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POLYNOMIAL STRUCTURES ON MANIFOLDS

BY SAMUEL I. GOLDBERG*' AND KENTARO YANO2)

1. Introduction. Let P be a C°° manifold. A C°° tensor field / of type (1,1)
on P is said to define a polynomial structure of degree d on P if d is the smallest
integer for which the powers /,/, > , fd are dependent, and / has constant rank
on P. If dimP—2n, an almost complex structure on P is a polynomial structure
of degree 2. If dim P= 2n—l, an almost contact structure on P is a polynomial
structure of degree 3. A (globally framed) /-manifold is a polynomial structure of
degree 3 (see [3], [8]). Walker [7] appears to have inaugurated this study since
almost product manifolds provide examples of polynomial structures.

Let M be a (2^-fl)-dimensional almost contact manifold with fundamental
affine collineation φ, fundamental vector field E and contact form η. In a recent
paper [1], the authors considered a 2^-dimensional manifold P embedded in M,
with embedding i: P-+M, and assumed that for each p € P the tangent vector Ei^
does not belong to the tangent hyperplane of the hypersurface. This means that
the fundamental vector field of M can be taken as the " affine normal" to the
hypersurface. We therefore had

(1.1) φi*X=i*JX+a(X)E, φE=0

where i* is the induced tangent map of i. If α^O, we called i(P) a noninvariant
hypersurface of M. The structure / induced on P by φ is almost complex, that is
/2=—/, and / is integrable if M is normal.

More recently [3], we considered the case where E is always tangent to i(P),
so that it can no longer play the role of " affine normal". However, we showed
that a vector field N exists along the hypersurface such that

(1.2) φi*X=i*fX+a(X)N

and

(1.3) φN=-i*A, ?(ΛO=0,

for some vector field A on P and (1,1) tensor field /, so, in this case, N plays the
role of " affine normal". The structure induced on P is an /-structure [8], that is
/3+/=0 and / has the same rank at each point of P, but it is not almost complex.
(Observe that φE=Q and η(E)=l, whereas φN has a nonzero tangential component
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and ?(ΛO=0.)
In this paper, we show the existence of a quartic structure /, that is a (1, 1)

tensor field / of constant rank satisfying the algebraic condition

where / is the identity transformation field, which is not an /-structure. As in [3]
and [4] we study its properties which turn out to be strikingly similar to those of
a globally framed /-manifold.

2. Quartic structures. Let i(P) be a noninvariant hypersurface of the almost
contact manifold M(φ, E, ή). We wish to choose an affine normal N on i(P) in
such a way that the vector field φN is always tangent to the hypersurface, that
is

(2.1) φN=-i*U,

for some vector field U on P.
(The vector field N will not be the metric normal with respect to the Rieman-

nian metric G of the almost contact metric structure (φ, E, η, G). For, η=G(E, •)
and the condition η(N)=Q imposed below is not possible unless E is tangent to
the hypersurface.)

Since a vector field TV not tangent to the hypersurface can be represented as

N=-γ(-

for a certain vector field X and scalar field λ^Q, we have

by virtue of (1. 1). Thus, for (2. 1) to hold, we must have a(X)=Q. We therefore
assume that a global vector field V exists which satisfies this equation, that is,
α(F)=0. Putting X= V in the above equation, (2. 1) holds with U=(l/Z)fV, and

(2.2) E=i*V+λN,

Hence, by setting β(X)=a(JX\ we have, since /2= — /,

(2.3) α(TO=0, fl£7)=0,

(2.4) JV=λU, fU=--j-V.

From (1. 1), it is easily seen that β=i*η.
From (1. 1), (2. 1), (2. 2) and (2. 4),

-N+η(N)(i* V+λN}= - - ί * V-a(U)(i* F+ΛTV)
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so that

=- -- a(U\

or equivalently,

From (1. 1) and (2. 2),

that is

(2. 5) φi*X=i

where

(2. 6) 7'=/+α® V, a'=λa.

Thus,

//2--/+α/(x)C7+/3(x)F.

