
V_{\imath}=E\left\{S_{n}-S_{i+2 n} \mid \mathscr{M}_{\imath+r}^{\infty}\right\}
$$

Here, we adopt the conventions that $S_{i-2 r}=0$ if $i<2 r$ and $S_{n}-S_{i+2 r}=0$ if $i+2 r>n$.

If we put

$$
\begin{equation*}
\mu(r)=\sum_{k=r}^{\infty}\{\varphi(k)\}^{1 / 2} \tag{45}
\end{equation*}
$$

then $\mu(r)=O\left(n^{-r}\right)$ for some $\gamma>0$, and

$$
\begin{align*}
& E\left|S_{k}-E\left\{S_{k} \mid \mathscr{M}{ }_{-\infty}^{++r}\right\}\right|^{2} \leqq\{\mu(r)\}^{2} \\
& E\left|U_{i}-S_{i}\right|^{2} \leqq 2 E S_{2 r}^{2}+2\{\mu(r)\}^{2} \tag{46}\\
& E\left|V_{i}-\left(S_{n}-S_{i}\right)\right|^{2} \leqq 2 E S_{2 r}^{2}+2\{\mu(r)\}^{2}
\end{align*}
$$

for all k and i. Thus

$$
\begin{align*}
& P\left(\left|S_{i}-U_{i}\right| \geqq \alpha \chi(n)\right) \\
\leqq & P\left(\left|S_{i-2 r}-E\left\{S_{i-2 r} \mid \mathcal{M}_{-\infty}^{i-r}\right\}\right| \geqq \alpha \chi(n)-b \sigma \sqrt{n}\right) \tag{47}\\
& +P\left(\left|f_{1}\right|+\cdots+\left|f_{2 r}\right| \geqq b \sigma \sqrt{n}\right) \\
\leqq & \frac{4\{\mu(r)\}^{2}}{(a \chi(n)-b \sigma \sqrt{n})}+\frac{r}{n} \cdot O\left(n^{-\delta / 2(2+\delta)}\right)=O\left(\frac{1}{n(\log n)^{3}}\right)
\end{align*}
$$

and similarly

$$
P\left(\left|V_{i}-\left(S_{n}-S_{i}\right)\right| \geqq a \chi(n)\right)
$$

$$
\begin{equation*}
\leqq \frac{4\{\mu(r)\}^{2}}{\left(\alpha \chi(n)-b \sigma \sqrt{n)^{2}}\right.}+\frac{r}{n} \cdot O\left(n^{-\delta / 2(2+\delta)}\right)=O\left(\frac{1}{n(\log n)^{3}}\right) . \tag{48}
\end{equation*}
$$

Because of uniform integrability of S_{n}^{2} / n, (cf. the proof of Theorem 21.1 in [1]) there exists a $\lambda>1$ such that

$$
\begin{equation*}
P\left(\left|S_{j}\right| \geqq \lambda \sigma \sqrt{\bar{j}}\right) \leqq \frac{\varepsilon}{\lambda^{2}} \tag{49}
\end{equation*}
$$

for all j, where $\varepsilon>0$ is arbitrarily small. Let

$$
E_{i}=\left\{\max _{j<i}\left|U_{j}\right|<5 a \chi(n) \leqq\left|U_{i}\right|\right\} .
$$

As $E_{i} \in \mathscr{M}_{-\infty}^{i-r}$ and $V_{\imath+2 r}$ is measurable $\mathscr{M}_{\imath+3 r}^{\infty}$, so from (44), (48) and (49)

$$
\begin{aligned}
& P\left(\bigcup_{j=1}^{n-1}\left[E_{j} \cap\left\{\left|V_{\jmath}\right| \geqq 2 a \chi(n)\right\}\right]\right) \\
\leqq & \sum_{i=0}^{k-2} P\left(\bigcup_{\jmath=1}^{r}\left[E_{\imath r+j} \cap\left\{\left|V_{(i+2) p}\right| \geqq a \chi(n)\right\}\right]\right)+\frac{n}{r} P\left(\left|f_{1}\right|+\cdots+\left|f_{2 r}\right| \geqq a \chi(n)\right) \\
\leqq & \left.\sum_{i=0}^{k-2} P\left(\left[\bigcup_{\jmath=1}^{r} E_{\jmath}\right] \cap\left\{\left|V_{(i+2) p}\right| \geqq a \chi(n)\right)\right\}\right)+O\left(n^{-\delta / 2(2+\delta)}\right)
\end{aligned}
$$

