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THE ASYMPTOTIC DISTRIBUTION OP INFORMATION PER UNIT
COST CONCERNING A LINEAR HYPOTHESIS FOR MEANS

OF GIVEN TWO NORMAL POPULATIONS

BY KAZUTOMO KAWAMURA

§ 1. Introduction.

On the sequential design problem Chernoff [1] has studied a sequential testing
problem concerned with composit hypothesis. In his paper he has shown an es-
sential and simple example in which he treated two mutually independent Bernoulli
trials 71 and T2. If we denote the probability of success of trial 71 with pi and
the probability of success of the trial T2 with p2 and the hypothesis pi =p2 with H0

and pι*rp2 with Hi, the subject which he treated was sequential test of the hypothe-
sis HQ. He has given a selecting way of trial at each step definitely considering the
results of preceding observations. More precisely, the procedure is deterministically
given step by step comparing with Kullback-Leibler (K-L) informations of 7\ and
Zl.

We have studied in [2] the asymptotic behavior of the sum of informations
which discriminate the hypotheses H0 and HI gained between first and n-ih step
under the procedure using K-L information deterministically at each step.

In our paper [4], for given finite number of populations E^ (i=l,~ ,k) which
has a distribution of exponential type with one dimensional parameter 0$ (ί=l, •••,&)
respectively, we had treated the sequential testing problem with respect to the
given hypothesis μ Θ=pr concerning unknown parameters 0ι, •••,#*, in k dimensional
(0ι, •••>#*) space. The distribution of i-th population Et (£=!,•••,&) was restricted
by an exponential type introduced by S. Kullback. We have given in [2], [3] a
cost optimal procedure <£> selecting the populations and in [4] the equivalent
randomized procedure ^p* the limiting property of the logarithm of the likelihood
ratio per unit cost concerning the hypothesis μ-θ=p of our unknown k dimensional
parameter 0=(θι, ,θk)

We have specially had some interests on the asymptotic property of the de-
terministic procedure. Given two trials 71 and T2 each of which has a normal
distribution with mean mi and m2 and variance <7ι2 and σ2

2 respectively, then the
hypothesis H0 becomes mι=m2 and HI becomes mι^m2 analogously. In this model
using the deterministic procedure which compares with K-L informations of the
given trials 71 and Γ2, the selecting ratio of TI and T2 has strait convergence
property to the optimal ratio as given in [3] and [4] as " special example ".
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In this paper we treat two trials EΊ and E2 each of which has normal distri-
bution with unknown mean mi and m2 and known variance σ^ and σ2

2 respectively.
Under the deterministic procedure using K-L informations of EI and E2 we shall
show the asymptotic distribution of the sum of informations between the first step
and n-th step discriminating two hypotheses HQ and HI. The expected value and the
order of the variance of the sum of informations will be obtained in the following
sections.

In section 2 of this paper we assume that we have given a normal population
N(m,σ2) and its n independent samples xlt •••, #Λ, we shall show the asymptotic
behavior of the sum of self informations of the unknown mean m, the logarithm
of the likelihood of m and the logarithm of the maximum likelihood of m. In
section 3, 4 we shall restrict the number of populations to 2. And the distributions
of EI, E2 are normal with means mi, m2 and variances σi2, σ2

2 where mi, m2 are
unknown values. In section 4 the main result of this paper will be shown, that is,
under the procedure <P we have the limiting property and the asymptotic distri-
bution of the gained sum of self informations sn(a?ι, •••, xn\ the logarithm of the
maximum likelihood of (mι,m2), the logarithm of the likelihood ratio under the
hypotheses mι=m2 and mι^m2 and the logarithm of the likelihood ratio per unit
cost.

§ 2. Asymptotic behavior of the sum of self information and the logarithm
of the maximum likelihood.

2. 1. Here we consider the asymptotic behavior of the sum of self informations
of n independent random variables Xι, ,Xn from a given normal population
N(m,σ2). The sum of self informations sn(Xι, " ,Xn) of the n independent random
variables Xι, ,Xn is given by

(2. 1) sn(Xι, -, Xn) = Σ log/ί-Xi, m, <72),
ι=l

where f ( X , m, σ2) is a normal density function of population N(m, σ2), i.e.

