REMARKS ON EXCEPTIONAL VALUES OF MEROMORPHIC FUNCTIONS

By Kōkichi Shibazaki

§1. In the present paper we are concerned with exceptional values of meromorphic functions. Throughout this paper we use the well-known symbols in Nevanlinna's theory.

Let $f(z)$ be a meromorphic function of order ρ (finite positive or infinite). A number A (finite or infinite) is said to be a Borel exceptional value of $f(z)$ if either the exponent of convergence of the A-points, $\rho(A)$, is less than ρ for $\rho<+\infty$ or $\rho(A)<+\infty$ for $\rho=+\infty$.

Valiron [8] had proved the following
Theorem A. Let $f(z)$ be a meromorphic function of finite order ρ. If two numbers A and B are Borel exceptional values of $f(z)$, then $\delta(A, f)=\delta(B, f)=1$ and $f(z)$ is completely regular growth and ρ is a positive integer. Further A and B are asymptotic values of $f(z)$.

Here we note that it follows from Edrei and Fuchs [2] that A and B are two asymptotic values in the last part of Theorem A. Also Cartwright [1] has shown that for entire functions the similar theorem as above holds.

On the other hand for an arbitrary $\rho, 1<\rho \leqq+\infty$, Goldberg [3] has constructed a meromorphic function $f(z)$ of order ρ, for which $\delta(\infty, f)=1$ and ∞ is not an asympotic value. Morover the ratio $T(r, f) / r^{\rho}$ for any $r>r_{0}$ is bounded from above and from below by positive constants, if $1<\rho<+\infty$ and $\log r=o\{\log T(r, f)\}$ if $\rho=\infty$; while $N(r, \infty, f) \sim C r^{\beta}, \rho /(2 \rho-1)<\beta<1,0<C<+\infty$. Thus ∞ is also a nonasymptotic Borel exceptional value. From this example we see that A is not always an asymptotic value, when a meromorphic function $g(z)$ has only one Borel exceptional value A.

We shall say in the sequel that a set $\left\{\Gamma_{n}\right\}$ is a sequence of arcs if it satisfies the following conditions:
(1) $\left\{\Gamma_{n}\right\}$ is a countable set of arcs.
(2) $\Gamma_{\imath} \cap \Gamma_{\jmath}=\phi$ for $i \neq j$ if $n \geqq 2$.
(3) For an arbitrary $r>0$ there exist one arc Γ_{n} or two arcs Γ_{m} and Γ_{m+1} such that, for some $\theta, 0 \leqq \theta \leqq 2 \pi$,

$$
\Gamma_{n} \ni z=r e^{i \theta}
$$

or for some θ_{1} and $\theta_{2}, 0 \leqq \theta_{1}, \theta_{2} \leqq 2 \pi$,

$$
\Gamma_{m} \ni z=r e^{i \theta_{1}} \text { and } \Gamma_{m+1} \ni z=r e^{i \theta_{2}}, \text { respectively. }
$$

Then we shall prove the followings.
THEOREM 1. Let $f(z)$ be a meromorphic function of lower order μ. If a number A is a Borel exceptional value of $f(z)$ such that $\rho(A)<\mu$, then there exists a sequence of $\operatorname{arcs}\left\{\Gamma_{n}\right\}$ such that

$$
\lim _{\substack{z \rightarrow \infty \\ z \in \cup \Gamma_{n}}} f(z)=A \quad \text { (uniformly). }
$$

THEOREM 2. Let $f(z)$ be a meromorphic function of non-integral finite order and of very regular growth, i.e.,

$$
0<\liminf _{r \rightarrow \infty} \frac{T(r, f)}{r^{\rho}} \leqq \limsup _{r \rightarrow \infty} \frac{T(r, f)}{r^{\rho}}<+\infty
$$

If $\delta(A, f)=1$, then there exists a sequence of arcs $\left\{\Gamma_{n}\right\}$ such that

$$
\lim _{\substack{z \rightarrow \infty \\ z \in \Gamma_{n}}} f(z)=A \quad \text { (uniformly) }
$$

Goldberg's example shows that the sequence of arcs $\left\{\Gamma_{n}\right\}$ in Theorem 1 or Theorem 2 cannot be replaced by a suitable curve.

We note that if a number A is an asymptotic value of $f(z)$, then there exists a sequence of $\operatorname{arcs}\left\{\Gamma_{n}\right\}$ such that

$$
\lim _{\substack{z \rightarrow \infty \\ z \in \cup \Gamma_{n}}} f(z)=A
$$

Thus the number of such values is at least that of asymptotic values. However for meromorphic functions of lower order less than $1 / 2$ we have the following corollary.

Corollary. Under the assumption of Theorem 1 (or Theorem 2) if $f(z)$ is of lower order $\mu, \mu<1 / 2$, then the value A is a unique value for which there exists a sequence of arcs $\left\{\Gamma_{n}\right\}$ in Theorem 1 (or Theorem 2, respectively).

We do not know whether for entire functions there exists a non-asymptotic value for which a sequence of arcs exists.
2. Lemmas. From a theorem on the maximum modulus of an entire function in Varilon [7] we have the following

Lemma 1. If $g(z)$ is an entire function, then there exists a sequence of arcs $\left\{\Gamma_{n}\right\}$ such that

$$
|g(z)|=M(r, g) \quad \text { for any } \quad z=r e^{i \theta} \in \cup \Gamma_{n}
$$

where $M(r, g)=\max _{|z|=r}|g(z)|$.
Hardy [4] had constructed examples showing that the curve of the maximum modulus can actually show discontinuities.