$$
\begin{aligned}
& \leqq \sum_{i=0}^{k-2} P\left(\bigcup_{\jmath=1}^{r} E_{\imath r+j}\right)\left\{P\left(\left|V_{(i+2) p}\right| \geqq a \chi(n)\right)+\varphi(r)\right\}+O\left(n^{-\delta / 2(2+\delta)}\right) \\
& \leqq \sum_{\imath=0}^{k-2} P\left(\bigcup_{\jmath=1}^{r} E_{\imath r+j}\right)\left\{P\left(\left|S_{n-(i+2) r}\right| \geqq \lambda \sigma \sqrt{n-(i+2) r}\right)+O\left(n^{-r}\right)\right\}+O\left(n^{-r}\right)
\end{aligned}
$$

where $\gamma>0$ is a positive number. Thus, for all n sufficiently large

$$
\begin{equation*}
P\left(\bigcup_{j=1}^{n-1}\left[E_{j} \cap\left\{\left|V_{\jmath}\right| \geqq 2 a \chi(n)\right\}\right) \leqq \frac{1}{2} P\left(\max _{1 \leqq j \leqq n}\left|U_{\jmath}\right| \geqq 5 \alpha \chi(n)\right)+O\left(n^{-r}\right)\right. \tag{50}
\end{equation*}
$$

and so from (47), (48) and (50)

$$
\begin{aligned}
& P\left(\max _{1 \leqq i \leqq n}\left|U_{i}\right| \geqq 5 a \chi(n)\right) \\
\leqq & P\left(\left|S_{n}\right| \geqq a \chi(n)\right)+P\left(\bigcup_{j=1}^{n-1}\left[E_{j} \cap\left\{\left|S_{n}-U_{j}\right| \geqq 4 a \chi(n)\right\}\right]\right) \\
\leqq & P\left(\left|S_{n}\right| \geqq a \chi(n)\right)+\sum_{j=1}^{n-1} P\left(\left|S_{n}-S_{i}-V_{\imath}\right| \geqq a \chi(n)\right)
\end{aligned}
$$

$$
\begin{align*}
& +P\left(\bigcup_{\jmath=1}^{n-1}\left[E_{\jmath} \cup\left\{\left|V_{\jmath}\right| \geqq 2 a \chi(n)\right\}\right]\right)+\sum_{j=1}^{n-1} P\left(\left|S_{i}-U_{i}\right| \geqq a \chi(n)\right) \tag{51}\\
\leqq & P\left(\left|S_{n}\right| \geqq a \chi(n)\right)+\frac{4 n\{\mu(r)\}^{2}}{a^{2}\{\chi(n)\}^{2}} \\
& +\left\{\frac{1}{2} P\left(\max _{1 \leqq j \leqq n}\left|U_{\jmath}\right| \geqq 5 a \chi(n)\right)+O\left(n^{-r}\right)\right\}+\frac{4 n\{\mu(r)\}^{2}}{a^{2}\{\chi(n)\}^{2}} .
\end{align*}
$$

Consequently, we have

$$
\begin{equation*}
P\left(\max _{1 \leqq j \leqq n}\left|U_{j}\right| \geqq 5 a \chi(n)\right) \leqq 2 P\left(\left|S_{n}\right| \geqq a \chi(n)\right)+O\left(n^{-r_{1}}\right) \tag{52}
\end{equation*}
$$

for some $\gamma_{1}(>0)$. Combining (52) and (47), we obtain

$$
\begin{aligned}
& P\left(\max _{1 \leqq j \leqq n}\left|S_{j}\right| \geqq 6 a \chi(n)\right) \leqq P\left(\max _{1 \leqq j \leqq n}\left|U_{j}\right| \geqq 5 a \chi(n)\right)+O\left(\frac{1}{(\log n)^{3}}\right) \\
\leqq & 2 P\left(\left|S_{n}\right| \geqq a \chi(n)\right)+O\left(\frac{1}{(\log n)^{3}}\right) .
\end{aligned}
$$

Next, we shall prove that

$$
\sup _{-\infty<z<\infty}\left|P\left(S_{n}<z \sigma \sqrt{n}\right)-\Phi(z)\right|=O\left(\frac{1}{(\log n)^{3}}\right)
$$

