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ENTROPY AND SEMIVALUATIONS ON SEMILATTICES

BY YATSUKA NAKAMURA

1. Introduction.

Reasoning of the popular form —Σpi\ogpi of the entropy have been done by
Shannon [8], Hinchin [4], Faddeev [3] and many other authors [10], [6], [5]. Their
postulates of entropy would satisfy the person who is interested only in the infor-
mational feature of entropy. From the mathematical point of view, however, those
are not enough to clearify how entropy is induced from the more fundamental
concepts in mathematics. As one of such attempts, we shall give here a new
postulates of entropy, which is, so to speak, a lattice-theoretic one.

In § 2, a simple explanation of semilattice will be given, and in § 3 a certain
function on semilattice called a semivaluation will be defined, which has been used
by many mathematicians on lattices. It seems that the semivaluation is, in essence,
closely related to the semilattice. In the last section, a new postulates of entropy
will be given: it states that a symmetric continuous function of probabilities, which
gives a semivaluation on a set of all finite partitions on any probability space and
independence of the semivaluation is derived from a probabilistic one, is just the
entropy function.

The author wishes to express his sincere thanks to Professor H. Umegaki and
Professor T. Shimogaki for many kind suggestions and encouragements in preparing
this paper.

2. Semilattice.

A semilattice (Σ,<>) is a pair of a set Σ and an operation o from ΣxΣ to Σ
satisfying the following;

(SI) x°x=x for all

(S 2) χoy=yoX for all x,yeΣ,

(S 3) x°(y°z)=(χoy)oZ foi all x, y,

Writing x<y if χoy=x, we can see that < is a partial order in Σ and the relation

χoy=g.Lb.{x,y}
()
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is satisfied. Clearly another partial order < ' can be defined dually in Σ, i.e., x<!y
if yoX=y. A semilattice considered with the partical order < is sometimes called
a meet semilattice, and a join semilattice for the order < ' . If M is a partially
ordered set in which g. 1.b. {x, y] exists for all x,y£M, then putting xΛy=gΛ.b. {x,y}
the pair (M, Λ) is a semilattice, more to speak, a meet semilattice. Dually assuming
the existence of 1. u.b. {x,y} for all x,yGM and writing it as xVy, (M, V) is a join
semilattice. These facts are fully explained in [2]. A lattice is a join and meet
semilattice at the same time. If (L, V, Λ) is a lattice with the least element O,
then (L\{0}, V) is a join semilattice. A subset Σr in a semilattice Σ is called
a subsemilattic if Σf is closed by the operation in Σ. A transformation θ from a
semilattice (Σ, o) into another semilattice (Σ\ o') is a morphism if

(2.1) θ(χoy)=θ(x)ofθ(y) for all a ? , ^

is satisfied. A morphism is called an isomorphism if it is bijection, an endo-
morphism if (Σ,o)=:(Σ',<>'), and an automorphism if it is isomorphism and endo-
morphism at the same time. Two semilattices are said to be isomorphic if
there exists an isomorphism between them. If θ is a morphism between two join
semilattices (Σ, V, <) and (Σ'9 V', <')> then it is isotone, i.e.,

(2.2) x<y implies θ(x)<'θ(y),

and the same fact is true in the case of meet semilattices. An isotone bijection
between join (meet) semilattices with an isotone inverse is also a semilattice-
isomorphism. Concerning to semilattices of finite elements, the following theorem
consists.

PROPOSITION 2.1. Let (Σ, V) be a join semilattice of finite elements. L is a
partially ordered set added the least element O to Σ, i.e., L=Σ\J{0] and the order
< in L is the same as in Σ for the elements in Σ and 0<x for all x$Σ. Then
(L, <) is a lattice.

Proof. For fixed x0, y0GL, putting

x<x0, x<y0},

B is not empty as OeB. Now we prove that there exists the greatest element in B.
Putting xr as a maximal element in B and x as an arbitrary element in B, xVx'=x'
is valid from the maximality of xr and the inequality x'<xVx'. Hence x<x'', and
so xr is the greatest element in B> which can be written xoΛyo, and L is actually
a lattice. Q.E.D.

3. Semivaluations.

Now (Σ, o) is a semilattice defined in the previous section.

DEFINITION 3.1. A real valued function s[ ] on Σ is a semivaluation iff
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(3.1) s[χoyoz]—s[yoz]^s[χoy]—s[y]

for every x, y and z in Σ. For a semivaluation s[ ], we define the function s[ | ]

by

(3.2) s[y\y']=s[yoy']-s[y%

When the function s[ ] is considered on a join semilattice (21, V, <), the inequality
(3.1) is satisfied iff

(3.3) y<z implies s[/φ]^s|>|?/]

for every y,zGΣ, in which case we call this a join semivaluation. A meet semi-
valuation is defined similarly;

(3.4) y<z implies s

A semivaluation on a semilattice (21, °) is faithful iff

(3.5) s[x\y]=0 implies χoy=y.

LEMMA 3.1. For a join semivaluation s[ ], the followings are valid: for x,yy

(1) x<y implies s[x]^s[y],

(2) x<y implies s[x\z]^s[y\z],

and in particular if s[ ] z*5 faithful, then

(3) #<:?/ α^J Λ?̂ =y implies s[x]<s[y].