(Observe that J' is an almost complex structure on P, if and only if, C7=0, F=0,
that is, if and only if E=λN.)

THEOREM 1. Let P(f, a) be a noninvariant hyper surf ace of the almost contact
manifold M(φ, E,η). If there is a global vector field V on P such that a(V)~ 0
then, the tensor fields Jr , U, a', V and β on P satisfy the relations

COROLLARY 1. If the vector fields E and N are distinct affine normals, then
the structure on P is a quartic structure.

For, J1 has constant rank and

where /=/'.
The left side of this equation may be factored, that is

We treat two cases, namely, λ=\, η(N)=Q and λy(N) = l, the former giving rise to
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the quartic structure /4+/2=0 and the latter to (/2+/)2=0.

Case I. λ=l,y(N)*l. Then

By putting

we obtain

&=a and ~β=

COROLLARY 2. Let P be a noninvariant hypersurface of an almost contact
manifold. Then if λ=\. and η(N)^\, P is not globally framed, that is

ά(U)=l, ά(V)=0,

β(U)=0,

fv=ϋ,

*•/=& β°f=-y(N)ά.

However, by choosing ^(JV)=0, we obtain

COROLLARY 3. L0£ P be a noninvariant hypersurface of an almost contact
manifold. Then, if λ—\ and η(N)=Q, P is globally framed, that is

(2.7)

As an example of a noninvariant hypersurface with λ=l and η(N)=0 consider
the plane z=y in R* with

fU=0, fV=U,

a*f=β, β°f=Q,

=a- b—,
oy ox

where

V L A I Z7 A J

3x 3y dz dz

For N choose the vector field d/dy and take U=d\dx. Hence, ψN=—i*U. Set
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v=l—2-.
dz dy

Thus, JU— — V and JV= U. (Observe that the almost contact structure so defined
on R3 is cosymplectic.)

The structure given on P by Corollary 3 is not an /-structure since /3+/=/3(x) U.

However, it is globally framed and, since /£7=0,

(2.8) /4+/2=0.

Clearly, an /-structure satisfies (2. 8). Observe that by putting s=—f2, s2=s.
In the general case,

(2. 9) s2-(l+λη(N))s+λη(N)I=Q,

the roots of which are 1 and λη(N).

Case II. λ=l/η(N). Then, the roots of (2. 9) are equal, so that (/2+/)2=0,
α(£7)=0 and /3(F)=0. Moreover, by (2.2), η(N) is nowhere zero.

COROLLARY 4. Let P be a noninvariant hypersurface of an almost contact
manifold. Then, if λ=l/η(N), a and β vanish on the distribution determined by U
and F, and

fU'=-V, fV=W,

a°f=β, β f=-(x,

where U'=λU.

This structure on P is clearly not globally framed.
Let X be a vector field on P(f, U, a, F, β) which is annihilated by the (1, 1)

tensor field/. Then f2X=-X+a(X)U+β(X)V, so X is a linear combination of
U and V. Further applications of / then yield

THEOREM 2. The structure P(f, U, a, F, β) of Corollary 3 is a quartic structure
of rank 2n—l whereas the structure P(f, Ur , a, F, β) of Corollary 4 is also of
degree 4 but it has maximal rank.

We call the former the restricted quartic structure.
Although equations (1. 2) and (1. 3) are formally the same as (2. 5) and (2. 1),

respectively, the polynomial structures they give rise to, due to the different
embeddings, are not the same, the former being cubic and the latter quartic.

We denote as usual by Lx the operator of Lie derivation with respect to the
vector field X and by [X, Y] the Lie bracket of the vector fields X and Y. The
following result is valid for any globally framed manifold (see §6).
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LEMMA 1. On the hypersurface with the restricted quartic structure (/, U, a, V, β)

(a) X(ηa(Y))=(Lχηa)(Yϊ+η*(lX, F]),

(b) dη\E^ X)=(LEb^(X),

(C) dηa(fX, Y) = (Lfxη
a)(Y)- Y(ηa(fX}\

0=1, 2, where ηl=a, η2=β, E,= U, E2= V.

In the sequel, only those quartic structures which are globally framed are
studied.

