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REMARKS ON EXCEPTIONAL VALUES OF

MEROMORPHIC FUNCTIONS

BY KOKICHI SHIBAZAKI

§1. In the present paper we are concerned with exceptional values of mero-
morphic functions. Throughout this paper we use the well-known symbols in
Nevanlinna's theory.

Let f(z) be a meromorphic function of order p (finite positive or infinite). A
number A (finite or infinite) is said to be a Borel exceptional value of/ (z) if either
the exponent of convergence of the ^.-points, p(A)> is less than p for io< + oo or
ιθ(^4)<+oo for ^ = + 0 0 .

Valiron [8] had proved the following

THEOREM A. Let f(z) be a meromorphic function of finite order p. If two
numbers A and B are Borel exceptional values of f(z), then δ(A,f)=δ(B,f)=l and
f(z) is completely regular growth and p is a positive integer. Further A and B are
asymptotic values of f(z).

Here we note that it follows from Edrei and Fuchs [2] that A and B are two
asymptotic values in the last part of Theorem A. Also Cartwright [1] has shown
that for entire functions the similar theorem as above holds.

On the other hand for an arbitrary p, Kp^+oo, Goldberg [3] has constructed
a meromorphic function f(z) of order p, for which 5(oo,/)=l and 00 is not an
asympotic value. Morover the ratio T(ry f)/rp for any r>r0 is bounded from above
and from below by positive constants, if l<ρ<+oo and log r=o{log T(r,f)} if
^=00; while N(r, co, f)~Crβ, pl(2p—l)<β<l, 0 < C < + c o . Thus 00 is also a non-
asymptotic Borel exceptional value. From this example we see that A is not always
an asymptotic value, when a meromorphic function g(z) has only one Borel ex-
ceptional value A.

We shall say in the sequel that a set {Γn} is a sequence of arcs if it satisfies
the following conditions:

(1) {Γn} is a countable set of arcs.

(2) ΓιΓ\ΓJ=φ for i*j if n^2.

(3) For an arbitrary r > 0 there exist one arc Γn or two arcs Γm and ΓmΛ1

such that, for some θf0^θ^2π,
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or for some Θι and θ2, 0^θu Θ2^

Γmsz=reiθl and Γm+I3z=reίθ2, respectively.

Then we shall prove the followings.

THEOREM 1. Let f(z) be a meromorphic function of lower order μ. If a number
A is a Borel exceptional value of f(z) such that ρ(A)<μ, then there exists a sequence
of arcs {Γn} such that

lim f(z)=A {uniformly).
zΐϋΓn

THEOREM 2. Let f(z) be a meromorphic function of non-integral finite order
and of very regular growth, i.e.,

0< lim inf T{χ'P ^ l i m sup T ( n / ) <+oo.

If δ(A,f)=l, then there exists a sequence of arcs {Γn} such that

lim f(z)=A (uniformly).

Goldberg's example shows that the sequence of arcs {Γn} in Theorem 1 or
Theorem 2 cannot be replaced by a suitable curve.

We note that if a number A is an asymptotic value of f(z), then there exists
a sequence of arcs {Γn} such that

Thus the number of such values is at least that of asymptotic values. However
for meromorphic functions of lower order less than 1/2 we have the following
corollary.

COROLLARY. Under the assumption of Theorem 1 (or Theorem 2) if f(z) is of
lower order μ, μ<l/2, then the value A is a unique value for which there exists a
sequence of arcs {Γn} in Theorem 1 (or Theorem 2, respectively).

We do not know whether for entire functions there exists a non-asymptotic
value for which a sequence of arcs exists.

2. Lemmas. From a theorem on the maximum modulus of an entire function
in Varilon [7] we have the following

LEMMA 1. If g(z) is an entire function, then there exists a sequence of arcs
{Γn} such that

I g(z) I = Mix, g) for any z=reiθ e U Γn>
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where M(r, ςr)=max ι«ι-r 10(2)I.

Hardy [4] had constructed examples showing that the curve of the maximum
modulus can actually show discontinuities.

The followings are well known.