By the same method of estimation of (42)

$$
\begin{equation*}
\left|E \eta_{0}^{(s)} \eta_{j}^{(s)}\right| \leqq K_{1}\left[\left(\frac{3}{j}\right)^{1+\varepsilon-\rho}+\left(\frac{3}{j}\right)^{(1+\varepsilon)(1+\tilde{\delta}) /(2+\hat{o})+\rho \hat{o}}+\left\{\left(\psi\left(\left[\frac{j}{3}\right]\right)\right\}^{1 / 2}\right]\right. \tag{53}
\end{equation*}
$$

Taking into account of (53), we have

$$
\begin{aligned}
E\left|S_{n}^{\prime \prime}\right|^{2} & =\frac{1}{\sigma^{2} n}\left(n E\left|\eta_{0}^{(s)}\right|^{2}+2 \sum_{j=1}^{n-1}(n-j) E \eta_{0}^{(s)} \eta_{j}^{(s)}\right) \\
& \leqq \frac{1}{\sigma^{2}}(2 N+1) \psi(s)+K_{2} \sum_{j=N}^{n}\left[\left(\frac{3}{j}\right)^{1+\epsilon-\rho}+\left(\frac{3}{j}\right)^{(1+\iota)(1+\delta) /(2+\delta)+\rho \bar{\delta}}+\left\{\psi\left(\left[\frac{j}{3}\right]\right)\right\}^{1 / 2}\right]
\end{aligned}
$$

where

$$
S_{n}^{\prime \prime}=\frac{1}{\sigma \sqrt{n}} \sum_{j=1}^{n} \eta_{j}^{(s)} .
$$

Putting $N=n^{1 / 2-2 \varepsilon_{1}}$ and $r=n^{1 / 2-\varepsilon_{1}}$, where $\varepsilon_{1}>0$ is a sufficiently small number, we obtain that

$$
\begin{equation*}
E\left|S_{n}^{\prime \prime}\right|^{2}=O\left(n^{-r}\right) \tag{54}
\end{equation*}
$$

for some $\gamma>0$. Furthermore, with the same s, let

$$
S_{n}^{\prime}=\frac{1}{\sigma \sqrt{n}} \sum_{j=1}^{n} \xi_{j}^{(s)}
$$

and

$$
d_{n}^{2}=E\left|\xi_{0}^{(s)}\right|^{2}+2 \sum_{j=1}^{\infty} E \xi_{0}^{(s)} \xi_{j}^{(s)}
$$

Then

$$
\begin{equation*}
\left|\frac{d_{n}^{2}}{\sigma^{2}}-1\right|=O\left(n^{-r}\right) \tag{55}
\end{equation*}
$$

for some $\gamma>0$. Thus, noting that

$$
\begin{aligned}
& \left|E e^{i t S_{n} / \sigma \sqrt{n}}-e^{-t^{2} / 2}\right| \leqq|t|\left\{E\left|S_{n}^{\prime \prime}\right|^{2}\right\}^{1 / 2} \\
+ & \left|E e^{i t S n^{\prime}}-e^{-\left(t^{2} / 2\right)\left(d n^{2 / \sigma^{2}}\right)}\right|+\left|e^{-\left(t^{2 / 2}\right)\left(d n / \sigma^{2}\right)}-e^{-t^{2 / 2}}\right|
\end{aligned}
$$

and using the method of the proof of Theorem 3, we have

$$
\begin{equation*}
\sup _{-\infty<z<\infty}\left|P\left(S_{n}<z \sigma \sqrt{n}\right)-\Phi(z)\right|=O\left(\frac{1}{(\log n)^{3}}\right) . \tag{56}
\end{equation*}
$$

Hence, we obtain

$$
P\left(\left|S_{n}\right|>\left(1+\delta_{0}\right) \chi(n) \text { i.o. }\right)=0
$$

Now, we shall prove that

$$
P\left(\left|S_{n}\right|>\left(1-\delta_{0}\right) \chi(n) \text { i.o. }\right)=1 .
$$

