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ENTROPY AND SEMIVALUATIONS ON SEMILATTICES

By YAaTsuka NAKAMURA

1. Introduction.

Reasoning of the popular form —2Xp;logp, of the entropy have been done by
Shannon [8], Hinchin [4], Faddeev [3] and many other authors [10], [6], [5]. Their
postulates of entropy would satisfy the person who is interested only in the infor-
mational feature of entropy. From the mathematical point of view, however, those
are not enough to clearify how entropy is induced from the more fundamental
concepts in mathematics. As one of such attempts, we shall give here a new
postulates of entropy, which is, so to speak, a lattice-theoretic one.

In § 2, a simple explanation of semilattice will be given, and in §3 a certain
function on semilattice called a semivaluation will be defined, which has been used
by many mathematicians on lattices. It seems that the semivaluation is, in essence,
closely related to the semilattice. In the last section, a new postulates of entropy
will be given: it states that a symmetric continuous function of probabilities, which
gives a semivaluation on a set of all finite partitions on any probability space and
independence of the semivaluation is derived from a probabilistic one, is just the
entropy function.

The author wishes to express his sincere thanks to Professor H. Umegaki and
Professor T. Shimogaki for many kind suggestions and encouragements in preparing
this paper.

2. Semilattice.

A semilattice (X, o) is a pair of a set 3 and an operation o from XXX to X
satisfying the following;

S Tor=mx for all xel,
(52 ToY=yox for all =z,yel,
(S3) xo(yoz)=(xoy)oz for all x,vy,zel.

Writing <y if zoy=x, we can see that < is a partial order in 3 and the relation

zoy=g.Lb. {z, y}
()

o Recéivzd Apriﬁ, 1970.
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is satisfied. Clearly another partial order <’ can be defined dually in %, ie., <’y
if yox=y. A semilattice considered with the partical order < is sometimes called
a meet semilattice, and a join semilattice for the order <’. If M is a partially
ordered set in which g.1. b. {z, y} exists for all x, ye M, then putting x Ay=g.1.b. {z, y}
the pair (M, A) is a semilattice, more to speak, a meet semilattice. Dually assuming
the existence of 1.u.b. {x,y} for all x,ye M and writing it as zVy, (M, V) is a join
semilattice. These facts are fully explained in [2]. A lattice is a join and meet
semilattice at the same time. If (L,V, A) is a lattice with the least element O,
then (L\{0}, V) is a join semilattice. A subset X’ in a semilattice Y is called
a subsemilattic if 3’ is closed by the operation in X. A transformation 6 from a
semilattice (2, o) into another semilattice (27, o’) is a morphism if

@.1) O(zoy)=06(x)°"0(y) for all z,yel

is satisfied. A morphism is called an isomorphism if it is Dbijection, an endo-
morphism if (X, 0)=(2’, "), and an automorphism if it is isomorphism and endo-
morphism at the same time. Two semilattices are said to be isomorphic if
there exists an isomorphism between them. If # is a morphism between two join
semilattices (2, V, <) and (27, v/, <’), then it is isotone, i.e.,

2. 2) x<y implies 0(x)<'0(y),

and the same fact is true in the case of meet semilattices. An isotone bijection
between join (meet) semilattices with an isotone inverse is also a semilattice-
isomorphism. Concerning to semilattices of finite elements, the following theorem
consists.

PROPOSITION 2.1. Let (2, V) be a join semilattice of finite elements. L is a
partially ordered set added the least element O to 2, ie., L=XU{O} and the order
< in L is the same as in X for the elements in ¥ and O<z for all x€2. Then
(L, L) is a lattice.

Proof. For fixed xzo, yo€L, putting
B={zeL; x<x0, 2<yo},

B is not empty as OeB. Now we prove that there exists the greatest element in B.
Putting x’ as a maximal element in B and x as an arbitrary element in B, zVa' =2z’
is valid from the maximality of z’ and the inequality z’<x\Vz’. Hence z<z’, and
so 2’ is the greatest element in B, which can be written z,Ay,, and L is actually
a lattice. Q.E.D.

3. Semivaluations.
Now (2, o) is a semilattice defined in the previous section.

DeriNiTION 3.1. A real valued function s[-] on Y is a semivaluation iff
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@1 s[zoyoz] —s[yoz] =slzoy] —s[y]

for every z, ¥y and z in 3. For a semivaluation s[-], we define the function s[-|-]
by

(3.2 slyly'1=slyoy'1—slvy'].

When the function s[-] is considered on a join semilattice (2, V, <), the inequality
(3. 1) is satisfied iff

3.3) y<z implies s[z|z]=s[z|y]

for every vy, z€ZX, in which case we call this a join semivaluation. A meet semi-
valuation is defined similarly;

3.4 y<z implies s[z|y]=s[z|z].

A semivaluation on a semilattice (2, o) is faithful iff

3.5) s[z|y]=0 implies zoy=y.
LeEmMA 3.1. For a join semivaluation s[-, the followings are valid: for x,y,z€%,
(1) x<y implies s[x]=slyl,
(2) x<y implies s[z|z]=s[y|z],

and in particular if s[-] is faithful, then
(3) z<y and xxy implies s[x]<s[yl.
Proof. (1): By (3.3) with <y,

sleVyl=slyl=slzVyVyl—slyl<slz\VyV z] —s[z]
=s[zVy]—slz]

(3. 6)
which implies s[z]=s[y]. (2) is imediate from (1).
(3): If s[x]=s[y], then
slylzl=sly\ x] —s[z] =s[y] —s[z] =0,
hence yVa=x from (3.5) and y<z, which contradicts to <y and zxy. Q.E.D.