Proof. (1): By (3. 3) with x<y,

s[xVy]—s[y]=s[xVyVy] — s[y]<s[xVyVx]—s[x]
(3.6)

=s[xVy] — s[x]

which implies s[x]^s[y]. (2) is imediate from (1).
(3): If s[x]=s[y], then

s[y\x]=s[yV x]—s[x]=s[y]-s[x]=0,

hence y\/'x—x from (3. 5) and y<x, which contradicts to x<y and ^^F?/. Q.E.D.

REMARK 1. A join semivaluation satisfying (3) of the above lemma, necessarily
satisfies (3. 5), and so the condition for faithfulness of join semivaluation is equiva-
lent to the condition (3).

REMARK 2. For meet semivaluation, (1)~(3) in the lemma become dually;

(10 x<y implies s
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(20 x<y implies s[x\z\2:s[y\z[,

if s[ ] is faithful, then

(30 x<y implies s[x]>s[y].

The more is derived for the properties of the semivaluation.

REMARK 3. Let s[ ] be a semivaluation on a semilattice (21, ©). Then for all

( 1 ) 5[a?oy]=5[a?]+5[y|a?],

(2) s[χoy\z]=s[x\z]+s[y\χoz],

( 3 ) s[a?oy|^^s[a?|«]+5[y|«],

( 4 ) 5[a?o2f|a?]=5[2:|a;],

(5) s[x\z]^0.

Indeed, (1), (2) and (4) easily follow from the definition of semivaluation. (5)
is also easely proved by Lemma 1 (3) or remark 2 (30- (3) can be derived from
(2) and the fact s[y\x<>z]^s[y\z].

For a semivaluation s on a semilattice (Σ, o), we introduce a new function

f[ , l l;

i[x, y\z] =s[x\z] +s[y\z]-s[χoy\z]
(3.7)

=s[x\z]—s[x\zoy]=s[y\z] — s[y\zoχ].

Now let us give a concept of independence among elements in Σ.

DEFINITION 3.2. Elements xl9 - ,xneΣ are said to be independent relative to
an element ZGΣ if

(3. 8) feo o^, xk+1\z] =0, 4=1,2,..-, n-1

and denoted by

(3.9) xi,~ yXn±(z).

In the case of n=2f the condition xίy x2±.(z) is same as

(3. 10) 5[Λ?iθJ?a|2]=5[Λ?i|«]+5[a?2^].

The definition of independence is symmetric for xu—,xn. First we prove that

(3.11) xu •••, XnL(z) implies xu •••, xk-1} xk+l9 xkf Xk+2f - ,

Putting (x'i) as the rearrangement of fe), then for j<k — l}
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i[xΐo — oχ'j,χ'J+1\z]=0

is clear, and for j>k,

Xf

1o.:oχ'jz=χ1o...oχjfχ'J+1=Xj+1

imply

i[xίo — oχ'J9 χ'J+1\z]=0.

Moreover for j=k—l,

and for j=k, putting y=xi<> "oχk_u

i[xi°- '°Xk-i°Xk+uXk\z]=s[y°Xk+i\z]—s[yoχk+1\χkoz]

=s[y\z]+s[xk+1\yoz]-s[y\xkoz]-s[xk+1\xkoyoz]

=i[y°xjc,xk+i\z]=O.

And for an arbitrary rearrangement, we can prove by repetition of the use of
(3.11). Hence we have just proved that the independence is well defined.

When the join semilattice Σ has the least element O, we call xu ",xn being
independent if xlt - ,xn are independent with respect to the element O, and write

We shall use this notation in § 6.

LEMMA 3.2. Let s[ ], $i[ ] and $2[ ] be semivaluations on a semilattice Σ.
Then the following facts hold:

(1) for an arbitrarily fixed zeΣ, s[ \z] is also a semivaluation on Σ;
(2) for real numbers au #2 and b with a^O, a2^0, a1s1[ ]+a2s2[ ]+b is also

a semivaluation',
(3) if Σf is a sub semilattice of Σy then the restriction of s[ ] to Σr is also a

semivaluation on Σ'.

The proof of this is obvious by the definition of semivaluation.

A characterization of semivaluations on lattices will be given in the following
theorem:

THEOREM 3.1. If L is a lattice and m[ ] is a real valued function on L, then
tn[ ] is a join semivaluation iff

]^m[x] +tn[y],

ii) x<y implies m
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for every x and y in L.

Proof. Let m[ ] be a join semivaluation, then ii) is clear from lemma 1, and
i) is proved by the following chain of equalities:

m[x]+m[y]—m[xAy]—m[xVy] =m[y] — m[xAy]+m[x]—m[xVy]

=m[yV (x Ay)]-m[x Ay]-(m[xV y]-m[x])

=m[y\xAy]~m[y\x]^:O.

Conversely we assume that m[ ] is a real valued function satisfying i) and ii),
then for every zlf z2 and x in L and zλ<z2,

m[x\z1]—m[x\z2]=m[xVz1]—m[z1]—m[xVz2]+m[z2]

=m[x V Zί]—m[x V z2]—m[zι] +m[z2]

=m[xVz1]—m[(xVz1)\/zs]—m[z1]+m[Zi]

where the first inequality in the above chain is derived from i), and the second
one is from ii) and by the fact

(a?Vzi)Λ*2^*i. Q.E.D.