3. Hypersurfaces of affinely cosymplectic spaces. If M(φ, E, ή) is an affinely
cosymplectic manifold, then Pφ=Q and Fη=Q where F denotes covariant differen-
tiation with respect to a symmetric affine connection on M (see [1]). Since φ2

= —I+η®E, the vector field E is also parallel with respect to F. Denoting by D
the induced connection on the hypersurface P with respect to the affine normal
TV, the equations of Gauss and Weingarten are

(Dxi*}Y=h(X, Y)N

and

DXN= V^N= -i*HX+ω(X)N,

respectively, where h and H are the second fundamental tensors (of types (0, 2)
and (1, 1), respectively) of P with respect to the affine normal N, the tensor h being
symmetric, and ω is a 1-form on P defining the connection in the affine normal
bundle.

Covariant differentiation of both sides of (2. 5) along P gives

, Y)i*U+φi*DYX

'X)N+i*(DYJ')X+W\DγX) + [(Dγa')X+a^

so that

(DYJ')X=a'(X)HY-h(X, Y)U

and

(Dγa')(X)=-h(Y, J'X)-a'(X)ω(Y).

Differentiating (2. 1) along P yields

i*f'HY+a'(HY)N+ω(Y)i*U=h(Y, U)N+i*DYU,

from which

DYU=J'HY+ω(Y)U

and
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From (2. 2), we obtain

DxV=λHX

205

so that, V^zE being zero,

and

h(X, V)=-Xλ-λω(X).

Differentiating both sides of the relation β=i*η gives

that is

(Dzβ)(Y)=Λ(X,

Summarizing, we have

((DχJ')Y=a'(Y)HX-~h(X, Y)U,

=λHX, DzU=JΉX+ω(X)U,

(3.1)

=-h(X9 f'Y)-ω(X)a'(Y),

\h(X, V) = -Xλ~λω(X\ h(X, U) = a'

THEOREM 3. Let P be a noninvariant hypersurface of an afβnely cosymplectic
manifold with the restricted quartic structure (/, U, a, V, β). Then, with respect to
the induced connection D on P, the quartic structure on P satisfies the relations

(Dxf)Y=a(Y)HX-h(X, Y)U,

Dx V=HX, Dx U=fHX+ω(X) U,

(3. 2) \ Dχβ=Q, (Dχά)(Y}= ~h(X,fY)-ω(X)a(Y),

h(X, V)=-

Proof. Put /=/', ^=1 and η(N)=Q in (3.1). The last formula follows by
differentiating y(N)=Q.

If for every vector field X on P, HX=Q, then, by Weingarten's equation, DXN
and N are proportional. Hence, the affine normals are parallel along the hyper-
surface. In this case, P is said to be totally flat.

We are now able to deduce the following facts.
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THEOREM 4. If the hypersurface P is endowed with the restricted quartic
structure and if it is an affinely umbilical hypersurface of an affinely cosymplectic
manifold, then it is totally flat.

Proof. Since P is affinely umbilical, H=μl. Hence, Q=β(HX)=μβ(X). But
β(V)=l, so μ must vanish.

The following lemma will be required in the proof of the corollary to Theorem 8.

LEMMA 2. Let P be a noninvariant hypersurface of an affinely cosymplectic
manifold with the restricted quartic structure (/, U, a, V, β). Then, if the linear
transformation field f is a parallel field,

and

ω=0

for some function μ depending on U and h.

To see this, we first observe that from (3. 2), a(Y)a(HX)=h(X, F), from which,
since h is symmetric a(Y)a(HX) = a(X)a(HY), so a(X)h(U, U) = a(HX). Setting
μ=h(U, U), we get h(X, Y)=μa(X)a(Y\ from which h(X, U) = μa(X). Thus, put-
ting Y=U m a(Y)HX-h(X, Y)U=0, we find that HX=μa(X)U. On the other
hand, ω(X)=-h(X, V) = ~μa(X)a(V)=0.