LEMMA 2. ([5]). Let f(z) be an entire function. Then

T(r, f)^ log M(r, / ) ^

LEMMA 3. Let f(z) be a meromorphic function of order p and of lower order
μ. If p< + oo, then lim Γ(r,/)/f i=0 for any λ>p. If μ>0, then lim T(rff)/rλ

= +00 for any λ<μ.

LEMMA 4. ([5]). Let av be a sequence of non-zero complex number and let q
the least integer such that Σι?=ιWv\~q converges. Then the product H?=1E(zlav, q—1)
converges absolutely and uniformly in any bounded part of the plane to an entire
function π(z) having the same order p as the sequence av and the same type-class
if p is not an integer.

By Ostrovskii [6] we have the following

LEMMA 5. Let f{z) be a meromorphic function of lower order μ(μ<l/2). If
d(oo,/)>1—cos πμ, then there exists a sequence of circles \z\—rn (rn—•oo), on which
the function f(z) uniformly converges to infinity.

3. Proof of Theorem 1. From Lemma 4 we can construct an entire function
E(z) of order p(A) such that {/(z)-A}/E(z) has no zeros. We put

(3.1) ^ - Λ

where R(z) is entire and of lower order μ because of our assumption.
We apply Lemma 1 to R(z). Then there exists a sequence of arcs {Γn} such

that

M(r, R) = I R(z) I for any ze U Γn.

Hence it follows from (3.1) and Lemma 2 that, for large r=\z\ and ze \jΓn,

Mir F)
( d Z ) lHz) Λ l( d Z ) lHz) Λl= M(r,R) = e

Further we have by Lemma 3

T(2r, E)
-T(r, R)+3T(2r, E)=-T(r, i?) 1-3

T(r, R)

(o o, _ T(, RΛU 3 2 ' T{2r'E) r i
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as r-> + oo, for ρ(A)<λ<μ since p(A)< μ^oo. Thus by (3. 2) and (3. 3) we have

\f(z)-A\-+0 as <r-*oo, z€\jΓn.

Hence the proof of Theorem 1 is completed.

4. Proof of Theorem 2. Since δ(A,f)=l and f(z) is of very regular growth

we have

If p(A)<py by Theorem 1 there is nothing to prove. Thus we may assume that
p(A) is not an integer. Hence by Lemma 4 we can construct an entire function
E(z) such that {f(z)-A}/E(z) has no zeros and by (4.1)

(4.2) lim T(r^E) =0 (p=p(A)).

Thus by the same discussion as in the proof of theorem 1 with (4.1), (4. 2) and
our assumption lim infr_oo T(r,/)/rp>0 we have Theorem 2.

5. Proof of Corollary. By our assumption we have δ(A,f)=l. If |^4| = +oo,

by Lemma 5 Corollary is valid. If |A |< + oo, then we consider f(z)=l/{f(z) —A}

instead of f(z). We also have δ(oo, F ) = l , so that by Lemma 5 Corollary is valid.

REFERENCES

[ 1 ] CARTWRIGHT, M. L., Integral Functions. Cambridge Univ. Press (1956), pp. 135.
[ 2 ] EDREI, A., AND W. H. J. FUCHS, Valeurs deficientes et valeurs asymptotiques des

functions meromorphes. Comment. Math. Helv. 33 (1959), 258-295.
[ 3 ] GOLDBERG, A. A., On deficient nonasymptotic values of meromorphic functions.

Soviet Math. Dokl. 7 (1966), 1444-1447.
[4] HARDY, G. H., The maximal modulus of an integral function. Quart. J. 41 (1910),

1-9.
[ 5 ] HAYMAN, W. K., Meromorphic Functions. Oxford Univ. Press, New York (1964),

pp. 191.
[ 6 ] OSTROVSKΠ, I. V., On defects of meromorphic functions with lower order less

than one. Soviet Math. Dokl. 4 (1963), 587-591.
[ 7 ] VALIRON, G., Lectures on the general theory of integral functions. Toulouse

(1923), pp. 208.
[ 8 ] VALIRON, G., Remarques sur les valeurs exceptionnelles des fonctions meromor-

phes. Rend. Circ. Mat. Palermo 57 (1933), 71-86.

DEPARTMENT OF MATHEMATICS,

TOKYO UNIVERSITY OF EDUCATION.