(2. 2) f(X, m, σ2) = ,

2. 1. 1. First we consider the distribution of sn(Xι, m~,Xn) for fixed n. From
the equality (2. 1), (2. 2) the random variable sn(Xι, ~ ,Xn) becomes

(2.3)

where (Xi—m)lσ is a normal random variable with meae zero, variance one. Since
Xι, ,Xn are independent, then (Xι—m)/σ, ,(Xn—m)lσ are independent random
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variables. In the following lines we put

then χn

2 is distributed as χ2-distribution with n degree of freedom. Therefore
sn(Xι, ~,Xn) is given by a linear form of the random variable χn

2 as given in (2.3)

(2. 5) s«CXι, '"ίXn) = -^χn

2-nlog^/2^σ}

where the mean value of sn(Xι, ~-,Xn) is given by

Esn(Xl9 •••, Xn) = - ~Eχn

2-n log +/2πσ

and the variance of sn(Xι, •• ,-Xn) is given by

Var *„(*!, ..^*n) = - Var (χn»)= -2n = -.

2. 1. 2. Next we treat the normal approximation of the distribution of

n

First we consider the distribution of

Ύ

n n \\ σ /

By the central limit theorem χn

2/n is asymptotically normally distributed with
mean one and variance 2/n in the sense of convergence in distibution. So that
(—l/2)χn

2ln is asymptotically normally distributed with mean —1/2—(1/2) log 2ττ<72

and variance l/2n.

2.1. 3. Finally we consider the limit value of a random variable sn(Xί9 —, Xn)/n.
In the equation (2. 5) χn

2/n is the sum of square of n independent random variables
with common density N(091)

/X1-m\ (Xn-m\
\~ϊ~)''"'( o "A

Then by the strong law of large numbers we get
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(2.6)

Therefore we have

/o Γ7\ ••• Sn(Xl> •"> Xn) 1 ι /7c—
(2. 7) Imi = — -K — logΛ/2τr <τ

n—»oo 72 ^

with probability one.

2. 2. 4. In this place we consider the asymptotic behavior of the maximum
likelihood given by n independent random variables Xlt •••, Xn from the population
given in the preceding section. And we assume that the mean value is unknown.
We define the logarithm of the likelihood function of m by

(2. 8) logfl/(^,m,<72)=
ΐ=ι 1

Then the logarithm of the likelihood function becomes our sum of self informations
sn(X\, •••, Xn) defined in preceding section. The maximum likelihood of the parame-
ter m is given by the maximum value of the likelihood function of m with respect
to m.

1 n

(2.9)

The maximum value is given by differentiation of the logarithm of the likelihood
function with respect to m. The value of the maximum estimate of m is given by

(2.10) ftn=
 Σ"-lX%.

n

Then the maximum value becomes

log f[f(Xt, mn, σ*) = ~^ Σ I Xί~mn\-n
t=ι Λ 1=1 \ σ /

(2. 11)

where Σ^=ι((Xi~^n)/σ)2 is distributed as f distribution with freedom n—l. There-
fore we put it as χw-ι2. Then

(2. 12) max log Π f(Xt, m, σ2) = - fn-ι - n log ̂ /2π σ,
m t=l ^

the expected value of the logarithm of the m^xirnuni likelihood is
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E log Π ΛX*, mn, tf2) - - ^-Eχn-ι2-n log Λ/2Ϊ <τ

(2. 13)

and the variance is given by

Var log Π/(-X".. ««. o2) = (- γ)2γar Of«-ι*)

(2.14) "' .

As a conclusion the logarithm of the maximum likelihood of m given in (2. 12) is
distributed as a linear form of a χ2 random variable χw-ι2 with n—\ degree of
freedom.

Next we consider the asymptotic behavior of maxmsw(.Xι, •• JXn)/n.

1 n

maxsnCXi, -., Xn)/n = — max £ log/CX», m, σ2)
m H m l=ι

(2. 15) = -ί (log /(Xi, mw, σ2) + + log f(Xn, mn, σ2))

By the central limit theorem χn-ι2l(n—l) is asymptotically normally distributed
with mean one and variance 2/(n—l) in the sense of convergence in distribution.
Therefore (—1/2) χn-ι2/n is asymptotically distributed with mean —(n—I)/2n and
variance (n— Y)/2n2. Then the logarithm of the maximum likelihood per unit sample
maxm 2?-ι log/(J^, m, σz)/n is asymptotically distributed as normal distribution with
mean — (n— l)/2n— log\/2πσ and variance (n—l)/2n2.