The followings are well known.
Lemma 2. ([5]). Let $f(z)$ be an entire function. Then

$$
T(r, f) \leqq \log M(r, f) \leqq 3 T(2 r, f)
$$

Lemma 3. Let $f(z)$ be a meromorphic function of order ρ and of lower order μ. If $\rho<+\infty$, then $\lim T(r, f) / r^{2}=0$ for any $\lambda>\rho$. If $\mu>0$, then $\lim T(r, f) / r^{2}$ $=+\infty$ for any $\lambda<\mu$.

Lemma 4. ([5]). Let a_{ν} be a sequence of non-zero complex number and let q the least integer such that $\sum_{\nu=1}^{\infty}\left|a_{v}\right|^{-q}$ converges. Then the product $\prod_{\nu=1}^{\infty} E\left(z / a_{v}, q-1\right)$ converges absolutely and uniformly in any bounded part of the plane to an entire function $\pi(z)$ having the same order ρ as the sequence a_{ν} and the same type-class if ρ is not an integer.

By Ostrovskii [6] we have the following
Lemma 5. Let $f(z)$ be a meromorphic function of lower order $\mu(\mu<1 / 2)$. If $\delta(\infty, f)>1-\cos \pi \mu$, then there exists a sequence of circles $|z|=r_{n}\left(r_{n} \rightarrow \infty\right)$, on which the function $f(z)$ uniformly converges to infinity.
3. Proof of Theorem 1. From Lemma 4 we can construct an entire function $E(z)$ of order $\rho(A)$ such that $\{f(z)-A\} / E(z)$ has no zeros. We put

$$
\begin{equation*}
f(z)-A=\frac{E(z)}{R(z)}, \tag{3.1}
\end{equation*}
$$

where $R(z)$ is entire and of lower order μ because of our assumption.
We apply Lemma 1 to $R(z)$. Then there exists a sequence of $\operatorname{arcs}\left\{\Gamma_{n}\right\}$ such that

$$
M(r, R)=|R(z)| \quad \text { for any } \quad z \in \cup \Gamma_{n} .
$$

Hence it follows from (3.1) and Lemma 2 that, for large $r=|z|$ and $z \in \cup \Gamma_{n}$,

$$
\begin{equation*}
|f(z)-A| \leqq \frac{M(r, E)}{M(r, R)} \leqq e^{-T(r, R)+3 T(2 r, E)} \tag{3.2}
\end{equation*}
$$

Further we have by Lemma 3

$$
\begin{align*}
-T(r, R)+3 T(2 r, E) & =-T(r, R)\left\{1-3 \cdot \frac{T(2 r, E)}{T(r, R)}\right\} \\
& =-T(r, R)\left\{1-3 \cdot 2^{\lambda} \cdot \frac{T(2 r, E)}{(2 r)^{2}} \cdot \frac{r^{2}}{T(r, R)}\right\} \tag{3.3}\\
& \rightarrow-\infty
\end{align*}
$$

as $r \rightarrow+\infty$, for $\rho(A)<\lambda<\mu$ since $\rho(A)<\mu \leqq \infty$. Thus by (3.2) and (3.3) we have

$$
|f(z)-A| \rightarrow 0 \quad \text { as } \quad z \rightarrow \infty, \quad z \in \cup \Gamma_{n} .
$$

Hence the proof of Theorem 1 is completed.
4. Proof of Theorem 2. Since $\delta(A, f)=1$ and $f(z)$ is of very regular growth we have

$$
\begin{equation*}
\lim _{r \rightarrow \infty} \frac{N(r, A, f)}{r^{\rho}}=0 \tag{4.1}
\end{equation*}
$$

If $\rho(A)<\rho$, by Theorem 1 there is nothing to prove. Thus we may assume that $\rho(A)$ is not an integer. Hence by Lemma 4 we can construct an entire function $E(z)$ such that $\{f(z)-A\} / E(z)$ has no zeros and by (4.1)

$$
\begin{equation*}
\lim _{r \rightarrow \infty} \frac{T(r, E)}{r^{\rho}}=0 \quad(\rho=\rho(A)) \tag{4.2}
\end{equation*}
$$

Thus by the same discussion as in the proof of theorem 1 with (4.1), (4.2) and our assumption $\lim \inf _{r \rightarrow \infty} T(r, f) / r^{\rho}>0$ we have Theorem 2.
5. Proof of Corollary. By our assumption we have $\delta(A, f)=1$. If $|A|=+\infty$, by Lemma 5 Corollary is valid. If $|A|<+\infty$, then we consider $f(z)=1 /\{f(z)-A\}$ instead of $f(z)$. We also have $\delta(\infty, F)=1$, so that by Lemma 5 Corollary is valid.

References

[1] Cartwright, M. L., Integral Functions. Cambridge Univ. Press (1956), pp. 135.
[2] Edrei, A., and W. H. J. Fuchs, Valeurs déficientes et valeurs asymptotiques des fonctions méromorphes. Comment. Math. Helv. 33 (1959), 258-295.
[3] Goldberg, A. A., On deficient nonasymptotic values of meromorphic functions. Soviet Math. Dokl. 7 (1966), 1444-1447.
[4] Hardy, G. H., The maxımal modulus of an integral function. Quart. J. 41 (1910), 1-9.
[5] Hayman, W. K., Meromorphic Functions. Oxford Univ. Press, New York (1964), pp. 191.
[6] Ostrovskir, I. V., On defects of meromorphic functions with lower order less than one. Soviet Math. Dokl. 4 (1963), 587-591.
[7] Valiron, G., Lectures on the general theory of integral functions. Toulouse (1923), pp. 208.
[8] Valizon, G., Remarques sur les valeurs exceptionnelles des fonctions méromorphes. Rend. Circ. Mat. Palermo 57 (1933), 71-86.