REMARK 3. The dual case of the above theorem is easily obtained: m[ ] is a
meet semivaluation on L iff

(ii) x<y implies m[x]^m[y].

COROLLARY 1. If nι[ ] is a valuation on a lattice L, i.e., the conditions

(1) m[xAy]+m[xVy] =m[x]+m[y],

(2) x<y implies m[x]^m[y]f

are satisfied, then ?n[ ] is a join semivaluation and — m[ ] is a meet semivaluation
on L. Conversely if a function m on a lattice is a join semivaluation and —m is
a meet semivaluation, then m is a valuation.

Let P be a partially ordered set of finite length with O. P is called upper
semimodular iff (σ) for a, b and c in P with a\b, if a and b cover c then for
some d$P d covers a and b.

The following corollary tells us a relation between the semivaluation and the
semimodularity.

COROLLARY 2. A graded lattic L of finite length is upper semimodular iff its
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height function is a join semivaluation.

The proof follows immediately from the equivalence of the condition (σ) and
the inequality h[xAy]+h[xVy]^h[χ]+h[y] of [2].

A similar fact holds for a graded semilattice and a grade function g[ ], i.e., g
is semivaluation iff (σ) is satisfied.

The following theorem shows that a metric can be induced into a semilattice
by a semivaluation, which is an extension of metric lattice.

THEOREM 3. 2. For a semivaluation s[ ] on a semilattice Σ, we put

then d is a pseudo-metric on Σ> which satisfies the following relations:

(m 1) d(x, y)=d(x, χoy)-\-d(χoy, y),

(m 2) d(x, x°y°z)=d(x, χoy)+d(χoy, χoyoz).

In particular, d( , •) is a metric if s[ ] is a faithful semivaluation.

Proof. By remark 3. (5)

d(x,y)=s[x\y]+s[y\x]^O,

and

d(x, x)=2s[x\x]=0.

Since s[y\χoz] =s[χoyoZ]—s[χoz]^0, the triangular inequality follows from that

d(x,y)+d(y,z)-d(x,z)

=2s[χoy] -s[x] -s[y] +2s[yoz]-s[y]-s[z]~2s[χoz] +s[x] +s[z]

= 2{s[χoy]-s[y]}-2{s[χoz]-s[yoz]}^2{s[χoy]-s[y]}-2{s[χoyoZ]-s[yoz]}

=2{s[x\y]-s[x\yoz]}^0.

(m 1): d(x, χoy)+d(χoy, y) = 2s[χoy] — s[x] — s[χoy] +2s[x°y] — s[χoy] — s[y]

=2s[χoy]-s[x] -s[y] =d(x, y\

and (m2) is similarly obtained. If s[ ] is faithful, then d(x,y)=0 implies s[x\y]
=s[y\x]=Q and which implies y—x^y—x, Q.E.D.

The following theorem shows that the conditions (m 1) and (m 2) in the
previous theorem are sufficient for the characterization of such metric.

T H E O R E M 3 . 3 . Let Σ be a join semilattice with 0 and d(-, ) be a pseudo-
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metric on Σ satisfying the conditions (m 1) and (m 2). Then s[ ]=d(-,0) is, a join

semivaluation and

d(x, y)=s[x\y]+s[y\x].

In particular, if d is metric, then s[ ] is faithful.

Proof.

s[x\y]+s[y\x]=2s[χoy]-s[y]-s[x]

=2d(χoy, 0)-d(yf 0)-d(x, 0)

=d(χoy, y)+d(χoy, x) by (m 2)

=d(x, y) by (m 1).

The condition (3.1) for s[ ] is proved as follows:

(3.12) d(x, z1oz2)-d{xy z2)^d(z1oz2, z2)

is clear from the triangular inequality, and the right hand side of (3.12) is

(3.13) 2s[z1oz2]-s[z2]-s[z1oz2]=s[z1oz2]-s[z2],

and the left hand of (3.12) is

(3.14) 2s[χoz1oz2] — s[x]—s[z1oz2] — 2s[χoz2] +s[x] +s[z2].

These (3.12)~(3.14) imply

2s[χoz1oz2]—s[z1oz2] — 2s[χoz2] +s[z2] ̂ s[z!oz2] —5[^2],

and

st^o^o^]—5^02:2] ^s[x°z2]—s[z2].

If d is a metric, then s[x\y]=s[χoy\y]=0 implies

d(xoy, y) = s[χoy\y]+s[y\x°y] =s[χoy\y] =0,

and χoy=y. Q.E.D.

DEFINITION 3. 3. A semilattice with a (pseudeo) metric satisfying (m 1) and

(m 2) is called a (pseudo) metric semilattice.

REMARK 4. For a join semilattice Σ with O and a semivaluation s[ ], s'[ ] =s[ \O]

is also a semivaluation and gives a same metric as one derived by 5, and s/[O]=0.

Hence we can assume s[O]=0 when we are mainly considering a metric on Σ.