Finally we consider the limit value as n— >oo of the logarithm of the maximum
likelihood:

max log Π f(Xt, m, <j2) = - -̂ - Σ (
m ι=ι Δσ 1=1

(2. 11)

= - TT (- Σ XS-mn*} - n
Z(7 \ /* t= 1 /

And, by the strong law of large numbers, Σϊ=ιXιzln-^E(X2) as -̂̂ oo with proba-
bility one. Then the logarithm of the maximum likelihood per unit sample has a
limit value as followings,
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1 n

lim— max log ]}f(Xit m, σ2)
n->oo M m l=1

(2. 16) = - 5- {E(X2)-E\X}} -log

= -— - lθgχ/2τr o— o 2 l J w& /v ^" " — o

with probability one.
In this section we have considered the asymptotic behavior of the sum of self

informations sn(Xι, - ,Xn) given by Xi, ~ ,Xn and the logarithm of the maximum
likelihood maxmsn(Xι, -~ ,Xn) with respect to unknown mean m for n independent
random variables X^ ^Xn from a given normal population N(m,σ2).

NOTE 1. For n independent random valiables Xι,~ ,Xn from N(m,σ2), the
difference between the two values maxw log Π^=1 f(Xτt m, σ2) and sn(Xι, ~,Xn)

max log Π f(X» m, σ*)-sn(Xι, -,Xn)

= |-4"Σ (Xί~X\-nlog*/2^σ}-\--^Σ (Xi~m\-n
I Z z = ι \ σ I J I 2 l = ι \ σ I

(2. 17)

is distributed as χ2 distribution with one degree of freedom.
NOTE 2. It holds the next relation:

(2.18) maxsn(^Ί, —, X») c _/v ... v\ i

Therefore the difference has mean l/2w and variance
NOTE 3. If we have two independent samples Xι, ,Xn and J£ι*, , Xn* with size n

from the normal population N(m,σ2), then sn(Xι, ,Xn)ln is asymptotically distri-
buted as normal distribution N(— 1/2— \og\/2πσ, 1/2^) and maxmsn(^ι*, •• ,-X'n*)/w is
asymptotically distribued as normal distribution JV(— (n— l)/2n— log Λ/2ττ(7, (n—l)/2n2).
Therefore the difference maxmsn(Xι*, '',Xn*)ln--Sn(Xι, ,Xn)ln is asymptotically
normally distributed with mean

(2.19)
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and variance

Ϊ220) n-l I _l 1
(Λ Zϋ) 2n* + 2n~~ n W

that is, the difference is asymptotically considered as a random variable of normal
population N(l/2n, l/n-l/2n2).

§ 3. Most informative procedure concerning the costs of experiments.

In this section we shall discuss the procedure of selection of two normal popu-
lations N(mlt <7ι2), N(m2, <τ2

2), where the means mίy m2 are unknown and the vari-
ances are known. And if we select N(mi,σϊ

2) (£=1,2) we must pay cost d (£=1,2)
for each sample from the populations.

First we define the aim of policy of selecting populations. Under the given
aim we shall define the optimal policy £P of selecting populations in each steps.
And we shall define equivalent, in limiting property, randomized policy of selecting
populations £P*. Under the policy £P, £P* we have studied the limiting optimality
and the equivalence in limiting property of the two policy £p, £P* in [3].

In 3.1 we shall discuss, under the sequential deciding procedure <p, the
asymptotic behavior of the objective function as given in [2], [3] etc., specially the
logarithm of the likelihood ratio per unit cost Sπ(0w, #n)/Σ?=ιCcί)

3.1. Definition of the optimal procedure.
The aim of our procedure of selecting the two trials EΊ and E2 is to discriminate

whether the unknown pair of means m\ and m2 exists on a given linear line
mι=m2 or not. To discriminate the two hypotheses m^—m^ and mι^m2 we ad-
ditionally consider the optimality in the sense of discrimination per unit cost.1:>

We considered to pay costs d or C2 to observe samples from the two trials E± or
E2 respectively. For the discrimination we define the logarithm of the likelihood
ratio Sn(θn, θn) as followings:

where Xι,~ ,Xn are the first n observations, E^ (£=!,-••,«) means the £-th selected
trial, θ means the two dimensional mean (m1)m2) of the trials £Ί, E2 and θ=θn

gives the logarithm of the likelihood

(3. 2) max log [ f(X%9 θ, £«>) =log Π /(*«, ίn, E™).
ΘGR2 ι=l ι = l

In the following lines we define A($n) as the alternative domain of θn in the 2-

1) See [2] and the generalized form [3].
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dimensional Euclidean space R2. On the alternative domain there exists unique ffn

which maximizes the likelihood function

(3. 3) max log

We put HI as the number of El in the first n selections Ea\ •••, E"0^ and we define
HZ so that n1+n2=n. Then the unique θn is given by