Let Df be the induced connection on i(P) with respect to the fundamental
vector field E of the almost contact ambient space M(φ, E, ή). Then the equations
of Gauss and Weingarten are

(3.3) (D'jJY=h'(X, Y)E

and

(3. 4) r^E= -i*H'X+ω'(X)E.

From

and

i#)Y=h(X, Y)N,

we have

, Y)=~h'(X, YfaV-{W(X, Y)-h(X, Y)]N.



POLYNOMIAL STRUCTURES ON MANIFOLDS 207

Therefore,

(3. 5) D'=D-hf ® V, h=λh'.

Thus, Df=D, if and only if h=Q since F=¥θ. Moreover, the condition that the
hypersurface be totally geodesic (h=Q) is independent of the choice of affine normal.

On the other hand, from (3. 4),

'(X)(i* V+λN).

But, r^(i*V+MΓ)=i*(DzV-λHX)+[W(X, V)+Xλ+2ω(X)]N9 so

H' = λH-DV+ω'®V

and

λω'=λω+λh'( , V)+dλ.

Thus, the hypersurface is totally flat with respect to the affine normals E and N,
if and only if

For almost complex manifolds, in general, it is known that if / is an integrable
almost complex structure, then there exists a symmetric affine connection with
respect to which it is parallel [β]. For noninvariant hypersurfaces we have the
following explicit result.

THEOREM 5. Let P(f, a) be a noninvariant hypersurface of an afβnely cosym-
plectic manifold with the restricted quartic structure. Then, if P is totally geodesic,
J is parallel with respect to the induced connection.

Proof. By (3. 5), h=h'=ϋ and Df=D. In a recent paper [1], the authors
showed that D'/=0 in a noninvariant hypersurface of an affinely cosymplectic
space, so / is parallel with respect to D.

4. Normal quartic structures. Although the globally framed quartic manifold
P(f, U, α, F, β) is not an /-structure, it does have an underlying /-structure given
by the (1,1) tensor field

(4.1) fι=f-β®U.

For, flX=-X+a(X)U+β(X)V, and hence flX=-fιX+a(X)f1U+β(X)fίV=-fιX.
Moreover, /iX=0 implies X=a(X)U+β(X)V, so rank f1=2n-2.

The globally framed quartic structure (/, £7, α, F, β) on P will be called normal
if the underlying globally framed /-structure (flt U, a, F, β) on P is normal. The
condition for this is that the tensor field Sfl of type (1, 2) given by

vanish [4]. In this case, U and F are infinitesimal automorphisms of the structure
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(/i, U, a, V, β), and da and dβ are of bidegree (1, 1) with respect to /i (see [4],
Lemma 2).

We express Sfl in terms of /. To this end, we need only evaluate the
Nijenhuis torsion [/i, /i] in terms of /, U and /3. For any vector fields X and Y,

[fi,fi](X, Γ)=\f-β®U, f-β®U}(X, Y)

= [fX-β(X)U, fY-β(Y)U}-(f-β®U)[fX-β(X)U, Y}

+(f-β®U}[fY-β(Y)U,X}+fl[X, Y]

= [fX, fY]+β(Y){(Lσf)X-f[X, U]}-(fX)(β(Y))U

+β(X)[fY, U]+(fY)(β(X))U

+β(X){(Lϋβ)(Y)+β([U,Y])}U-β(Y){(Luβ)(X)

+β([U,X])}U-f[fX, Y]+β([fX, Y])U+f[β(X)U, Y]

-β([β(X)U, Y])U+flfY, X]-β([fY, X])U-f[β(Y)U, X]

-β([β(Y)U,X] )U+f*[X,Y]

= [/, f](X, Y)+β(Y)(Luf)X-β(X)(Lιrf)Y+{(fY)(β(X)')

-(fX)(β(Y))-β(Y)(Luβ )(X)+β(X)(Lσβ)(Y)

+β((fX,Y])-β([fY,X])}U

= [/, f](X, Y)+β(Y){(Lϋf)X-(Luβ)(X)U}

-β(X){(Luf)Y-(Lϋβ)(Y)U]

+{dβ(fY, X)-dβ(fX, Y)}U.