ReEMARK 1. A join semivaluation satisfying (3) of the above lemma, necessarily
satisfies (3. 5), and so the condition for faithfulness of join semivaluation is equiva-
lent to the condition (3).

RemMARK 2. For meet semivaluation, (1)~(3) in the lemma become dually;

(1 x<y implies s[z]>s[y],
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(2" z<y implies s[z|z]>s[y|z],
if s[-] is faithful, then
(39 <y implies s[z]>s[yl.
The more is derived for the properties of the semivaluation.

RemMARK 3. Let s[-] be a semivaluation on a semilattice (X, o). Then for all
z,y,2€2,

(1) slzoyl=s[z]+slyl],
(2) s[zoy|z] =s[z|2] +sly|zez],
(3) s[zeylz] =slz|2] +slyl2],
(4) s[zoz|x] =s[z|x],

(5) s[x]|z]=0.

Indeed, (1), (2) and (4) easily follow from the definition of semivaluation. (5)
is also easely proved by Lemma 1 (3) or remark 2 (3’). (3) can be derived from
(2) and the fact s[y|zoz]=s[y|z].

For a semivaluation s on a semilattice (2, 0), we introduce a new function
i[', * I '];
i[x, y|2] =s[x)|2] +s[y|2] —s[xoy]2]
3.7
=s[z|2] —s[z|zoy] =s[y|2] — s[y|zox].
Now let us give a concept of independence among elements in 2.

DerFiNiTION 3.2. Elements z;, -, x,€2 are said to be independent relative to
an element zeX if

3.8 i[zyoe oxi, xi4+1|2]=0,  k=1,2,---,m—1

and denoted by

3.9 Z1y 0y T L ().

In the case of #=2, the condition x;, .1 (2) is same as

(3. 10) s[zioxz| 2] =s[x1]2] + s[x2]2].

The definition of independence is symmetric for zi, -+, x,. First we prové that
(3.11) 1, o, Xn L (2) implies @y, o+, Zr—1, Thr1y Loy Thrzy =y Tn L (2).

Putting (x}) as the rearrangement of (x;), then for j<k—1,
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[0 0z}, 2fi1]2] =0

is clear, and for 7>k,

Zio 0L =E1000 0L 5, X1 =T 41
imply
i[z]o- o), x}41]2] =0.
Moreover for j=k—1,
i[my0 - odbp—y, Lps1|2] Zi[w10++ 0k, T41]2]1=0,
and for j=k, putting y=x0-++02p-1,
i[x1000Lp—10%r 11, Ti| 2] =S[yoTr+1|2] — S[yoxr 1] wro2]
=s[ylz]+s[zrs1lyoz] —slylzroz] — s[xxs1|zroyoz]
=iy, xx|2]+s[xri1|2] = S[xpr1|zRoyoz]
=i[yoxs, Zx+1]2]=0.

And for an arbitrary rearrangement, we can prove by repetition of the use of
(3.11). Hence we have just proved that the independence is well defined.

When the join semilattice 3 has the least element O, we call z,, -+, 2, being
independent if xi,---, z, are independent with respect to the element O, and write

Z1y ety Tl
We shall use this notation in §6.

LemMA 3.2. Let s[-1, si[-] and s.[-] be semivaluations omn a semilattice 3.
Then the following facts hold:

Q) for an arbitvarily fixed zeZX, s[-|z] is also a semivaluation on X

(2) for real numbers ai, a; and b with @;=0, @;=0, a;5:[-]+a@:s:.[-1+b is also
a semivaluation;

) if X' is a subsemilattice of X, then the restriction of s[-]1 to 2’ is also a
semivaluation on 3.

The proof of this is obvious by the definition of semivaluation.

A characterization of semivaluations on lattices will be given in the following
theorem:

THEOREM 3.1. If L is a lattice and m[-] is a real valued function on L, then
m[-] is a join semivaluation iff

i) mlz Ayl +mlzV yl=mlz] +mly],

i) x<y implies m[z]=mly],
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for every x and y in L.

Proof. Let m[-] be a join semivaluation, then ii) is clear from lemma 1, and
i) is proved by the following chain of equalities:

mlx]+mlyl —mlx Ayl —mlz\V yl=mly] —m[z Ayl +m[z] —m[z\/ y]
=mlyV (@ Ay)—mlx Ayl —(m[z\ y] —m[z])
=mlylz Ayl—mly|z] =0.

Conversely we assume that m[-] is a real valued function satisfying i) and ii),
then for every z;, 2z, and x in L and z;<z,,

mlz|z] —mlz|zo] =mlxV 21l —m[z1] —m[x\ 2:] +m22]
=mlzV 2] —m[xV 2] —m[z:]+ml[z]
=mlzV z]-ml(zV 21)\V z2] —mlz1] +mz]
Zm[(xV 21) Az2] — mlz.] —m[z:] +ml[2:] =0,

where the first inequality in the above chain is derived from i), and the second
one is from ii) and by the fact

((L‘\/Z&)/\ZzZZ’]. Q.E.D.

RemARrk 3. The dual case of the above theorem is easily obtained: m[-] is a
meet semivaluation on L iff

(i) mlz Ayl +mlzV 2] =m[z] +mly],

(ii) rx<y implies m[x]=m[y].

CorOLLARY 1. If m[-] is a valuation on a lattice L, i.e., the conditions
M mlz Ayl+mlz\ y]=mlz]+mly],

2) x<y implies mlx]=mly],

are satisfied, then m[-] is a join semivaluation and —ml[-] is a meet semivaluation
on L. Conversely if a function m on a lattice is a join semivaluation and —m is
a meet semivaluation, then m is a valuation.

