ON PRIME ENTIRE FUNCTIONS, II

By Mitsuru Ozawa

§1. An entire function $F(z)=f \circ g(z)$ is said to be prime if every factorization of the above form implies that one of the functions $f(z)$ or $g(z)$ is linear. In our previous paper [2] we proved the primeness of several functions. In this paper we shall prove the primeness of

$$
\prod_{n=1}^{\infty}\left(1-\frac{z}{n^{\alpha}}\right), \quad 2>\alpha>1
$$

In order to prove it we quote several known results.
Lemma 1. (Edrei [1]). Let $f(z)$ be an entire function. Assume that there exists an unbounded sequence $\left\{h_{\nu}\right\}_{v=1}^{\infty}$ such that all the roots of the equations $f(z)$ $=h_{\nu}, \nu=1,2, \cdots$ be real. Then $f(z)$ is a polynomial of degree at most two.

Lemma 2. (Valiron [4], Titchmarsh [3]). If $f(z)$ is an entire function of order $\rho, 0<\rho<1$, with real negative zeros, $f(0)=1$, and $n(t) \sim \lambda t^{\rho}(\lambda>0)$ as $t \rightarrow \infty$, then

$$
\log f\left(r e^{i \theta}\right) \sim e^{i \rho \theta} \pi \lambda \frac{r^{\rho}}{\sin \pi \rho}, \quad r \rightarrow \infty
$$

for each fixed θ in $-\pi<\theta<\pi$. Here $n(t)$ indicates the number of zeros of $f(z)$ in $|z|<t$. Further if $\varepsilon>0$ we have

$$
\log |f(-x)|<(\pi \lambda \cot \pi \rho+\varepsilon) x^{\rho}, \quad x>x_{0}(\varepsilon),
$$

and if $\eta>0$ we have

$$
\log |f(-x)|>(\pi \lambda \cot \pi \rho-\varepsilon) x^{\rho}
$$

for $0<x<X$ except in a set of measure ηX, provided that X is sufficiently large. In particular

$$
\log |f(-x)| \sim \pi \lambda(\cot \pi \rho) x^{\rho}
$$

in a set of density 1.
Lemma 3. (Valiron [4], Titchmarsh [3]). Let $f(z)$ be an entire function of order less than one and with only negative real zeros. If $f(0)=1$ and if

[^0]$$
\log f(r) \sim \pi \frac{\lambda r^{\rho}}{\sin \pi \rho}, \quad r \rightarrow \infty, \quad \lambda>0
$$
then
$$
n(r) \sim \lambda r^{\rho}, \quad r \rightarrow \infty .
$$
§2. We shall prove the following theorem.
Theorem. Let $F(z)$ be an entire function of order $\rho, 1 / 2<\rho<1$ and with only negative real zeros. Assume that $n(r) \sim \lambda r^{\rho}, \lambda>0$. Further assume that there are two indices j and k such that a_{j}, a_{k} are zeros of $F(z)$ whose multiplicities p_{j}, p_{k} satisfy $\left(p_{j}, p_{k}\right)=1$. Then $F(z)$ is prime.

Proof. Suppose, firstly, that $F(z)=f \circ g(z)$ with transcendental $f(w)$. Then by Edrei's theorem $g(z)$ must be a polynomial of degree at most two. Since all the zeros of $F(z)$ are real negative, $g(z)$ must be linear. This case may be put aside.

Suppose, next, that $F(z)=f \circ g(z)$ with a polynomial $f(w)$. In this case we have

$$
F(z)=A g_{1}(z)^{l_{1} \ldots g_{p}(z)^{l_{p}}, \quad g_{j}(z)=g(z)-w_{j} ~}
$$

We put

$$
F(z)=B \prod_{t=1}^{\infty}\left(1+\frac{z}{a_{t}}\right)^{p_{t}}, \quad a_{t}>0
$$

In the above factorization any zero of $F(z)$ cannot be divided into two or more different factors. Then we may put

$$
\begin{aligned}
g_{j}(z)=c_{j} \prod_{s=1}^{\infty}\left(1+\frac{z}{b_{s j}}\right)^{q_{s j}}, \quad b_{s j}>0, \\
b_{s j} \neq b_{s^{\prime} i} \quad \text { for } \quad s \neq s^{\prime} \quad \text { or } \quad s=s^{\prime}, \quad j \neq i .
\end{aligned}
$$