Under this assumption,

(3.14) s[χoy]^s[x]+s[y]
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is always valid for s[z]=s[2|0] and by lemma 2 (3).

DEFINITION 3. 4. Let (J, d) and (I 7 , df) be metric semilattices. We call them
isometrically isomorphic if Σ and Σf are semilattice-isomorphic by an isometric
isomorphism φ, which maps from one to another.

Now let us examine some properties of metric semilattice.

LEMMA 3. 3. Let {Σ, d) be a {pseudo) metric semilattice, and Σf be a sub-
semilattice of Σ, then (Σf

yd\Σf) is also a {pseudo) metric semilattice.

Proof. We can see easely that d\Σf (the restriction of d to Σr) satisfies (m 1)
and (m 2) in Σf.

LEMMA 3. 4. Let {Σ, d) be a {pseudo) metric semilattice. Then the semilattice
operation in Σ is uniformly continuous with the metric d.

Proof. For any x, y, zeΣ,

Σ' = {x, X°y, Zoχ, Zoχoy]

is a subsemilattice of Σ. Let d' be a restriction of d to Σ. The element x is the
zero element in Σ'\ hence s[']=d'{-,x) is a semivaluation on Σ' by Th. 3.

Thus

d{zoχoyy z°x)—dr{z°x°y, x)—d'{zoχ, x)

=d'{χoy, x) — d'{x, x)=d{x°y, x).

And similarly

d{zoyoχ, zoy)^d{yoχ, y).

By (m 1) and (m 2),

d{z°x, z°y)=d{z°χoy, z°x)
(3. 15)

^d{x°y, x) +d{χoy, y)=d{x, y).

Therefore

d{zoχ,zoy)^d{x,y)

and

d{zn°Xn> Zoχ)^Ld{Znoχn, Znoχ)

^d{xn, x)+d{zn, z). Q.E.D.

THEOREM 3. 4. Let {Σ, d) be a metric semilattice and {Σ, d) be its completion
with the metric d. Then (S,d) is also a metric semilattice.
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Proof, If {xn} and {yn} are Cauchy sequences in Σ, then

{xn} = {yn} in Σ iff d(xn,yn)-*O (»-*oo).

Now for #={#n} and ?7 = {?/w} in Σ, we put

(3.16) χoy = {Xnoyn}9

then the right hand side of (3.16) is a Cauchy sequence in Σ by the previous
lemma. If there is another expression

χ={χ'n] and y={y'n}>

then

implies that xoy is uniquely determined. We can see easely that the operation o
in Σ satisfies the conditions for semilattice. Moreover the metric d in Σ satisfies
(ml); in fact, for x={xn] and y = {yn},

d(x,v)=limd(xn,yn)
n

^lim d(xn, a?n°yn)+lim d(xn°yn, yn)
n n

=d(x, χoy)+d(x°y, y\

and (m 2) is similarly proved. Q.E.D.

THEOREM 3. 5. Let (Σ, d) be a pseudo metric semilattice. Then its quotient
metric space (S,D) is a metric semilattice.

Proof. For [x],[y]eS, we define

(3.17) [x\o[y\ = [χoyl

then the operation is uniquely determined in S', in fact, for !>] = [>']> [y] = [y']y

d(χΌy', χoy)^d(x', x)+d(y', y)=0

by Lemma 4, hence [x'oy'] = [χoy].

Clearly the operation satisfies the condition for semilattices. The condition
(m 1) for the metric D can be shown as following: for [x], [y] and [z] in <S,

D([x], [y])=d(x, y)=d(x, χo

=D([x], [χoy])+D([χoy], [y])=D([x], [x]o[y])+D([Φ[v], M)

And (m 2) is similarly proved. Q.E.D.

Now we examine the relation of metrically completeness and order completeness
of the metric semilattice.
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LEMMA 3. 5. Let (Σ, d) be a metrically complete metric join semilattice. Then
Σ is upper conditional complete.

Proof. Let S be a subset of Σ and xx be an element of which bounds S. £F
is a class of all finite subset of S. Then, for

and for an arbitrarily fixed member x2eS,

(3.18) sup d(sup X, x2)

always exists. Let us denote the value (3.18) by s0.
Now it is clear that there exists a sequence {X^^a^ such that

" and d(supXn, x2)^s0-2-n.

For numbers n, m (n>m),

n, sup Xm)=i(sup Xn, x2)-d(sup Xmy x2)

hence {supXn} is a Cauchy sequence in Σ. Then there exists an element XOGΣ to
which {supjζj converses, and for all

d(xVxo, #o)=lim d(x Vsup Xn, sup Xn)
n

n, x2)—d(sup Xn, x2)}

^50—lim J(sup Xn, x2)
n

which shows X\/XQ=XQ and x<x0.
We can also show that x0 is the least upper bound of S, because for every yeΣ,

S<y implies s\iτρXn<y and (s\xpXn)Vy=y, which shows x0Vy—y by the uniform
continuity of the semilattice operation. Q.E.D.