Let P be a partially ordered set of finite length with O. P is called upper
semimodular iff (¢) for @, & and ¢ in P with e=b, if @ and b cover ¢ then for
some deP d covers a and b.

The following corollary tells us a relation between the semivaluation and the

semimodularity.

CoROLLARY 2. A graded lattic L of finite length is upper semimodular iff its
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height function is a join semivaluation.

The proof follows immediately from the equivalence of the condition (¢) and
the inequality A[z Ay]+A[z\ y]1=<hlx]+Aly] of [2].

A similar fact holds for a graded semilattice and a grade function g¢[-], ie., ¢
is semivaluation iff (o) is satisfied.

The following theorem shows that a metric can be induced into a semilattice
by a semivaluation, which is an extension of metric lattice.

THEOREM 3. 2. For a semivaluation s[-] on a semilattice 3, we put
d(z, y)=slz|y]+sly|=],
then d is a pseudo-metric on X, which satisfies the following relations:
(m 1) d(x, y)=d(z, zoy)+d(z°y, y),
(m 2) d(z, zoyoz)=d(z, zoy)+d(xoy, Zoyo?).
In particular, d(-, -) is a metric if s[-] is a faithful semivaluation.
Proof. By remark 3. (5)
(@, y)=slzlyl+sly|x] =0,
and
d(z, ) =2s[z|z] =0.
Since s[y|zoz]=s[zoyoz]—s[xoz]=0, the triangular inequality follows from that
d(@, y)+d(y, 2)—d(z, 2)
=2s[zoy] —slx] —s[y]+2s[yoz] —s[y] —s[z] — 2s[xo2] +s[x] +s[2]
=2{s[zoy] —s[yl} —2{s[zoz] —s[yozl} = 2(s[xoy] — s[y]} — 2s[zoyoz] —s[yez]}
=2{s[zly] —slz|y-z]}=0.
(m1):  dz, zoy)+dwey, y)=2s[zoy] —slz] —s[woyl +2s[woy] —slzey] —s[y]
=2s[zoy] —slz] —sly]=d(=, ),

and (m 2) is similarly obtained. If s[-] is faithful, then d(z,vy)=0 implies s[z|y]
=s[ylz]=0 and which implies y=xoy=x. Q.E.D.

The following theorem shows that the conditions (m1) and (m 2) in the
previous theorem are sufficient for the characterization of such metric.

THEOREM 3.3. Let 3 be a join semilattice with O and d(-,:) be a pseudo-
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metric on 3 satisfying the conditions (m1) and (m 2). Then s[-1=d(-,0) is. a join
semivaluation and

d(z, y)=slz|yl+sly|z].
In particular, if d is metric, then s[-] is faithful.
Proof.
slzlyl+slyle] =2s[zoy] —s[y] —slz]
=2d(zoy, 0)—d(y, 0)—d(x, 0)
=d(zoy, y)+d(zoy,z) by (m2)
=d(z, ) by (m1).
The condition (3. 1) for s[-] is proved as follows:
(3.12) d(z, 21022) —d(®, 2:) =d(21°23, 25)
is clear from the triangular inequality, and the right hand side of (3.12) is
(3.13) 25[21025] — S[z2] —S[21025] = S[21022] — S[22],
and the left hand of (3.12) is
3.14) 2s[xoz;02,] — s[x] — S[2102,] — 28[x025] +s[x] + S[2:].
These (3. 12)~(3. 14) imply
2s[woz 025] — S[21025] — 28[wozs] + S[22] S S[21022] — S[2:],
and
s[zozi025] —s[z102:] = s[xo2z] — s[2].
If d is a metric, then s[z|y]=s[zoy|y]=0 implies
d(zoy, y)=slzeylyl+sly|zey] =s[zey|y] =0,
and zoy=y. Q.E.D.

DerinITION 3. 3. A semilattice with a (pseudeo) metric satisfying (m 1) and
(m 2) is called a (pseudo) metric semilattice.

ReMARK 4. For a join semilattice ¥ with O and a semivaluation s[-], s’[-]1=s[-]O]
is also a semivaluation and gives a same metric as one derived by s, and s’[0]=0.
Hence we can assume s[O]=0 when we are mainly considering a metric on X.
Under this assumption,

(3.14) s[zoyl =s[z] +s[y]
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is always valid for s[z]=s[z|0] and by lemma 2 (3).

DerINITION 3. 4. Let (F,d) and (2/,d’) be metric semilattices. We call them
isometrically isomorphic if 3 and 3’ are semilattice-isomorphic by an isometric
isomorphism ¢, which maps from one to another.

Now let us examine some properties of metric semilattice.

LemmA 3.3. Let (2,d) be a (pseudo) metvic semilattice, and X' be a sub-
semilattice of 2, then (2',d|2") is also a (pseudo) metric semilattice.

Proof. We can see easely that d|2” (the restriction of d to 3’) satisfies (m 1)
and (m 2) in 2.

LEMMA 3. 4. Let (3,d) be a (pseudo) metric semilattice. Then the semilattice
operation in X is uniformly continuous with the metric d.

Proof. For any z,y,ze3,
2 ={x, moy, zom, Zoxoy}

is a subsemilattice of 2. Let d’ be a restriction of d to Y. The element x is the
zero element in X’; hence s[-]=d’(-,x) is a semivaluation on 3’ by Th. 3.