We proceed as the proof of Theorem 1. 2 in [8]. Let $A>0$ be sufficiently large
and $\varepsilon>0, \delta_{1}>0$ sufficiently small. We write

$$
\sigma_{n}^{2}(s)=E\left(\xi_{1}^{(s)}+\cdots+\xi_{n}^{(s)}\right)^{2}
$$

and

$$
\chi^{\prime}(n)=\left(2 \sigma_{n}^{2}(s) \log \log \sigma_{n}^{2}(s)\right)^{1 / 2}
$$

where $s=n^{1 / 2-\varepsilon_{1}}$ (ε_{1} being the same defined above). Then, it follows from (55) that

$$
\left|1-\frac{\chi^{\prime}(n)}{\chi(n)}\right|=O\left(n^{-r}\right)
$$

for some $\gamma>0$. Put $s_{i}=A^{i / 2-\varepsilon_{1}}$ and for some positive numbers $\delta_{2}<\delta_{1}<\delta_{0}$

$$
\begin{aligned}
E_{k} & =\left\{\left|\sum_{j=1}^{A^{i}} \xi_{j}^{\left(s_{i}\right)}\right|>\left(1-\delta_{2}\right) \chi^{\prime}\left(A^{i}\right), \quad i<k ;\left|\sum_{j=1}^{A^{k}} \xi_{j}^{\left(s_{k}\right)}\right|>\left(1-\delta_{2}\right) \chi^{\prime}\left(A^{k}\right)\right\} \\
C & =\bigcap_{i=1}^{m}\left\{\left|\sum_{j=1}^{A^{i}} \eta_{j}^{(s i)}\right|<\frac{1}{2}\left(\delta_{1}-\delta_{2}\right) \chi^{\prime}\left(A^{i}\right)\right\}
\end{aligned}
$$

and

$$
\begin{aligned}
\bar{U}_{k} & =P\left(\left|\sum_{j=1}^{A i} \xi_{j}^{\left(s_{i}\right)}\right|>\left(1-\delta_{2}\right) \chi^{\prime}\left(A^{i}\right) \text { for at least one } i, 1 \leqq i \leqq k\right) \\
& =\sum_{j=1}^{k} P\left(E_{j}\right)
\end{aligned}
$$

Then, from Chebyshev's inequality and (54)

$$
\begin{align*}
P(C)= & 1-P\left(\bigcup_{j=1}^{m}\left[\left|\sum_{j=1}^{A^{i}} \eta_{j}^{\left(s_{i}\right)}\right| \geqq \frac{1}{2}\left(\delta_{1}-\varrho_{2}\right) \chi^{\prime}\left(A^{i}\right)\right]\right) \\
& \geqq 1-\sum_{i=1}^{m} \frac{E\left(\sum_{j=1}^{A^{i}} \eta_{j}^{\left(s_{i}\right)}\right)^{2}}{\left(\frac{1}{2}\left(\delta_{1}-\delta_{2}\right) \chi^{\prime}\left(A^{i}\right)\right)^{2}} \tag{58}\\
& \geqq 1-K \sum_{i=1}^{m}\left(A^{i}\right)^{-r}\left(1-A^{-r}\right)^{-1} .
\end{align*}
$$

Thus, from (58) we obtain that

$$
\begin{aligned}
U_{m} & =P\left(\bigcup_{i=1}^{m}\left[\left|S_{A} i\right|>\left(1-\delta_{0}\right) \chi\left(A^{i}\right)\right]\right) \\
& \geqq P\left(\bigcup_{\imath=1}^{m}\left[\left|S_{A^{i}}\right|>\left(1-\delta_{1}\right) \chi^{\prime}\left(A^{i}\right)\right]\right)
\end{aligned}
$$

$$
\begin{align*}
& \geqq P\left(\bigcup _ { \imath = 1 } ^ { m } \left[\left\{\left\{\sum_{j=1}^{A^{i}} \xi_{j}^{\left(\delta_{i}\right)} \mid>\left(1-\delta_{2}\right) \chi^{\prime}\left(A^{i}\right)\right\} \cap\left\{\left\{\sum_{j=1}^{A^{2}} \eta_{j}^{\left(\delta_{j}\right)} \left\lvert\, \leqq \frac{1}{2}\left(\delta_{1}-\delta_{2}\right) \chi^{\prime}\left(A^{i}\right)\right.\right\}\right]\right)\right.\right. \tag{59}\\
& \geqq P\left(\bigcup_{\imath=1}^{m}\left[\left|\sum_{j=1}^{A^{i}} \xi_{j}^{\left(s_{i}\right)}\right|>\left(1-\delta_{2}\right) \chi^{\prime}\left(A^{i}\right)\right] \cap C\right) \\
& \geqq-1+\bar{U}_{m}+P(C) \geqq \bar{U}_{m}-K A^{-r}\left(1-A^{-r}\right)^{-1} .
\end{align*}
$$