4. Entropy and semivaluation.

We can find many examples of semivaluation in various fields of mathematics.
As we pointed out in the previous section, a valuation on a lattice is a semi-
valuation; hence a measure on a Borel field is a semivaluation and a dimension of
subspace in a Hubert space is also a semivaluation. We can easily prove that a
grade function on a graded semilattice satisfying the condition (σ) in the previous
section is a semivaluation. An outer measure is a join semivaluation and conversely,
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writing an inner measure as m*> —m* is a meet semivaluation. Let Lp and Lp
(X^P^+oo) be a positive cone and a negative cone respectively of a real Banach
space Lp on some measure space and || ||p be its norm. Then the norm || | | p is a
join semivaluation on the lattice LJ and a meet semivaluation on Lp. In the case

is not a norm, but we can show that — || | | p is a meet semivaluation on a lattice
of all non-negative measurable functions of which || ||p-value is finite, and a join
semivaluation on the negative part.

There are many other examples of semivaluation, but the aim of this section
is not to show all of them but to study the character of Shannon's entropy as a
semivaluation on a lattice of all measurable finite (or countable) partitions.

Let (X, 2C,p) be a probability space and g be a class of all measurable finite
partitions of X Now, for

(4.1) H(Jl) = -ΣP(A)\ogp(Λ)
AζJL

is the Shannon's entropy, g is a lattice with the order of refinement < and for
ί, CMS) is represented as

then as well known in a measure theoretic information theory (cf. [1]), for

(4.2) Ά'<Ά implies

The condition (4. 2) is just the condition (3.1) of join semivaluation. Denoting
), (4. 2) is written .

(4.3) Ά'<S implies

The well-known equalities and inequalities for the entropy are derived from
the fact that the entropy is a semivaluation; for example, by lemma 3.1 and
lemma 3. 2,

( i ) Jl<$ implies

and H{JL\C)^H(B\C)

(ϋ) mav £)=H{Jl)+H(&\JL),
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and

because Ή(O)=0, where O is the trivial partition of X, i.e., 0={X}.
The partitions J i , J 2 , - , J ^ S are mutually independent in the sence of

§3, i.e., Jίu Jt2y •••, JlnL if and only if they are mutually probabilistically
independent. An z-f unction denned by (3. 7) corresponds to the mutual information

A metric induced by the semivaluation of entropy is one which has been
called the entropy metric;

(4 4) p(Jl,&)=H(Jl\&)+H(£\Jl).

The entropy is not faithful as the smivaluation on f£, but of course the entropy
is faithful on the quotient metric space §f/~ in the sense of Th. 3. 5. And g/~
is just the classification of g identifying the probalilistically same partitions.
Generally f? (or $/~) is not necessarily complete with respect to the entropy
metric, and we can complete them as in Th. 3. 4. Let us show in the following
theorem that, after the completion, the generalized semivaluation can be represented
by the von Neumann's entropy, i.e., for a countable (or finite) partition Jl ={i4i, A2, •••}

(4. 5) H(Jl)=- ΣP(Λi) log #A).

Let $ be a set of all finite or countable partitions with finite von Neumann's
entropy. Then §c,3, and the restriction of H on g is the Shannon's entropy H.
We can see easely that 3 is a lattice and H is also a join semivaluation on $.
We write

Write

(4.6)

Then as the case p for $, the function p defines a metric over the family ft, and
it is an extension of p over § onto ,3- Now we can prove the following:

THEOREM 4. IP 3 is a complete metric semilattice with the metric p and it is
the completion of § with metric p, that is, 3 is the smallest complete metric semi-
lattice containing Qf.

1) The result of similar type was previously proved by Rokhlin [7] in a case of
abstract Lebesgue space.
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Before proving this, let us see the following proposition, which is known in
more general type.

PROPOSITION 4 . 1 . Let <B, <BU IB 2, ••• be partitions in 3 satisfying <Bi>Obf2>
and $=f)%=i$n Then

( i )

(i i)
n

And if &,&U&<L, are S i < ^ 2 < and J = V ^ . i & , then

(iii)

(iv)

/. (i): Put / ( / ) = - ί log ί (ί> 0), = 0 (ί=0). Combining both the martingale
and Lebesgue's convergence theorems, we have

(4.7) Kπiγ(P(C\<Bn))dp=^f(p(C\<B))dρ, CeC

And by the monoton convergence theorem,

(4. 8) \ Σ fiP(C\£Bn))dp= Σ [f(P(CWn))dp.

Moreover, by the Jensen's inequality,

(4.9)

Hence by (4. 8)

n)=\ιmΣ [f(P(C\j£n))dρ
n CGC J

Σ

= Σ \f(P(P\&))dp=B(C\£).
C€C J

(ii): By the result of (i),

which implies
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H{Sn)=H(£i) - 3{&i I &n)—H(£ι) - ff C0i I SB)=H{B).

(iii) and (iv) follow quite similarly to the proofs of (i) and (ii) respectively.