Thus
d(zoxoy, zox)=d'(zoxoy, z)—d' (202, x)
= slzowoy] — s[zea) =slaoy|zon] = slzoy|a]
=d'(zoy, x)—d'(x, x) =d(x°y, x).
And similarly

d(zoyom, zoy)=d(yox, y).
By (m1) and (m 2),

d(zox, zoy)=d(20xoy, zox) +d(zox oy, 20Y)

3. 15)

=d(zoy, x)+d(xoy, y) =d(z, y).
Therefore

d(zox, zoy) =d(x, v)
and

A(2noxn, 20%) ZdA(2no%n, 2n0%) +d(Znox, 20X)
=d(xn, ©)+d(2n, 2). Q.ED.

THEOREM 3.4. Let (3,d) be a metric semilattice and (Z,d) be its completion
with the metric d. Then (2,d) is also a metric semilattice.
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Proof. If {x,} and {y,} are Cauchy sequences in X, then
{en={yn} in T iff d(@n,y)—0  (r—00).
Now for #={z,} and 7={y.} in £, we put
(3.16) Zo§={znYn},

then the right hand side of (3.16) is a Cauchy sequence in X by the previous
lemma. If there is another expression

Z={z;} and  F={y1},
then
A(XnoYny ZnoYn) =d(xn, 7) +d(yn, yr)—0  (H—00)

implies that Zo7 is uniquely determined. We can see easely that the operation o
in & satisfies the conditions for semilattice. Moreover the metric d in £ satisfies
(m 1); in fact, for Z={x,} and 7={y.},

d (&, §)=1im d(zn, yn)
;111{n Ad(Zny ZnOoYn) +1i1£n A(2n°Yns Yn)
=d (%, zo9)+d (7, ),
and (m 2) is similarly proved. Q.E.D.

THEOREM 3.5. Let (2,d) be a pseudo metric semilattice. Then its quotient
metric space (S, D) is a metvic semilattice.

Proof. For [z], [y]le S, we define
3.17) [z]o[y] =[z-y],
then the operation is uniquely determined in S; in fact, for [z]=[z'], [¥]1=[¥"],
d(@'oy’, zey)=d(a’, ) +d(y’', y) =0

by Lemma 4, hence [z’oy']=[xov].
Clearly the operation satisfies the condition for semilattices. The condition
(m 1) for the metric D can be shown as following: for [z], [y] and [2] in S,

D([z], [y =d(z, y)=d(x, zoy) +d(z°y, y)
=D([], [zoy]) + D([zy], [y])=D([=], [#]°[y]) + D([=]°[v], [¥])-
And (m 2) is similarly proved. Q.E.D.

Now we examine the relation of metrically completeness and order completeness
of the metric semilattice,
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LemMMA 3.5. Let (2,d) be a metrically complete metric join semilattice. Then
X is upper conditional complete.

Proof. Let S be a subset of ¥ and xz; be an element of which bounds S. &
is a class of all finite subset of S. Then, for Xe%,

sup X<z,
and for an arbitrarily fixed member z,€S,

(8.18) sup d(sup X, xz)
XeF

always exists. Let us denote the value (3. 18) by s,.
Now it is clear that there exists a sequence {X;}?-:C & such that

1€ X, XicXpc-- and d(sup Xy, x2)=S,—27".
For numbers »n,m (n>m),
d(sup X, sup Xn) =d(sup X, x2) —d(sup Xn, )
=So—(So—2™M)=2"",

hence {sup X,} is a Cauchy sequence in 3. Then there exists an element x,€Y to
which {sup X,} converses, and for all xz€S

d(x\ 3o, 20) =1inm d(xz\/ sup X, sup Xy)
=1inm {d(x\/sup Xu, 22) —d(sup Xn, 22)}
=So— lign d(sup X, x,)
=S -—li’fn (s0—2"™)=0,

which shows z\VVa,=xz, and z<x,.

We can also show that x, is the least upper bound of S, because for every y€2,
S<y implies sup X,<y and (sup X,)Vy=y, which shows z,\Vy=y by the uniform
continuity of the semilattice operation. Q.E.D.

4. Entropy and semivaluation.

We can find many examples of semivaluation in various fields of mathematics.
As we pointed out in the previous section, a valuation on a lattice is a semi-
valuation; hence a measure on a Borel field is a semivaluation and a dimension of
subspace in a Hilbert space is also a semivaluation. We can easily prove that a
grade function on a graded semilattice satisfying the condition (¢) in the previous
section is a semivaluation. An outer measure is a join semivaluation and conversely,
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writing an inner measure as ey, —m4 iS a meet semivaluation. Let L} and Lj
(1=p=+o0) be a positive cone and a negative cone respectively of a real Banach
space L, on some measure space and ||-||, be its norm. Then the norm ||-||, is a
join semivaluation on the lattice L$ and a meet semivaluation on Lp. In the case

»<1,

1/p

1f1ly=(§ £2dm)

is not a norm, but we can show that —||:||, is a meet semivaluation on a lattice
of all non-negative measurable functions of which ||-||,-value is finite, and a join
semivaluation on the negative part.

There are many other examples of semivaluation, but the aim of this section
is not to show all of them but to study the character of Shannon’s entropy as a
semivaluation on a lattice of all measurable finite (or countable) partitions.

Let (X, ¢, p) be a probability space and & be a class of all measurable finite
partitions of X. Now, for €%

4.1) H( )= —Ag p(A) log p(A)

is the Shannon’s entropy. & is a lattice with the order of refinement < and for
C,DeF, CV 9 is represented as

CVP={CnD; CeC, De g},

then as well known in a measure theoretic information theory (cf. [1]), for
A, B, B'eF

4.2) B' <P implies H(AVB)—H(P)=H(AV B )—H(B).