If P(flt U, a, V, β) is normal, then, since (Luf1)X=(Luf)X-(Luβ)(X)U and
dβ(fX, Y)=dβ(f1X, Y)+β(X)(Lπβ)(Y)=dβ(f1X, Y),

Sfl= [/i, /i] +da

= [f,f]+da®U+dβ®V

=Sf.

Thus, if P(f, U, a, V, β) is normal, the tensor field S/ given by

(4. 2) Sf= [/, /] +da ® U+dβ ® V

vanishes.

LEMMA 3. If the hypersurface P(f, U, a, V, β) is normal, then
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( i ) LEjf=§,

(ii) [Eβ,Eδ]=0,

(iii) LSaf=Q,

(iv) dη*(fX,Y)+dηa(X,fY)=Q,

for any vector fields X and Y on P.

Proof. The proof is contained in the above discussions. For the sake of
completeness, however, we proceed as follows. Since the structure on Pis normal

(4. 3) [/, f\(X, Y)+dη\X, Y)Ea=Q,

the summation convention being employed here and in the sequel. Putting Y=Eύ
in (4. 3), we find

-flfX,

that is,

(4. 4) f(LEbf)X+dηa(X, Eb)Ea=Q.

Taking the interior product of both sides of (4. 4) with a and then β, we obtain

β((Lσf)X)+da(X, E/)=0,

β((Lrf)X)+da(X, F)=0,

and

dβ(X, C7)=0, dβ(X9 F)=0.

Formula (4. 4) reads

f(Luf)X+da(X,

by means of the last relation. Hence, da(X, U) = - β((Lπf)X) = (Luβ)(fX)
=dβ(U,fX)=Q. Similarly, da(X, F)=0. Applying (b) of Lemma 1, this proves (i).

Substituting X=U, Y=V in (4. 3), we have f2[U, V]=Q, so by (2. 7) and (i),
[U, V]=a([U, V])U+β([U, F])F=0.

From (4. 4), fLEaf=Q, so Luf=μ®U for some 1-form μ. Consequently,
a((Luf)X=μ(X). Thus, since Q=(Lu(a<>f))X=((Lua)f)X+a((Luf)X) = μ(X)ί Luf
vanishes. Similarly, Lr/=0.

From (4. 3), we find

(4.5)

so that

Q=β([fX,f*Y])+dβ(X,fY)
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= -β([fX, Y])+β([fX, a(Y)U])+β([fX, β(Y)V])+dβ(X,fY)

= -β([fX, Y])+fX(β(Y))+dβ(X, fY).

On the other hand,

fX(β(Y))-β([fX, Y])=dβ(fX, Y),

so dβ(fX, Y)+dβ(X, /F) = 0. Again, from (4. 3), we find

<*(lfX,fY])-β(ίfX, Y])-β([X,fY])+da(X, F)=0,

so that

0=α([/χ , f*Y])-β([fX, fY])-β([X, f*Y])+da(X, fY)

= ~a([fX, Y])+a([fX, a(Y)U])+a([fX, β(Y)V])~β([fX, f Y ] )

+β([X, Y])-β([X, a(Y)U])-β([X, β(Y)V])+da(X, fY)

= -a([fX, YD+fX(a(Yy)-a(Y)β([U,X])+β(T)β([X, V])

-β([fX,fY])+β([X, Y])-a(Y)β([X, U])-β(Y)β([X, V])

-X(β(Y))+da(X,fY)

= -a([fX, Y])+fX(a(Y))-β(lfX,fY])+β([X, Y])

-X(β(Y))+da(X,fY).

On the other hand, da(fX, Y)=fX(a(Y))-Y(β(X))-a([fX, Y]). Hence,

da(fX, Y)+Y(β(X))-β([fX,fY])+β([X, Y])-X(β(Y))+da(X,fY)=0,

that is,

da(fX, Y)-dβ(X, Y)-β([fX,fY])+d<x(X,fY)=0,

so by (4. 5), da(fX, Y)+da(X,fY)=0.

Formulae (i)—(iii) say that U and V are infinitesimal automorphisms of the
structure (/, U, a, V, β) while (iv) says that da and dβ are of bidegree (1,1) with
respect to /.