Proof of the theorem. Let {<JU}c,3 be a Cauchy sequence with respect to the
the induces metric p in ,3- Then we can assume that

P(Jln, Jln+i)<ll2n ( Λ = 1 , 2 , ),

and let us find out the limit of JLn in ίβ. Putting

we see

.0».i<0».2< (»=1,2, ),

and

Hence

and ^TO=V?=i ̂ n,r («=1,2, •••) is a decreasing sequence in ,3 2:> Writing C=ΛnCn,
and using the proposition, we see

lim H(Cn)=H(C).
n

Then

p(Cn, C)=H(C\Cn)+H(Cn\C)=H(Cn\C)

=H(Cn)-H(C)-*0 (as n->oo),

and

lim ρ(^«,r, C»)=lim ff(C»|^».r)=0
r r

implies

jό(oϊ», Cn)=p(jln, V ^ W , r ) ^ Σ p($n,r+l, $n,r)
\ r / r=l

^l/2w-^0 (as »->oo).

Therefore

Ln,C)^P(Jln, Cn) + p(Cn, C)-*0 (as rt-»Oθ),

2) For every finite subfield ^€f5 of 6'w, and every ε>0, there exists a number r0

and a finite subfield <B' of ^ w ,r 0 such that )^,^']<ε. Therefore H(^)^lim r

for every ig c ^w, which implies that ^ is essentially a countable partition.
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which shows that C is the limit element of J n in 3.
3 is completion of §. In fact, for an arbitrary countable partition

Jl={Au A2, •• }€/3 the sequence

J ^ = J A , A , ,A»-I, U A/ĵ t? (n=l,2,. )

makes a Cauchy sequence converging to <JL in 3 Q.E.D.

5. Abstract dynamical system.

Let (Σ,s,τ) be a triple of a semilattice Σ, a semivaluation s=s[ ] on I' and an
endomorphism τ on 2" with which s is invariant, i.e., s[x]=s[τx] for all xeΣ.

We will call the triple (Σ} s, τ) as an abstract dynamical system {AD-system).

DEFINITION 5.1. Two. AD-systems (Σ, s, τ) and (Σf, sr τf) are said to be iso-
morphic if there exists a semilattice isomorphism from Σ to Σr such that

(a) s[x]=s'[θx],

(b) θ(τx) = τ'{θx\

are satisfied. And they are weakly isomorphic if there exists a morphism θι from
Σ to I 7 and another morphism θ2 from Σf to 21 such that

(ar) s[x]=s'[θ1x],

s'[y]=s[θ2y], y<=Σ',

(b7)

Clearly the isomorphic implies the weakly isomorphic. The above definition
is a generalization of the concept of the isomorphism and Sinai's weakly iso-
morphism of the usual (probabilistic) dynamical system.

DEFINITION 5. 2. A mean transfer value t(τ, x\ s) of x with τ is the following
limit:

(5.1) t(τ, x; s)= lim —s[χoτχo — oτ*-iχ]9

n n

where the limit always exists as

dn = S[χoτXo-~oτ

nχ]—s[χoτχo...oτ

n-1χ]
=s[χoτχo - oτ

nχ] — s[τx° oT

nx]
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is monoton decreasing (as n increase), then dn converges to some limit d and
putting do=s[x],

1 n~1

t(τ, x\ s)= lim — Σ dk=d,
n n k=0

which can be rewritten

(5. 2) t(τ, x; s)=lim s[x\τχo->oτ

nχ],
n

The property of the mean transfer value is studied in the following lemma.

LEMMA 5.1. Let (Σ, s, τ) be an AD-systern and t(τ, x; s) be the mean transfer
value of x with τ, then

( i ) x°y = y implies t(τ,x;s)^t(τ,y;s),

(ii) if τ is an automorphism, then

t(τyx;s)=t(τ-\x;s)f

(iii) t(τ, x; s)^t(τ, y; s)+s[x\y],

(iv) |f(τ, x; s)-t(τ, y; s)\^d(x, y),

where the metric of the right hand side is the one induced by the semivaluation s.

Proof, (i): Clear by the isotonicity of 5;
(ii): (5.1) and

show the result.
(iii): We can see by the following chain of formulae.

— S[χθ" oτ

n-1χ] < s[yo ' oτ

n-1yoχo' Όzn

n n

— —s[y°'-°τn~1y] -\ s[χo>-oτ

n-1χ\yo.*.oτn-
n n

1 1 n~1

^—s[yo ~oτn-1

y]-{- — J] s^xlyo'-'orn-iy]
n n ϊ=o

s [ y T y ] { f ^
n n t=o
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where the last equality follows from

S[τ*x\τ*y]=s[x\y\ (ί=0, - , » - l ) .

(iv): By (iii),

t(τ, x; s)-t(τ, y; s)^s[x\y]^d(x, y),

and

t(τ, y; s)-t(τ, x\ s)^d(x, y),

therefore

\t(τ, x; s)-t(τ, y; s)\£d(x, y). Q.E.D.

DEFINITION 5. 3. A transfer value t(τ; s) of τ is defined by

(5. 3) t(τ; s)=sup t(τ, x; s),

which may take the value +oo.

Then we can see that the transfer value is an invariant of isomorphism between
the abstract dynamical systems.

THEOREM 5.1. // two AD-systems (Σ, s} τ) and (Σf> s', τ') are weakly isomorphic,
then

(5.4) t(τ;s)=t(τ',s').

Proof Let us denote the morphisms as

θx: Σ-+Σ',

t/2 <£ —>Jj,

which make the systems weakly isomorphic. Then for an arbitrary XGΣ,

—n

lim — s'l
n n

= lim — s[χoτx°
n n

=t(τfx;s),
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which shows that

and the converse inequality is symmetrically derived. Q.E.D.