The condition (4.2) is just the condition (3.1) of join semivaluation. Denoting
H(E|\F)=H(EVTF)—HF), 4. 2) is written

“. 3) B’ < B implies H(A|B)=H(A|B).

The well-known equalities and inequalities for the entropy are derived from
the fact that the entropy is a semivaluation; for example, by lemma 3.1 and
lemma 3. 2,

(1) A< P implies H(A)=H(B)
and H(A|C)=H(8|C) (CeB),
(ii) H(AN B)=H(A)+H(B|A),
HAN B|C)=H(A|C)+HB|C N A),
(iii) HJANVBIC)SH(JA|C)+H(B|C)
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and
HAN B)=H(A)+H(B)

because H(O)=0, where O is the trivial partition of X, i.e., O={X}.

The partitions 41, Az +++, Ax€F are mutually independent in the sence of
83, ie, Ay Az Anl if and only if they are mutually probabilistically
independent. An i-function defined by (3. 7) corresponds to the mutual information

pANB)
D(A)p(B)

=H(A)+H(B)-H( AN B).

KA, B)= § %'p(AﬂB) log

A metric induced by the semivaluation of entropy is one which has been
called the entropy metric;

4.4 o(A, B)=H(A|B)+H(B| A).

The entropy is not faithful as the smivaluation on &, but of course the entropy
is faithful on the quotient metric space %/~ in the sense of Th. 3.5. And §/~
is just the classification of ¢ identifying the probalilistically same partitions.
Generally & (or §/~) is not necessarily complete with respect to the entropy
metric, and we can complete them as in Th. 3.4. Let us show in the following
theorem that, after the completion, the generalized semivaluation can be represented
by the von Neumann’s entropy, i.e., for a countable (or finite) partition .1 ={A, A, ---}

. 5) H)=— i H(A) log p(A).

Let 3 be a set of all finite or countable partitions with finite von Neumann’s
entropy. Then §c3, and the restriction of H on § is the Shannon’s entropy H.
We can see easely that 3 is a lattice and H is also a join semivaluation on 3.
We write

He|g)=HEeVvF)-HG).
Write
4. 6) o, B)=H(A|B)+HBIA), A, Be3.

Then as the case p for &, the function p defines a metric over the family 3, and
it is an extension of p over I onto 3. Now we can prove the following:

THEOREM 4. 1.0 3 is a complete metvic semilattice with the metvic p and it is
the completion of § with metric p, that is, 3 is the smallest complete metric semi-
lattice containing F.

1) The result of similar type was previously proved by Rokhlin [7] in a case of
abstract Lebesgue space.
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Before proving this, let us see the following proposition, which is known in
more general type.

ProposiTION 4.1. Let B, B, Bs, -+ be partitions in 3 satisfying B> By >
and B=N%1 Bn. Then

(i) lipﬁ(clgan)=ﬁ(cl.@) (CeB),
(i) lim H(B)=H(2),

And Zf :@) :@1) g;% ceeoare Ql<$2<"' and sz;:;l .(Bm then
(iif) lim Hcl3y=H(C|B) (Ced),

(iv) lim H(B)=H(P).

Proof. (i): Put f(#)=—tlogt (¢>0), =0(¢=0). Combining both the martingale
and Lebesgue’s convergence theorems, we have

@ tim {r(scl =\ racianas,  cec.
And by the monoton convergence theorem,
4.8 (Zreciana= 5 (rocisna.
ceC CceC
Moreover, by the Jensen’s inequality,
@9 {rciznap = rci@anap=-={racisnas.
Hence by (4. 8)

lim 7(C | #)=lim 3} Sf(P(Cl.an))dP
— ¥ lim Sf(P(CIQn))dP
cec ™

= » {reciana=aici9).
cec

(ii): By the result of (i),
lim H(B1] B.)=H (31 B),

which implies
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H(Bn)=H(B))— H(B:| Br)—H(B:)— H(B:| B)=H(B).
(iif) and (iv) follow quite similarly to the proofs of (i) and (ii) respectively.

Proof of the theorem. Let {A.}C38 be a Cauchy sequence with respect to the
the induces metric g in 3. Then we can assume that

p(Jm Jn+1)<1/2n (n:]_’ 27 "’):
and let us find out the limit of (4, in 3. Putting
Brr=AaNV NV Antr

we see

Qn.1<.63n.2<"' (n=1y 2; )’
and

ﬁ(@n.ru)—ﬁ(.@n.r)=FI(Jn+r+1| AaV NV Anir)

SH(Aneretl Anen) S (Ansry Anirer) <1270,
Hence
lim H(Bn,r) <co

and Cno=V1 Bar (#=1,2, ) is a decreasing sequence in 3.2 Writing C= An Cn,
and using the proposition, we see

lim Hew=H().

Then

B(Cn, O =H(C|Cn)+H(CrlO)=H(C:IC)

=H(Co—-HC)~0 (as n—oo),
and
lim 5(Bn.r, Ca) =lim H(Cn| Ba.r) =0
implies
p(Jn: Cn) =ﬁ<u4m V Qn,r) = Zlﬁ(.g;n,rﬂy Qn,r)
=1/2,—0 (as n—o0).

Therefore

2) For every finite subfield @e& of Cx, and every ¢>0, thef_e exists a_number 7o
and a finite subfield @' of Ba,r, such that | B, B'|<e. Therefore H(B)<lim, H(Bn,r)< o
for every BC Cn, which implies that Cn is essentially a countable partition.
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which shows that ¢ is the limit element of 1, in 3.
3 is completion of . In fact, for an arbitrary countable partition

A =1{A4;, A;, ---}€3 the sequence
An= {Alx AZ: "ty An—l: g A] G% (ﬂ=1, 2; )
jen

makes a Cauchy sequence converging to . in 3. Q.E.D.