Next, let $c_{k}=A^{k / 2}$ and choose $\delta_{3}>0$ such that for some $\varepsilon^{\prime}>0,2 / \sqrt{ } \bar{A}+\delta_{3}+\varepsilon^{\prime}<\delta_{2}$. Then

$$
\begin{aligned}
& P\left(\left|\left|\sum_{j=1}^{A^{2}} \xi_{\jmath}^{\left(s_{i}\right)}\right| \leqq\left(1-\delta_{2}\right) \chi^{\prime}\left(A^{i}\right), \quad i<k\right] \cap\left[\left|\sum_{\jmath=A^{k-1}+C_{k+1}}^{A^{k}} \xi_{j}^{\left(s_{k}\right)}\right|>\left(1-\delta_{3}\right) \chi^{\prime}\left(A^{k}\right)\right]\right) \\
\geqq & P\left(\left|\sum_{j=1}^{A^{i}} \xi_{j}^{\left(s_{i}\right)}\right| \leqq\left(1-\delta_{2}\right) \chi^{\prime}\left(A^{i}\right), \quad i<k\right) P\left(\left|\left|\sum_{J=A^{k-1}+C_{k+1}}^{A_{j}^{k}} \xi_{j}^{\left(s_{k}\right)}\right|>\left(1-\delta_{3}\right) \chi^{\prime}\left(A^{k}\right)\right)-\varphi\left(c_{k}-2 s_{k}\right) .\right.
\end{aligned}
$$

Since from (56)

$$
v_{k}=P\left(\left\{\left|\sum_{J=A^{k-1+C_{k+1}}}^{A_{j}^{k}} \xi^{(s k)}\right|>\left(1-\delta_{3}\right) \chi^{\prime}\left(A^{k}\right)\right\} \geqq\left(\log \sigma_{A}^{2} k-A^{k-1}-c_{k}\left(s_{k}\right)\right)^{-(1+\varepsilon)\left(1-\delta_{4}\right)^{2}}\right.
$$

for some $\delta_{4}>0$ and $\sigma_{n}^{2}(s)=n \sigma^{2}(1+o(1))$ for all sufficiently large n, so

$$
v_{k} \geqq K_{1} k^{-\left(1-\lambda_{1}\right)}
$$

where $\lambda_{1}>0$ and does not depend on k. Noting that from (42)

$$
E\left(\sum_{j=A^{k-1+1}}^{A^{k-1}+c_{k}} f_{j}\right)^{2} \leqq K c_{k}
$$

and from (53)

$$
\begin{aligned}
& E\left(\sum_{j=1}^{A k-1+c_{k}} \eta_{j}^{(s k)}\right)^{2} \leqq\left(A^{k-1}+c_{k}\right)\left\{E\left|\eta_{0}^{\left.\left(s_{k}\right)\right|^{2}}+2 \sum_{j=1}^{A k-1+c_{k}}\right| E \eta_{0}^{\left.\left(s_{k}\right) \eta_{j}^{(s k)} \mid\right\}}\right. \\
\leqq & \left(A^{k-1}+c\right)\left\{(2 N+1) \psi\left(s_{k}\right)+K_{2} \sum_{j=1}^{A k-1+c_{k}}\left(\left(\frac{3}{j}\right)^{1+\epsilon-\rho}+\left(\frac{3}{j}\right)^{(1+\epsilon)(1+\delta) /(2+\delta)+\rho \delta}\left\{\psi\left(\left[\frac{j}{3}\right]\right)\right\}^{1 / 2}\right)\right\} \\
\leqq & K_{3} A^{k-1-k r}
\end{aligned}
$$

for some $\gamma(0<\gamma<1)$, where $N=A^{k / 2-2 \varepsilon_{1}}$, we obtain

$$
\begin{aligned}
& E\left(\sum_{j=1}^{A k-1+c_{k}} \xi_{j}^{\left(s_{k}\right)}-\sum_{j=1}^{A k-1} \xi_{j}^{\left(s_{k}-1\right)}\right)^{2} \\
= & E\left(\sum_{j=A}^{A k-1+1} f_{j}-\sum_{j=1}^{A k-1+c_{k}} \eta_{j}^{\left(s_{k-1}\right)}+\sum_{j=1}^{A k-1} \eta_{j}^{(s k-1)}\right)^{2}
\end{aligned}
$$