(3.4) on = (— El—,—-—^—-).
\ »ι nz I

And Sn is determined uniquely as following way. Put

=log Π /(*,,*, £«>)+log Π f(Xt,θ,E«>)

= Σ log -/=— 0- <*»-«ι>«/2«rι* + 2 log -7="

Then we have easily that max5e^(%) ̂ (^) is ginen uniquely on the boundary π of
hypotheses mι=m2, so that we have

(3. 5) max L(0) = max

Therefore, ^w is an element of π. If we put m1=m2=m, then

max L(#)=maxL(#),

dL d
dm dm \ 2<7ι2 2σz

.r "i r2 <T2

If we put dL/dm=Q then m = (ΣE1Xil^ι2 + ΣE2Xi/σ2

2)/(n1/σ1

2+n2lσ2

2). Then we have

( ΣE^ Σ^XΛ Ifn, n2 \\
, I 5 ~Γ ^ J / I Γ T~ r I I

\ ^i2 <72

2 / / V^l 2 C7 2

2//
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α / / 1̂ ί-lE t -Λ-ί , %2 ί^iEn -Λ-l \ I I %1 , %2 \y — I I , -1 L * I / i _ι_ . I
^ \ \ 2 I o ; / \ 2 2 / '

\ \ (7l /?ι (72 ^2 / / \0Ί 0*2 /

2 * \ lfnι_ n2

2 «1 *22 7*2 / / W ffs

where Σ^ means the sum of z such that E™=Eι in the first w trials Ea\ • • ,£Cn)

and also Σ#2 means the sum of i such that E^=E2 in the first w trials. And we
put rn=n1lσ1

2/(n1lσί

2+n2/σ2

2), then l—rn=n2lσ2

2/(nι/σ1

2+n2/σ2

2'),

(3.6) ^
n2

And (3. 1) becomes

t> &n> E l ) )
-

Next we introduce the notion of costs, that is, for any step we pay the costs
C3 for the observation from the trials E3 (y=l,2). The sum of costs between the
first and n-th step is Σ?«=ιCω, where CC 1 ),--^C^ are the sequence of costs paid
for these steps.

DEFINITION OF THE PROCEDURE ζp. For any step n the ratio

(3 8) 4? ̂

is considered as a random variable. The limiting property of the random variable
as n-^oo for some selecting way of E"C1),£C2), ••• is given in [2], [3] and [4], We
shall call a selecting way of JE

IC1),£I(2), ••• as a procedure (or policy) in the following
lines. Under any procedure <P having selecting ratio λ of £Ί the sequence of the
random variables (3. 8) has a limiting value. So we may classify the procedure by
the limiting ratio λ of selecting Eι and put the class of the procedure as ζ^λ. By
an easy calculation the right side of equality (3. 1) becomes

(3. 9) Sn(θn, Sn^njtfn, 0», £ι) +*«/(*», 0«, E2)

where 1(0, φ, Ej) is the mean discrimination defined by S. Kullback [5]:

(3. 10) I(θ, φ, Ej) = (log f(%θ'E'\f(X, θ, Ej)dX.
J / (A, φ, Άj)

The sum of costs paid in the first n steps is
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Therefore, to maximize the ratio

,o m Sn(θn,θn) nj($n, θ n, EJ + H2I(θn, θ n, E2)
( } Σ?-ιC«> »ιCι+n,C«

we may define the procedure <P as w+l-th step £<w+1> as follows:

(3.12) if

In fact we can verify the Kullback's mean information for discrimination (3.10)
as followings:

(3.13) I(θ,φ,Ej)=—

where Θ=(ml9mz), φ=(mι*,mz*) From θn in (3.4), θn in (3.6) and the equality
(3.13) our procedure (3.12) becomes

lEl I£<»«>= £2 i:
(E<»>\

(3.14)

or equivalently

n2

1

2σS

or equivalently

fi \G\

,JΣίElX^ Σ * 2 - X » V J /
—k

1 ^t/Σ^X* ΣE2Xi
O 2/~* n \

with probability one

,f (l-rn)* >} rn*

And by definition of rn used in (3. 6) we have

Then (3.16) becomes equivalently

(3.17) if

. 2 '

(72

2C2
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or equivalently

(3.18)

or equivalently

if

if ^_ = ̂ 1.
HI HI

σ2Λ/Ci

Therefore we get equivalently

(3.19) i f - -

with probability one. In the following lines we put right side of (3.19) as λ then

(3.20) 2 =

LEMMA 1. For some procedure if min (nlt n2)-»oo as n— »oo, then θn converges
to the pair of unknown parameters (mίt m2) with probability one.