5. Abstract dynamical system.

Let (2,s,7) be a triple of a semilattice X, a semivaluation s=s[-] on ¥ and an
endomorphism = on Y with which s is invariant, ie., s[z]=s[rz] for all xel.
We will call the triple (3, s, ) as an abstract dynamical system (AD-system).

DerFINITION 5.1. Two. AD-systems (X, s,z) and (2’,s’z’) are said to be iso-
moyphic if there exists a semilattice isomorphism from X to 3’ such that

(a) s[x]=s'[0x], rel,
(b) 0(zx)=1'(0x), rel,

are satisfied. And they are weakly isomorphic if there exists a morphism 6; from
Y to 2’ and another morphism 6, from 2’ to 3 such that

(a/) S[.Z‘] =s’[01x], .%GZ,
s'lyl=slly]l,  yed,
(bl) 01(1’1’) =T’(01$)) .Z‘€2,

Ou(c'y)=7(02y),  yeZ’.

Clearly the isomorphic implies the weakly isomorphic. The above definition
is a generalization of the concept of the isomorphism and Sinai’s weakly iso-
morphism of the usual (probabilistic) dynamical system.

DErFINITION 5. 2. A mean transfer value t(c,z;s) of x with = is the following
limit:

5.1) t(z, x; 8)=1lim -’%S[xoz'xo---or"'lx],

where the limit always exists as
dn=S[zotzo- -0t x] —S[xorzo--- 0" 1x]
=S[xorzo:-ot"zx] —s[txo---0r™x]

=s[z|rzo---0r"x]
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is monoton decreasing (as # increase), then d, converges to some limit 4 and
putting do=s[x],

1 n—1
Uz, x; 8)=lim — 2, dx=d,
n Nk=0
which can be rewritten
5. 2) H(z, x; s)=lim s[z|txo---oz"x].
The property of the mean transfer value is studied in the following lemma.

Lemma 5.1. Let (3,s,7) be an AD-system and i(z,x;s) be the mean transfer
value of x with t, then

(i) xoy=y implies iz, x;s)=t(c,y;Ss),
(ii) if © is an automorphism, then
Kz, x; )=, x; 8),
(iii) Uz, 25 ) =t(z, y; $) +slzyl,
@(v) |t(z, @; $)—t(r, y; 5)| =d(=, v),

where the metric of the vight hand side is the one induced by the semivaluation s.

Pyroof. (i): Clear by the isotonicity of s:
@ii): (5.1) and

S[zo-+ ot g =s[c=" (o - o™ x)] =S[xo - 0™ Hy]

show the result.
(iii): We can see by the following chain of formulae.

1 1
——S[xo‘--oz-”_lx] = —S[yO"-Orn_lyoxo--'ofn‘lx]
n n
1 n-1 1 n—1 n—1
=—s[yo-- ot Y] + —s[zo-- ot Ig|yo oz ly]
n n
1 1ot
= 2 Sfyorror iyl - 3 sletalyo-ornly]
n n 1=0
1 1
=< __S[yo...ofn-—ly] + = Z s[z"xlz'iy]
n n 1=0

1
=—slyo--oc" 'yl +slalyl,
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where the last equality follows from
Slziz|cy] =s[z|y] @=0, -, n-1).
(iv): By (ii),
Uz, 25 ) —1(z, y; ) =s[z|yl =d(=, v),
and
Uz, y; $)— Uz, @ ) =d(x, y),
therefore
|t(z, 25 $)—t(z, y; S)| =d(x, y)- Q.E.D.
DEFINITION 5. 3. A transfer value (z;s) of r is defined by

(5.3 t(z; ) =su§) t(z, x; s),
Z€

which may take the value + oo.

Then we can see that the transfer value is an invariant of isomorphism between
the abstract dynamical systems.

THEOREM 5. 1. If two AD-systems (X,s,t) and (3',s’, ') are weakly isomorphic,
then

(5. 4) i(z; 8)=t(<", ).
Proof. Let us denote the morphisms as
02 -7,
Oy '3,

which make the systems weakly isomorphic. Then for an arbitrary zeZX,

H7'; s")=H(z’, 0125 87)

=lim _1"3/[013701"0131}0‘” °T’n_101$]
n n
H 1 4 /n—2
=1lim — s’[01x°0 cx0- -+ 07’ * %0, 7]
n N
o1
=1lim —s’'[01(xorro: - 0™ 12)]
n n

. N
= lim — s[zorzo--- or=1g]
n N

=Nz, x; 5),



ENTROPY AND SEMIVALUATIONS ON SEMILATTICES 461

which shows that
H'; 8")zt(z; 9),
and the converse inequality is symmetrically derived. Q.ED.

COROLLARY. If there exists only a morphism 0, from 3 to X' satistying the
equalities for 6, in (@’) and (b'), then

H(z'; ") = 1(z; 5).

The following lemma gives a method to calculate the transfer value for some
examples of AD-systems.

LEMMA 5. 2. If there exists a sequence {x,} in X, such that
lim s[z|z,]=0  for all xz€Z,
then
Hz; s)=lim &(z, 24; 5).
Proof. By Lemma 1 (iii),

Uz, ; 5)=t(z, n; S)+S[z|za].

Hence
H(z, x; s)éli_nn_l t(r, 2n} S),
and as zxel is arbitrary
(z; s)éli_n_m (7, Zu; S)
is valid. And the converse inequality is clear. Q.E.D.