Evidently $B=A \prod_{j=1}^{p} c_{j}{ }^{l_{0}}$. Firstly we have

$$
\frac{|F(\mathrm{r})|}{|B|}=\frac{F(r)}{B}=\max _{|z|=r} \frac{|F(z)|}{B} \sim \frac{|A|}{|B|} \prod_{j=1}^{p}\left(\frac{g_{j}{ }^{(r)}}{c_{j}}\right)^{l_{j}} \prod_{j=1}^{p}\left|c_{j}\right|^{l_{j}}
$$

as $r \rightarrow \infty$. Further

$$
\begin{gathered}
\left|g_{j}(r)\right| \sim\left|g_{k}(r)\right|, \quad r \rightarrow \infty, \\
\frac{g_{j}(r)}{c_{j}}=\max _{|z|=r} \frac{\left|g_{j}(z)\right|}{c_{j}}=\frac{\left|g_{j}(r)\right|}{\left|c_{j}\right|} .
\end{gathered}
$$

Hence

$$
\frac{F(r)}{B} \sim \prod_{j=1}^{p}\left(\frac{g_{j}(r)}{c_{j}}\right)^{l_{j}} \sim \prod_{j=1}^{p} \cdot \frac{1}{\left|c_{j}\right|^{l_{j}}-\left|g_{s}(r)\right|^{\Sigma_{j=1}^{p} l}}
$$

as $r \rightarrow \infty$. Put

$$
\alpha=\sum_{j=1}^{p} l_{j} .
$$

By Lemma 2 we have

$$
\log \frac{F(r)}{B} \sim \frac{\pi \lambda}{\sin \pi \rho} r^{\rho}, \quad r \rightarrow \infty .
$$

Hence

$$
\log \left(\frac{g_{t}(r)}{c_{t}}\right)^{\alpha}+\log \frac{c_{t}^{\alpha}}{\Pi_{j=1}^{p}\left|c_{j}\right|^{l_{j}}} \sim \frac{\pi \lambda}{\sin \pi \rho} r^{\rho}
$$

as $r \rightarrow \infty$. Thus for each $t, 1 \leqq t \leqq p$

$$
\log \frac{g_{t}(r)}{c_{t}} \sim \frac{\pi \lambda}{\alpha \sin \pi \rho} r^{\rho}, \quad r \rightarrow \infty .
$$

Then by Lemma 3

$$
n\left(r, g_{t}(z)\right) \sim \frac{\lambda}{\alpha} r^{\rho}, \quad r \rightarrow \infty .
$$

Again by Lemma 2

$$
\log \left|\frac{g_{t}(-x)}{c_{t}}\right| \sim \pi \frac{\lambda}{\alpha} x^{\rho} \cot \pi \rho, \quad x \rightarrow \infty
$$

in a set E_{t} of density 1 . Since $E_{1} \cap E_{2}$ is of density 1,

$$
\begin{aligned}
& \log \left|g(-x)-w_{1}\right| \sim \pi \frac{\lambda}{\alpha} x^{\rho} \cot \pi \rho, \\
& \log \left|g(-x)-w_{2}\right| \sim \pi \frac{\lambda}{\alpha} x^{\rho} \cot \pi \rho
\end{aligned}
$$

as $x \rightarrow \infty$ in $E_{1} \cap E_{2}$. Since $1 / 2<\rho<1$, we have

$$
g(-x) \rightarrow w_{1}, \quad g(-x) \rightarrow w_{2}
$$

as $x \rightarrow \infty$ in $E_{1} \cap E_{2}$. This is clearly a contradiction. Therefore $F(z)=A\left(g(z)-w_{1}\right)^{l_{1}}$. By the existence of two zeros whose multiplicities are coprime l_{1} must reduce to 1 . Hence we have

$$
F(z)=A\left(g(z)-w_{1}\right),
$$

which is the desired result.
It should be mentioned a remark here. Our theorem does not remain true if the order is not greater than a half. The function $\cos \sqrt{z}$ is of order $1 / 2$, which satisfies

$$
\cos \sqrt{z}=2 \cos ^{2} \frac{\sqrt{z}}{2}-1 .
$$

When the order ρ is less than $1 / 2$, we can construct a counter example freely, for example $g(z)(g(z)-1)$.

References

[1] Edrei, A., Meromorphic functions with three radially distributed values. Trans. Amer. Math. Soc. 78 (1955), 276-293.
[2] Ozawa, M., On prime entire functions. Kōdai Math. Sem. Rep. 22 (1970), 301308.
[3] Titchmarsh, E. C., On integral functions with real negative zeros. Proc. London Math. Soc. (2) 26 (1927), 185-200.
$\lceil 4]$ Valiron, G. Sur les fonctions entières d'ordre fini et d'ordre nul, et en particulier les fonctions à correspondance régulière. Ann. Fac. Sci. Unıv. Toulouse (3) 5 (1914), 117-257.

Department of Mathematics,
Tokyo Institute of Technology.

[^0]: Received January 26, 1970.