LEMMA 2. For some procedure if Hi/n^λ as n— >oo, then θn converges to θ*
with probabiliy one as n—>oo. Where θ* is given by the equations

In the paper [4] the conditions in lemma 1, lemma 2:
I. min («ι, n^-^oo as n-*oo with probability one,

II. nι/n-+λ as H-+OO with probability one
are called as the optimal conditions and we have shown in [4] that under the
procedure ίP we can get the property conditions I, II.

LEMMA 3. The pocedure £P has the property of optimal conditions.

Therefore under the lemma 1—3 we have

THEOREM 1. Under the procedure ζp we have

(3. 22) lim- =/*(#)

with probability one as given in [2]. The value /*(#) is given by

(3.23) I(θ,El) = mKL
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where θ is the unknown parameter and θ* is the root of the equation nti—m^ given
in (3. 23) or see (3. 21).

THEOREM 2. Under the other procedure &' if the ratio SrA, #π)/Σ?=ι Cω

converges to the limit value /**(#), then

(3. 24) /**(#) ̂ /*(#).

The proof is given in [4] so that our procedure <P is the asymptotically optimal
procedure in the sense described above.

3. 2. The randomized optimal procedure.
In preceding 3.1 we have observed that the procedure <p (3.12) has the

optimal conditions I, II and the maximum limit property in (3. 22), (3. 24). And the
optimal procedure (3.12) becomes equivalently

(3. 25)

with probability one as in (3. 19), (3. 20). In this place we generalize the procedure
£P as the following binomially randomized way. We define the procedure £P* by

LEMMA. The procedure <P* has the optimal condition I and II.

Proof. By the strong law of large numbers £P* has the property that the
selecting ratio of Ei between first and n-th step n\\n converges to the ratio λ with
probability one. Therefore £P* has the property of optimal condition II, and by
the inequality 0<Λ<1 we easily have min (HI, n2)— »oo as n-^oo with probability one,
that is, £P* has the optimal condition I as to be proved.

Therefore, under <p*, we can verify the same result of lemmas 1, 2. Therefore
under £P*, we have the same result of theorem 1, 2. So that £P* also is an element
of the optimal procedure in the sense (3. 22), (3. 24) in theorems 1, 2.

NOTE. If we put the costs Ci, C2 of £Ί, E2 as d=C2=l, then we have
Σ?-ιCω=w. Therefore, the ratio of our interest (3. 8) becomes

which is ordinary sample mean of self discriminations given by the n samples
between first and n-ih step.

§ 4. Main results.

In this section we consider the asymptotic behavior of the sum of self infor-
mations, the logarithm of the maximum likelihood, the logarithm of the likelihood
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ratio on the hypothesis nti—m^ and the logarithm of the likelihood ratio per unit
cost under the procedure <p.

4.1.
4.1.1. The asymptotic behavior of sum of self informations sn(Xι, ",Xn)

under £p.

(4.

Sn\Xl> " ,-Xn)=lθgΠ/(-Xi,^

=iog]~[/CXt»0»

1/Λrτ FT10£ l l / o
#! V Δ7ΐ (7ι

Λ, ,._. 1— 1 HI lOg /^r—
\ /v Z7Γ (7

l f y / ^
2LiΊ

£«)

^)+log

rcz.^,V

+^2log-
1 *

:-«ι V .

ffl ) '

jJ/CXi,^)

1

^2 Λ/2JΓ 0

1 \
v/2τr σ2/

^/Xt-m,γ}
%( o, )]•

Here 2^ ((-Xί— ̂ ι)M)2 is a random variables which is a function of Wi independent
random variables from the normal population £Ί: N(m^σ^). And (Xi—m1}lσ1 is a
random variables from a normal population N(Q,1) if E^—Eλ is satisfied, therefore
(CXi— 7»ι)/tfι)2 is a random variable of χ2 distribution with one degree of freedom,
so our Σ#! ((Xi~mι)/σι)2 is a random variable of χ2 distribution with Wi degree of
freedom. And Σs2 ((Xί— m2)/σ2)