LemMA 5.3. Let (3,s,7) be an AD-system, wheve t is an automorphism on 2,
then,

(5.5) tH(z"™; s)=ni(z; s), n=1,2, -

Proof. For every integer =1 and z€Z2,

L1
7™, x; s)=lim — s[xot"xo-++ og™ ¥~ g]
k

k

. 1
= lim %+ —-s[worzo-+ or™=1x]
k

nk

=nit(z, z; S),



462 - YATSUKA NAKAMURA
hence
H™; s)=nt(z; ).
To prove the converse inequality, let us write
y=xgorxo:--or" g,

then

1
t(z"; $)=#(<", y; s)=lim Z s[yoc™yo--ognE=Dy]:
N k

=lim %s[xoz-wo-nor’”“lx] =ni(r, z; S),
k

which shows
H(z"™; s)=ni(z; s).
For a negative integer #, (5.5) is also true by lemma 1 (ii). Q.E.D.

As in §4, let (X, 2%¢,p) be a probability measure space and § be a class of all
measurable finite partitions of X. Now T is a measure preserving transformation
on X, then T-! can be seen as a semilattice morphism from & to § itself, which
preserves the Shannon’s entropy H invariant.

The mean transfer value #7T-%, ;H) of _Je€% with the entropy H in this
case is just the entropy of the measure preserving transformation 7' relative to a
finite partition 7, and which is denoted by A(T, Z). And the transfer value
#T-% H) of T-* is the (Kolmogorov’s) entropy #(T) of T.

Other examples of the mean transfer value and the transfer value can be
given in many directions. Let (2, $,#) be an infinite measure space and S be a
measure preserving transformation on 2. Then for a finite measurable subset
Ae S(m(A)<oo), the mean transfer value is written

1
(s, A; m)= hm—;m(A U Us T+t A4),
and the transfer value #(s~%;m) is also defined. For an isomorphism problem of

such infinite dynamical systems, we can use the above transfer value as an in-
variant for the isomorphism.

9. A characterization of entropy.

Let 4, be a fundamental simplex in #-dimensional Euclidean space R", ie.,

Dy=| By, o, 5)E R 120 (=1,2, -, ), zf;lpi=1}.



ENTROPY AND SEMIVALUATIONS ON SEMILATTICES 463

Now, let us consider a class of functions {f.}.; such that each f, is defined and
real valued on 4, and satisfies:

I. f,. is continuous,

II. if z is any parmutation of numbers (1,2, -, #), then

Sn(Dry oy Pu) = Fu(Drcryy *+*s Dremy)s
IIL. fn+1(j71y +*y Dns 0)=fn(ply "t pn)-

For an arbitrary probability space (X, ,p) and a class & of measurable finite
partitions of X, we can define a function F on & using the above functions fa
as

where ] ={Ai, -, A€ Then F is well defined on ¥ by the conditions I~IIIL
Further let us consider the following two conditions concerning the function F':
IV. F is a join semivaluation on , i.e.,

F(AVR)+F(ANB)=F(A)+F(B),
and
CLD>F(C)=F(D),

V. if Je¥ and PBeF are probabilistically independent, then they are also
independent with the semivaluation F, i.e.,

F(AV B)=F(A)+F(B).

We can easily show an example of a class of functions {f,} satisfying I~V.
In fact the entropy function

6.1) Tu(br, s Pu)=—c¢ i pilogps  (c: constant)
=1

satisfies the conditions. Do there exist other such functions? The aim of this
section is to show that such function is only of the entropy type. Therefore we
can employ the conditions I~V for the axioms of the entropy.

THEOREM 6. 1. A class of functions {f.} satisfying 1~V is written by the form
(6. 1).

Before proving the theorem let us see some lemmas and propositions. Take
a probability measure space (X, %¥,p), and F is the function on § defined in the
above paragraph, i.e., defined by any class of functions {f,} satisfying I~V.

LeMMA 6.1. If the partitions PBneF (n=1,2, ) satisfy Bn< Bns1 n=1,2,+)
and \ -1 Bn=2X, then for any JEF,

lim F( | Ba)=0.
n
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Proof. Writing 4 ={A,, -+, An}, for any number £>0 there exists a number
no=no(k) and

1 .
p(AzABz)<'%k— (l'—]-y "')m)

for some @B.,-measurable sets B; (i=1,--:,m). As {B,

-+, By} is not a partition in
general, we put

E’L=Bi\ L<JBj (Z=1’ “tty m);
<t

Em+1=X\ UBi:

then clearly @®={B,, -+, Bn.1} is a measurable finite partition. And from

B:NB;c(A:NA)UAAB)U(A, A\ By,
we can see that

P(A, A B)= p(Ai A Bi)+p(B: A Bi)
1

1 .
§W+§1p(BmBj)<—k; @=1, -, m).
Hence

6.2 |p(Ai>—p(1§i>1§p<Azm§i)<% =1, -, m).
And

HBai)=2(X\ U Bi)gp(u AnB)<T,
which and (6. 2) imply

(6. 3)

|[F(B®)=F(A)—0 as k—oco.

On the other hand
= — 1
| p(A:)—p(A.N By)| = p(A. A\ B:) < 5

- — 1 L.
AN B)<p(A; AByp< Z (Ex7)
and

PAiN Buid) = p(Brir) < %
imply
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F(J V.@(k))=fm(m+l)({p(Azn B-J); 2=1y e, m, ]=17 ) m+1})
(6. 4) o oo (DA =1, ey m, j=1, o, me+ 1))

= Fu( (A, -+, P(An)) =F(A).
Therefore, for any number /> #(k)

F(A|B)=F(A| B®Y=F(A\ B®)—F(B®)
={F(AV B®)—F( )} +H{F(A)—F(B®)).