THEOREM 6. Let P(J, a) be a noninvariant hypersurface of an almost contact
manifold with the restricted quartic structure. If this structure is normal, then the
almost complex structure J is integrable.

Proof. We relate the torsion [/,/] of / to [/,/]. From (2. 6)

U,J](X, Y)=UX, 7Y]-f[fX, Y]-J[X, fY]-[X, Y]

= [fX,fY]-[fX, a(Y)V]+[fY, a(X)V] + [a(X)V, a(Y)V]
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-flfX, Y}+f[a(X)V, Y]+<*([fX, Y])V-a([a(X)V, Y)])V

+f(fY, X]-f[a(Y)V, X]-<*([fY, X])V+a([a(Y)V, X])V-[X, Y]

= [fX,fY]-fX(a(Y))V-a(Y)[fX, V]

+/Y(a(X))V+a(X)[fY, V]

+a(X) V(a( Y)) V-a( Y) V(a(X)) V

-f[fX, Y]+a(X)f[V, Y]-Y(a(X))U

+a([fX, Y])V-a(X)a([V, Y]W

+f[fY, X]-a(Y)f[V, X}+X(a(Y))U

-a([fY, X}W+a(Y)a([V, X])V-[X, Y]

= [f,f](X, Y)-a([X, Y})U-«(f[X, Y])V

+ {fY(a(X))-fX(a(Y))+a(X)da(V, Y)-a(Y)da(V, X)

+a([fX, Y})-a([fY, X]}V

+<x(X)([fY, V]+f[V, Y])-a(Y)([fX, V]+f[V,X])

+da(X, Y)U+a([X, Y])U

= [f,f](X, Y)+da(X, Y)U

+{a(X)(Lvά)(Y)-a(Y)(Lva)(X)}V

-a(X)(Lvf) Y+a(Y)(Lrf)X

+a([fX, Y]~[fY,X]-f[X, Y])V

+{fY(a(X))-fX(a(Y))}V

= [f,f](X, Y)+da(X, Y)U+dβ(X, Y)V

-{da(X,fY)+da(fX, Y)}V

+α( Y)(LvJ)X-a(X)(LvJ) Y.

Theorem 6 is now a consequence of Lemma 3.
We state the following converse.

THEOREM 7. Let P(f, a) be a noninvariant hypersurface of an almost contact
manifold with the restricted quartic structure. Then, if J is integrable, the structure
(/, U, a, V, β) on P is normal provided da is of Udegree (1,1) (with respect to f)
and the vector field V is holomorphic.

Since / is a complex structure if the ambient space is normal ([1], Theorem 1),
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we have

COROLLARY 1. Let P(f, a) be a noninvariant hypet surf ace of a normal almost
contact manifold with the restricted quartic structure. Then, if da is of bidegree
(1, 1) (with respect to /), and V is a holomorphic vector field (with respect to /),
the restricted quartic structure on P is normal.

REMARK. The direct product of the quartic structures P*(Λ, Ui, at, Vly βι\
z=l,2, has a naturally induced almost complex structure / on PιXP2 given by

The tensor field J defined by

7cPli ptftX!, X2)

is also an almost complex structure on Pi x P2. Since the (/£, Uί, on, VΊ, βi), where
fί=fί—βi® Uί} i=l, 2, are framed /-structures on P% and

J is integrable if the quartic structures are normal, and conversely.

5. Normal quartic hypersurfaces. In this section, we seek necessary and
sufficient conditions for the normality of the restricted structure on P when the
ambient space M is cosymplectic. We compute S(i*X, ί* Y) for any vector fields
X and Y on P, where S is the torsion tensor of the almost contact structure
M(ψ, E, η\ that is

S(x, y) = [φ, φ](x, y)+dη(x, y)E

where x and y are vector fields on M. Thus, after a lengthy conputation not
unlike that in [3] in which the equations (3. 2) are vital

; Y)+da(X, Y)U+dβ(X, Y)V

+a(X)(Hf-fH) Y-a( Y)(Hf-fH)X

+ [ω(X)a(Y)-ω(Y)a(X)]U}

+a(HX)a(Y)-a(HY)a(X)+β([X, F])

since φ is a parallel field and S vanishes when M is cosymplectic,
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U+dβ® V)(X, Y)+a(X)(Hf~fH-ω® U)Y-a(Y)(Hf-fH-ω® U)X=Q.