2 is a random variable of χ2 distribution with
τz2 degree of freedom which is independent of ΣE1((Xt— ^ι)/<?ι)2 Therefore
ΣEi((Xi— mι)l<rι)z + ΣE2((Xί— ^2)! ff2)2 is a random variable of χ2 distribution with
nι+n2=n degree of freedom. In the following lines we put it as χn

2. Then our
sn(Xι, ~,Xn) becomes

(4. 2)

4. 1. 2. The distribution of s»(-Xi, -, Xn)/n.
Since

—
\/2π σ2

under ,̂ we have \nλ\n—λ\^Λ.\n with probability one. Therefore, by the equivalent
condition of <p (3. 25), Wι/« is a function of w with probability one. Using the result
of section 2, —(l/2n)χn2 is asymptotically normally distributed as N(— 1/2, l/2w).
Then sn(Xι, ~ ,Xn)/n is asymptotically normally distributed with mean —l/2+(nι/ri)

)log(ll\/2πσ2) and variance
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4.2.
4. 2. 1. The asymptotic behavior of the logarithm of the maximum likelihood

XΊ, -",-Xn).

g
t=l

=log
1=1

(4. 4) =lθg \\f(Xi, βn, Fj) + log

1 . ,.. 1 \
-Klog /or7ι + '—&

x/2πσ2/

σ2

where Σ^ {(-Xi—Σ^. -XiM)/ffι}2 is a random variable consisting of ^i random variables
from our population N(mι,σ^) which is distributed as f distribution with HI—1
degree of freedom, and Σ#2 {(Xi— Σ#2 XiM/σ2}

2 is also a random variable of χ2 distribu-
tion with n2—1. degree of freedom which is independent of Σ#ι {(Xi— ΣEJ Xί/nι)l<rι}2

Then the sum is a random variable of χ2 distribution with (n1—l) + (n2—l)=n—2
degree of freedom. Therefore we get

(4. 5) maxsnCXi, •• ,Xn) = — -^-χn-22 + (nι log /H— -+^2log /o— )•

4. 2. 2. The asymptotic behavior of maxθsn(Xι, ~,Xn)ln.

,
h.——_ r —,ιυ̂  . _, ιυ^ ,

n 2 n n \/2πσι n \/2πσ2

(4.6)
_ 1 n-2 χn-2

2 n, 1 , n2 Ί_ 1
— ~ "o" ~~:Λ 7* o~ ~τ~ "ΊΓ 10&

The random variable χn-2

2l(n—2) is asymptotically normally distributed with mean
one and variance 2/(n—2). Therefore max^ sn(-Xι, •••, Xn)/n is asymptotically normally
distributed with mean

1 n—2 n 1 n 1
2 n n \/2π σi n \/2πσ2

and variance

1 (n-2)_ l_ n-2γ 2 (n
2 2 / w-2 ~ V 2(«-2)

4. 2. 3. The limit value of max* sn(-XΊ, - , Xn)/n.
In the inequality (4. 6) χn-2

2/(n—2) has a limit value 1 with probability one;
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P{limn->coχn-22ln-2=l}=l. Then we have

(4. 7) lim *»(*ι -»*•) = l + j l l o g - l _ +(!_;) log -7̂ -
τι-»oo ?2 2 Λ/2τrσι \/27Γ(72

with probability one.

4. 3. Under the procedure £p we consider the asymptotic distribution of

Sn(dn, θn)ln and limit value.
By (3. 9), (3. 13) and (3. 6) we have

Sn(6n, θn}=nj(θn,
(4.8)

where m*=rn Σ^^M+(1— rn) Σ^^/^ Then we have

(4. 9)

2(72

2 2(72

Therefore we have

(4. 10)

= !
2

where rn=(nι/σ1

2)/(nι/σl

2+n2/σ2?). Then we get

= , 4.
' ί

(4. 11)
= 1

2

_ * Λ

2 \n n 2 + σι

, ^ , L

n n / nλ n2
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Following the procedure <p for any step n the number of selections HI of Eι
is a fixed number depending only on n. By the argument of 3.1, of preceding
section, under the procedure <p, as (l/2)n1n2/(σ2

2nι+σ1

2n2) is a fixed number for
fixed n, we see that in Sn(§n, #n) only Σsλ Xi/ni, ΣEZ Xil^2 are random variables.
These two random variables are independent random variables which are distributed
normally with means m^ m2 and variances σ flni, σ2