COROLLARY. If there exists only a morphism Θι from Σ to Σ' satisfying the
equalities for θx in (a') and (b'), then

The following lemma gives a method to calculate the transfer value for some
examples of AD-systems.

LEMMA 5. 2. // there exists a sequence {xn} in Σ, such that

lims[#|a?n]=0 for all xeΣ,
n

then

t(τ; s)=lπnt(τ, xn] s).
n

Proof. By Lemma 1 (iii),

t(τ, x; s)^t(τ, xn; s)+s[x\xn].

Hence

and as x$Σ is arbitrary

t(τ; s)^\im t(τ, xn: s)

is valid. And the converse inequality is clear. Q.E.D.

LEMMA 5. 3. Let (Σ, 5, τ) be an AD-system, where τ is an automorphism on Σ,
then,

(5. 5) t(τn; s)=nt{τ\ s\ n=l,2, ~.

Proof For every integer n^X and

t(τn, x; s) = lim -rs[χoτ

nχo... oτ*<*-»x]
k K

^ lim n —-s[χoτχo"Ότ

nk- ιχ
jc nh
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hence

t(τn;s)^nt(τ;s).

To prove the converse inequality, let us write

then

— lim
k

which shows

For a negative integer n, (5. 5) is also true by lemma 1 (ii). Q.E.D.

As in §4, let (X, ϊ£,p) be a probability measure space and g be a class of all
measurable finite partitions of X Now T is a measure preserving transformation
on X, then T'1 can be seen as a semilattice morphism from f? to § itself, which
preserves the Shannon's entropy H invariant.

The mean transfer value tiT'1, Jl H) of Jl€$ with the entropy H in this
case is just the entropy of the measure preserving transformation T relative to a
finite partition Jl, and which is denoted by h(T, Jl). And the transfer value
t{T-χ\ H) of T-1 is the (Kolmogorov's) entropy h(T) of T.

Other examples of the mean transfer value and the transfer value can be
given in many directions. Let (42, St-tn) be an infinite measure space and S be a
measure preserving transformation on Ω. Then for a finite measurable subset
^ ^ ^ ( m ^ X o o ) , the mean transfer value is written

t(s-\A;m)=lim—m(AU'"Us-n+1A)f

n n

and the transfer value tis-^m) is also defined. For an isomorphism problem of
such infinite dynamical systems, we can use the above transfer value as an in-
variant for the isomorphism.

9. A characterization of entropy.

Let Δn be a fundamental simplex in ^-dimensional Euclidean space Rn, i.e.,
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Now, let us consider a class of functions {fn}n=i such that each fn is defined and
real valued on Δn and satisfies:

I. fn is continuous,
II. if π is any parmutation of numbers (1, 2, •••,»), then

fn(Pu '~,Pn)=fn(Pπ(Ό, φ"tP«Crθ),

ΠL fnUPu ~,Pn,0)=fn(Pl, ~',Pn\

For an arbitrary probability space (X,3C,P) and a class Qf of measurable finite
partitions of X, we can define a function F on g using the above functions /„
as

where Ji={Alf •• ,Λz}eg. Then F is well defined on g by the conditions I—III.
Further let us consider the following two conditions concerning the function F:
IV. F is a join semivaluation on §?, i.e.,

and

V. if c i e g and ^ e g are probabilistically independent, then they are also
independent with the semivaluation F, i.e.,

We can easily show an example of a class of functions {fn} satisfying I~V.
In fact the entropy function

n

(6.1) fn(Pu —>Pn) = -cΣpi\ogpi (c: constant)

satisfies the conditions. Do there exist other such functions? The aim of this
section is to show that such function is only of the entropy type. Therefore we
can employ the conditions I~V for the axioms of the entropy.

THEOREM 6.1. A class of functions {fn} satisfying I—Ύ is written by the form
(6.1).

Before proving the theorem let us see some lemmas and propositions. Take
a probability measure space (X, 3£,p), and F is the function on f? defined in the
above paragraph, i.e., defined by any class of functions {fn} satisfying I~V.

L E M M A 6 . 1 . / / the partitions ^ n ^ (»=1,2, •••) satisfy Bn*ζ$n+i (n=l, 2, •••)

and Vn-i $n=3C, then for any
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Proof. Writing Jt={Alt~ ,Am}, for any number k>0 there exists a number
no=no(k) and

for some immeasurable sets Bi (f=l, ,m). As {Bu-~,Bm} is not a partition in
general, we put

then clearly j S α ) = {ft, •••, Z?m+i} is a measurable finite partition. And from

ft Π £/ c (Ai Π i4y) U (Ai A Bi) U ( ^ Δ B/),

we can see that

P (Λ Δ ft) ̂

Hence

(6.2)

And

PiBm+1) = p(x\U Bt)^i

which and (6. 2) imply

(6.3) \F(j£^)-F(Jl)\-0 as *-κx>.