$$
\begin{aligned}
& \leqq 3\left[E\left(\sum_{j=A^{k-1+1}}^{A^{k-1+C_{k}}} f_{j}\right)^{2}+E\left(\sum_{j=1}^{A k-1+C_{k}} \eta_{j}^{\left(s_{k}\right)}\right)^{2}+E\left(\sum_{j=1}^{A k-1} \eta_{j}^{\left(s_{k}-1\right)}\right)^{2}\right] \\
& \leqq K_{4} A^{k-1-k r}
\end{aligned}
$$

and so from Chebyshev's inequality

$$
P\left(\left|\sum_{j=1}^{A k-1+C_{k}} \xi_{j}^{\left(s_{k}\right)}-\sum_{j=1}^{A k-1} \xi_{j}^{\left(s_{k-1)}\right)}\right| \geqq \varepsilon^{\prime} \chi^{\prime}\left(A^{k}\right)\right) \leqq K_{5} A^{-1-k-r} .
$$

Hence, as in [8], we have $\bar{U}_{k} \rightarrow 1$ as $k \rightarrow \infty$ and consequently $U_{k} \rightarrow 1$ as $k \rightarrow \infty$.
The proofs of the following two theorems are carried out by the method of that of Theorem 6. (cf. [3], [4] and [8])

Theorem 7. Let $\left\{x_{j}\right\}$ be a stationary process satisfying Condition (II), fa random variable which is measurable with respect to $\mathcal{M}_{-\infty}^{\infty}$, and assume that the process $\left\{f_{j}\right\}$ is obtained from f by the method stated above. Let $\left\{f_{j}\right\}$ have the following properties:

1. $E f_{j}=0$ and $\left|f_{j}\right|<C$ with probability 1 ;
2. $\alpha(n) \leqq C n^{-\left(1+\delta_{1}\right)}$, where $\delta_{1}>0$;
3. $E\left\{\left|f-E\left\{f \mid \mathcal{M}_{-k}^{k}\right\}\right|^{2}\right\}=O\left(k^{-\left(2+\delta_{2}\right)}\right)$, where $\delta_{2}>0$.

Then the law of the iterated logarithm is applicable to the sequence $\left\{f_{j}\right\}$.
Theorem 8. Let the stationary process $\left\{x_{j}\right\}$ satisfy Condition (II), let f be measurable with respect to $\mathscr{M}_{-\infty}^{\infty}$, and let the process $\left\{f_{j}\right\}$ be obtained from f in the same way stated above. Moreover, suppose that

1. $E f=0$ and for some $\delta>0, E|f|^{2+\delta}<\infty$,
2. $E\left\{\left|f-E\left\{f \mid \mathcal{M}_{-k}^{k}\right\}\right|^{2}\right\}=O\left(k^{-2-\delta_{1}}\right) \quad\left(\delta_{1}>0\right)$,
3. $\sum_{j=1}^{\infty}\{\alpha(j)\}^{\sigma^{\prime} /\left(2+\delta^{\prime}\right)}<\infty$ for some $0<\delta^{\prime}<\delta$.

Then the law of the iterated logarithm is applicable to the sequence $\left\{f_{j}\right\}$.

References

(1) Billingsley, P., Convergence of probability measures. Wiley, New York (1968).
(2) Esseen, C. G., Fourier analysis of distribution functions. A mathematical study of the Laplace-Gaussian law. Acta Math. 77 (1945), 1-125.
(3) Ibragimov, I. A., Some limit theorems for stationary processes. Theory Prob. Appl. 7 (1962), 349-382.
(4) Ibragimov, I. A., and Yu. V. Linnik, Independent stationarily related random variables. Iz-vo "Nauka", Moscow (1965). (In Russian)
(5) Iosifescu, M., The law of the iterated logarithm for a class of dependent random varıables. Theory Prob. Appl. 13 (1968), 304-313.
(6) Oodaira, H., and K. Yoshihara, Functional central limit theorems for strictly stationary processes satisfying the strong mixing condition. To appear.
(7) Petrov, V. V., On a relation between an estımate of the remainder in the central limit theorem and the law of the iterated logarithm. Theory Prob. Appl. 11 (1966), 454-458.
(8) Reznik, M. Kh. The law of the iterated logarithm for some classes of stationary processes. Theory Prob. Appl. 13 (1968), 606-621.

Department of Applied Mathematics, Yokohama National University, and Department of Mathematics, Yokohama National University.