(6. 5)

For every ¢>0 we can choose % so large that the last terms of (6.5) are smaller
than ¢ by (6. 3) and (6. 4), i.e., for any ¢>0 there exists a number 7, and

F(A|Bn<e >ny)
is satisfied. Q.ED.

Now, let us consider an invertible measure preserving transformation 7' on
(X, %¥,p), then we can construct the mean transfer value #(7T'-%, ; F) of AeF
with 7' and the transfer value #(7-% F) of T-*. The following proposition was
proved by Kolmogorov and Sinai in the case of the entropy function.

ProrosiTIiON 6.1. If T is invertible and Vg—w T* A =2, then
T4 F)y=HT*, J; F).

Proof. Let us denote @B,=VI_,T* A (n=1,2,-.), then the sequence {PB}
satisfies the assumptions of Lemma 6.1. Hence

lim F(C|Br)=0 for all Ce%,
and so

KT F)y=lm KT, Bn; F)

by Lemma 5. 2. Moreover

t(T-ly g;n, F)= lim %F(Qn\/ T_l.@n\/ eV T_k-HQn)
k

n n
=1im—2—F( Y T‘J>=lilrcan( v Tuz)
k

l=—n—k+1 k

2n 0
é]im—};F(V T‘J>+F< \Y% T‘Jl)
k =1 l=—Fk+1

=HT1, A; F).

Therefore
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HT-Y, F)Y=lim (T, Buy F)=HT, A; F)=HT, F). Q.E.D.

ProposITION 6. 2. If T is @ Bernoulli shift® determined by a probability vector
(171; "',Pn), then

KT F)=fu(bs, *+* Dn)-

Proof. Let _1,e% be a time 0 field® Then .7, satisfies the assumption of
Prop. 1, and by the condition ¥,

FANT? ANV VT ) =F(A)+F(T )+ +F(T* )
=kF(A),
hence
KT F)=UT, Ao F)=F(A)=fa(p1, ***, Pn)- QED.

Proof of theorem 1. We consider two Bernoulli shifts 77 and T, determined
by probability vectors (pi, -+, p») and (gy, ---,gm) respectively. We express these
Bernoulli schemes as the quartets (o7, 2, p, T1) and (67, Y, g, T3).

If —X27..pilogpi=—2"1q,log q,, then by the Sinai’s theorem [9], the Bernoulli
shifts are weakly isomorphic, i.e., there exists two measure preserving transfor-
mations ¢ and ¢, which are from p? to ¢ and from o to p! respectively, and

SDTl = T2§D and ¢'T2 = T]¢.

We can regard ¢! and ¢! as the semilattice morphisms from . to & and
from % to F. respectively, where ¥, is a class of all measurable finite partitions
of pf and ¥ is of ¢f. Then (%, 77 and (Fe, T5') are weakly isomorphic in the
sense of AD-system by two semilattice morphisms ¢! and ¢!, where the semi-
valuations on them are F-functions made by an arbitrarily fixed {f,} satisfying
I~V.

By Prop. 1. 2, and Th. 5.1,

f'n(ply "'»Z”n)=t(Tf1; F):t(T‘;l) F)=an(q17 R qm)-

Now to a positive real number 2 we give a value fu(py, -+, Pn) if A=— 271 pilog pi.
Then this correspondence 21— fu(p1, -+, p») is independent from the way of choice
(p1 ++, pn) and uniquely determined. We write the correspondence g¢(-), then the
function ¢(-) is defined from non-negative real numbers R* to real numbers R.
And we can see that ¢(-) has lineality;

g(A1+22) = g(A1) +9(22) (A1, 2:€ RY),

because for two probability vectors (g;) and (rx) with

3) The concept of the Bernoulli shift is explained in [1], p. 3 and p. 6,
4) Also explained in [1].
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h=—Y g logg, and IZ=-— Y rnlogn,
J k
At2=— 3 ;7108 i,
7,k

hence

9+ 22) =fum({qs76) =Fn(lgs)) +Fm({7i) = 9(2:) +9(22).
Next we show that the function g¢(-) is monotone increasing. Let us assume 2,<2:
(41, € R*), then there exists a vector (py, -, p.) and A4 =—3";p;logp;. In this
case we can find the number {z;)f. satisfying
(6' 6) Z xk=pm xkéo (k:]-’ "ty m)
k=1

and A=—37p;log pi— Xm, xx logwe; in fact, p=(A—2A)/pn is positive and there
exists a probability vector ({, -+, p&) and

#=(12"21)/17n= - kz_:ll—"/'c log pi,
then writing x,= p.p}, we can see (6. 6) and

n—1

- 3 pilog i~ gl(pnp,;) log (pa 1)

n-1 m
—— 5 tulog 5= pulog p—pu 3, pt o8 11)

=21+1>,.(12;21)=22.

n

Now we consider two Bermoulli shifts determined by the probability vectors
(b1, =y Dn) and (P, **, Pn-1, 21, -++, Tm) Tespectively. Then there exists a self-evident
semilattice morphism from a semilattice of finite partitions of the former to the
semilattice of the latter. Hence by Corollary of Th. 5.1,

9(22) :fn+m—1(p1; vy D1, T1, 000 xm)
%fn(p, "'7pn)=g(ll)~

Then we can easily see that the function g¢(-) is written
g(A)=cA (c>0).

Therefore

Fulbyy - Br)=—c }Z:lpi log . QED.
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