On the other hand

I p(Ai) -p(A% Π ft) I ̂  P(A% A ft) < 1 ,

and

imply

P(AiΓ)Bj)<p(AjABj)<j
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(6. 4) —
Qt-oo)

=MP(A1),

Therefore, for any number l>no(k)

(6.5)

For every ε>0 we can choose k so large that the last terms of (6. 5) are smaller
than e by (6. 3) and (6. 4), i.e., for any ε>0 there exists a number n0 and

is satisfied. Q.E.D.

Now, let us consider an invertible measure preserving transformation T on
(X, 2C,p), then we can construct the mean transfer value t{T~ι, JL\F) of <J,£τ$
with T" 1 and the transfer value t(T-u, F) of T"1. The following proposition was
proved by Kolmogorov and Sinai in the case of the entropy function.

PROPOSITION 6.1. // T is invertible and V^=-^ TkJί = χy then

Proof. Let us denote $n=Vl=-nTkJl («=1,2, •••), then the sequence
satisfies the assumptions of Lemma 6.1. Hence

=0 for all Cs%,
n

and so

by Lemma 5. 2. Moreover

t(T'\ <$n, F) = lim \ F($nV T-'^nV - V T-k

1 / τ ι \ 1 / 2n \
= limχF( V TιJl) = \imΎF[ V TιJL)

k k \ι=-n-k+i I ic K \ι=-k+i I

V τιjn + F[ v τιjn
\l=l I \l=-k+l I

=t{T-\JL;F).

Therefore
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t(T~\ F)=lim t{T-\ ®n; F)^t{T~\ Jί; F)^t(T~\ F). Q.E.D.

PROPOSITION 6. 2. // T is a Bernoulli shifts determined by a probability vector

(Pi, ~',Pn), then

t(T-1;F)=Mp1,-,pn).

Proof. Let JloG$ be a time 0 field.4) Then Jl0 satisfies the assumption of
Prop. 1, and by the condition F,

=kF(Jl),

hence

«Γ- 1;ί 1)=/(7 1- 1, Jlo;F)=F(JLo)=MPi, -,#»). Q.E.D.

Proof of theorem 1. We consider two Bernoulli shifts 7\ and T2 determined
by probability vectors (pi,—,pn) and (qu—9qm) respectively. We express these
Bernoulli schemes as the quartets (p1, 3C,p, 7\) and OJ, QJ, q, Γ2).

If - ΣΓ=i Pi log pi- - Σ?-i QJ log qJf then by the Sinai's theorem [9], the Bernoulli
shifts are weakly isomorphic, i.e., there exists two measure preserving transfor-
mations φ and ψ, which are from p1 to σ1 and from σ1 to p1 respectively, and

φTχ = T^φ and ψTz^ Tiφ.

We can regard ψ'1 and ψ'1 as the semilattice morphisms from gr2 to §i and
from f?i to f?2 respectively, where §i is a class of all measurable finite partitions
of p1 and %2 is of <τ7. Then (f?i, TΊ"1) and (f?2, T2"1) are weakly isomorphic in the
sense of AD-system by two semilattice morphisms ψ~λ and φ~x

y where the semi-
valuations on them are F-functions made by an arbitrarily fixed {fn} satisfying
I~V.

By Prop. 1. 2, and Th. 5.1,

fn(Pu -,Pn)=t(T^;F)=t(T^;F)=fm(qu ^9qm).

Now to a positive real number λ we give a value fn(Pu ~',Pn) if λ= — Σ?-iAlogA
Then this correspondence λ-^fn(Pu '">Pn) is independent from the way of choice
(Pi'->Pn) and uniquely determined. We write the correspondence g( ), then the
function g( ) is defined from non-negative real numbers R+ to real numbers R.
And we can see that g(-) has lineality;

g(λ1+λ2)=g(λ1)+g(λ2) Qlf λ2eR+),

because for two probability vectors (q3) and (rk) with

3) The concept of the Bernoulli shift is explained in [1], p. 3 and p. 6,
4) Also explained in [1].
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λi = - Σι QJ log 0.3 and ^2= - Σ r* log tt»

Λ+Λ2 = - Σ 4JT* log ^ * >

3,k

hence

Next we show that the function g(-) is monotone increasing. Let us assume λi<λ2

(λi,λ2GR+), then there exists a vector (pi,—,pn) and Λi = --Σ?-iAlogA. I n t n i s

case we can find the number {xjc}ΐ=i satisfying

and ^2=-Σ?-ίAlogA—Σt-i^jfclog Λr*; in fact, μ=(λ2-λi)lpn is positive and there
exists a probability vector ( # , •••,PL) and

i« = U2 - ^0/A =-ΣPί log /ί,

then writing Xk=PnPί, we can see (6. 6) and

TO—1 m

- Σ Pi log Pi ~ Σ (PnPί) lOg {PnPί)

1=1 Ίc = \

n-1

1=1

Now we consider two Bermoulli shifts determined by the probability vectors
(Pi,~',Pn) and (pi,- ,pn-i,%i,~',Xm) respectively. Then there exists a self-evident
semilattice morphism from a semilattice of finite partitions of the former to the
semilattice of the latter. Hence by Corollary of Th. 5.1,

Then we can easily see that the function g( ) is written

g(λ)=cλ (c>0).

Therefore

fn(Pu ~,Pn)=-cΣpilogpi. Q.E.D.
l
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