2/n2 respectively, so that
ΣE1Xi/^ι~ΣE2Xi/n2 is a random variable of a normal distribution with mean
ml~m2 and variance σι2/n!+σ2

2/n2. Therefore, to know the distribution of (Σsi -Xi/^i
— Σ#2^Mί)2, we Put Yn=ΣE1Xilnι—ΣE2XilM2, then mean value m of Yn equals
to m1—m2 and variance of Yn σn

2 equals to σλ

2lnι+σ2

2ln2. Under the procedure
<P we have shown in lemma 3 that min (nl9 n2)-*oo as n—>oo, therefore our σn

2

converges to zero.
Now we assume m=mι—m2=0, then Yn/σn is a ramdom variable of normal

population N(Q,1), so that Yn

2l<rn

2 is a random variable of χ2 population with one
degree of freedom. We put it

Y 2

(4. 12) ^ =χι».

Therefore Yn

2=σn

2χι2 then Fπ

2 is distributed as χ2 distribution with constant
coefficient σn

2, the mean value of Yn

2 equals to σn

2 and the variance equals to 2σn*.
In the following lines we assume m=mι—m2^Q, then by the equality

/ A -i r»\ ¥ n rn JL γιm (JL n m)
(4.13)

2mσn σn 2mσn

we can get the asymptotic behavior of Yn

2. As (Yn—m)2 is asymptotically equal
to zero in higher order as compared with (Yn—m), Yn

2—m2/2mσn is asymptotically
equal to (Yn—m)/σn in probability, where the random variable (Yn—m)/σn is a
random variable of normal population AΓ(0,1). In the following lines we put the
random variable as Z, then we have

y 2 m2

(4.14) In

2mσn

in probability for sufficiently large n. Therefore, for sufficiently large n, Yn

2 is
asymptotically distributed as 2mσnZ+m2 in probability, then this is a random vari-
able of normal population N(m2,4m2σn

2). Hence under the procedure & we have
the following

LEMMA 1. Under the procedure £P, if m^m^ then (Σ^^ί/^i—ΣE2Xι>ln*)2 ^s

asymptotically normally distributed with mean (m1—m2)
2 and variance 4(wι—w2)

2

(σ1

2/nί+σ2

2/n2) in probability. And if mι=m2, then the random variable is exactly
distributed as χ2 distribution with one degree of freedom having a coefficient
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Note that the order of the variance of the random variable
— ΣE2Xi/n2)2 in the case πiι^m2 is given by

And, in the case m1=m2, we have the variance of the random variable is given by
(4.12)

(4. 16)

By the equation (4. 11) our function Sn(θnι §n)/n is given as follows.

Sn(ln,ffn) = 1

^ ;

In the right hand of this equation only (Σ^-Xί/^i— ΣE2XiM2 is a random vari-
able. Using the result of lemma 1 we can get the asymptotic behavior of Sn(θn, θn)/n
as follows.

In the case m^mzy Sn(dn,@n)ln is asymptotically normally distributed with
mean

(4. 18) 1 ( *. *./( *-
2 \ n n l\ n

and variance

/ I / Λ ! ^2 //« ! ^2 2 \ \ \ * ,2/^ι2 .
(-7Γ -- / — σ 2

2 H -- ^i 4(mι— m2)
2 -- h

\2 \n n l\n n I I I \ »ι

/ W i «2 //»! 2 | ^2 2— -- / — σ 2^ -- ^ 2
\ n n l \ n n

(4. 19) - 4-
w2 n1σ2

And if mι=m2, then by (4. 12) our Sn(θn,θn)ln becomes
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Sn(§n,θn)
n,θn) = 1 /^ H2 //*!.,« . -*« g « W Σjη *« Σ^Xi

n 2 \ n n I \ n σ* n °l / / \ HI n2 /

(4. 20)

= l /^M/n L ^ Λ N l / / ^ ^ U^M
2 \ n n I \n n )) n\\n n ]\ n n )^

Therefore if m1=m2, our Sn(dn,§n)ln is distributed as χ2 distribution with one degree
of freedom having a coefficient number l/2n under the procedure £P. Hence we
have the next.

THEOREM. Under the procedure
normally distributed with mean

then Sn(θn,θn)/n is asymptotically

and variance

1 (n! n2 l / n i 2 n2 \\
— [ -- / — <72

2H -- tfi2 }(mί— m2)
2.

n \ n n / \ n n //

ί/ mι=m2, then

Sn(θn, θn) _ 1 2

f5 distributed exactly χ2 distribution with one degree of freedom having a coefficient
number l/2n.

Finally we shall show the limit value of Sn(6n, θn)/n under the procedure £P.
By lemma 3 we have seen the fact n^n—^λ under the procedure £P. And by the
fact 0<Λ<1 we have min (HI, «2)-*°o as n-^oo under the procedure £p. Therefore
by lemma 1 we have §n-*θ as n-*oo with probability one under the procedure <p.
Hence, under the procedure ,̂

(4. 21)

n($n,8n) _ 1 / «ι *2 //* l 2 j _ ^ 2 Λ W Σ ^ X

n -~2\ΊΓΊΓl\ΊΓσ2+ΊΓσι JJV"^

JL_

T

λ(l-λ)

as ^—>oo with probability one.
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4. 4. In this place we consider the limiting property and the asymptotic
behavior of the logarithm of the likelihood ratio per unit cost with respect to the
hypothesis m±=m2: Sn(0», 0n)/Σ?-ι C«>.

First we shall show the limiting property of the function S^n, #w)/Σ?=ιCω.
Under the procedure <P we have

^^=w1l=l and pίlim ̂ ^ =m2\=l

as we have seen in preceding 4. 3. Our function can be written in the form

Sn(θn,θn)(θn,θn) »/»ι « .//» ! 2 , «» Λ\ / ΣU**
^ — 7T77Γ — ~o~l -- / I - ^2 H -- 0ι I ) I
?-ι Cα) 2\n n l\n n // \ »ι

•*- / '«Ί rvύ I I fvl j-Λ . lvύ S-Λ \ I IVL n . '" Δ c

= -τr( / dH C2 —0yH σϊ
2 \ Λ w / \ » » / \ « »

Then under the procedure £P we can easily get

(4 23) lim ™*nr«? ^y?^rc-*00
 2jt = l ̂  ^ CΛ(

with probability one.
In the following we shall show the asympiotic behavior of our function

Sn(θn, #w)/Σ?-ιCcί). Under the procedure £p, by lemma 1 in preceding 4.3, if

mι^m2 then (Σ^j-XiMi—Σε 2XiM 2 asymptotically distributed normally with mean
(πiι—m2}

2 and variance 4(mι—m2)
2(tfι2M+<72

2MO in probability and if mι=m2 then
we have given (Σ^i^/^i—Σ#2^/^2)2 = (tfι2/^ι+tf22/^2)χι2.

In the equality (4.21) the coefficient of (Σ^^ίM—Σs2XiM z is a function
of w because of the properties (3.19) and (3. 20) of the procedure £p. Therefore
if Wι^m2 the function Sn(0«, Θn)/Σi=ι Ccί) is asymptotically distributed normally
with mean

^( — —(—C1+—C2}( — σ2

2+ — σ2

2)}(m1—m2)
2

2 \ n n I \ n n )\n n //

and variance

1 1. ίH! n2 I/HI ~ n2 ~\/HI , ^2 - X X l 2 . , N9/^ι 2 o 2 2 \
-7Γ / —dH C2 —<72

2H σi2 [ 4(mι—w2)
2 1

2 \ n n I \ n n / \ n n / / J V O Ί nz I

1 / // \ 2 / /» /» \\

(4.24) = — (~—-/(—-dH—Z—Cz] {—-σ2

2-\—-<?i2) \(m\—m2)
2

n \ n n I \ n n / \ n n / /
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And if mί=mΐ then $„($„, 0n)/Σ"=ιCω can be written as following

ΣΓ-ιC«>

Therefore if 0*1=0*2 then Sn(0n,#n)/Σ?-ιC(i) is exactly distributed as χ2 distribution
with one degree of freedom which has a coefficient (l/2w)(l/(wιCι/w+»2C2//ί)).
Therefore we have the next theorem as to be proved.

THEOREM. Under the procedure <3? ifm^m2j then Sn(δn, 0τO/Σ?=ι Ccί) is asymp-
totically normally distributed with mean

2 V n n

and variance

n \ n n

n* \ln± nz \\
C2 —(72

2H 0Ί2 ) }(m1—n \n n )

H2 ~\2fnι 2 , n2 9 \ \ , N2C2 — <72

2H -- o i2 ](wι-- m2)
2.

n J \ n n / /

And if mι=mz, then exactly distributed as χ2 distribution with one degree of freedom
and the ratio can be represented by

where χi2 is a χ2 distributed random variable with one degree of freedom.
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