THEOREM 8. Let P be a noninvariant hypersurface of an affinely cosymplectic
manifold with the restricted quartic structure. Then, a necessary and sufficient
condition that the structure on P be normal is that

(5. 1) Hf-fH=ω® U-\-a®Z,

where Z is the vector field —DuU.

Theorem 8 may also be obtained by computing S directly from the relations
(3. 2).

COROLLARY. Let P be a noninvariant hypersurface of an affinely cosymplectic
manifold with the restricted quartic structure. Then, if the structure on P is
normal and f is parallel, P is totally flat and the structure is covariant constant.

For, from (5. 1) and Lemma 2, μa(fX)U-μa(X)fU=-a(X)DuU. Hence, from
the equations (2.7), μβ(X)U=-a(X)DuU. Putting X= V, we get μ=0, so by
Lemma 2, H=Q.

6. Globally framed quartic manifolds. A C 0 0 manifold is said to be globally
framed if there exists a (1,1) tensor field /, global vector fields Ea and linear
differential forms ηa, a=l, •••, v satisfying the relations

(β. 1) ya(Eb)=dζ

and

(6.2) f*=-I+f®Ea.

Clearly, the only globally framed polynomial structures defined by / are those
given by /3+/=0 and /4+/2=0, the former arising by assuming that fEa=Q, a

=1, -, »•
In the sequel, a manifold P with a quartic structure / of rank r such that

simply be called a quartic manifold. Put

where / is the identity field. Then,

s+t=I,

st=Q, ts=0.

Thus, s and t are complementary projection operators defining distributions S and
T in P corresponding to s and t, respectively. (/ acts as an almost complex struc-
ture on S; however, since it is not an /-structure, it is not a null operator on T.)
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The distribution S is r-dimensional and dim T=m—r, m=dimP. If there arem— r
vector fields Ea spanning the distribution T at each point of P, and m— r linear
differential forms ηa satisfying the relations (6. 1) and (6. 2) with u=m—r, then P
is a globally framed manifold. From (6. 1) and (6. 2), one easily obtains

(6. 3) /2£α=0, flαo/»=0.

Since rank/^r, it is not difficult to show that a basis {Ef

a}, 0=1, •••, m—r, of
Tp can be found, with dual basis {ηfa}, which satisfies (6. 1) and (6. 2) such that

(6. 4) /£*-!=<), fE2ί=E2i-1

(6. 5) ?*-1"/=??i, ?*«/=0, f=l,

where we have dropped the primes. If we put

(6.6) J=f-η^®Eti

at p, we see that rank/=2^ and J2=—I if dim P=2n, and rank J=2n—2 and
J2=-I+r]2n-r-1®E2n-r-i if dim P=2«-l. In fact, by (6. 4) and (6. 5), in the even
dimensional case,

and in the odd dimensional case,

THEOREM 9. An even dimensional (respectively, odd dimensional) globally
framed quartic manifold carries an almost complex (respectively, almost contact)
structure.

Although the globally framed quartic manifold P(f,Ea,irf'),a = \,-~,m—r,
m—r^2, is not a cubic structure, it does possess an underlying cubic structure
(Λ, Ea, η

a) defined by

For, at p, by (6. 4) and (6. 5), f\X= -X+ηa(X)Ea, and so flX=-~flX. Moreover,
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fιX=0 implies X=ηa(X)Ea, so rank /ι=r= const. ^2n— 2. Conversely, a globally
framed /-manifold P(f, Ea, rf) possesses an underlying globally framed quartic
structure defined by /i =f+yzi ® EW-i In fact, f\X= (f+y2ί (x) E2l-1

= -X+ya(X)Ea,flX=-fίX+ι/u(X)Eti-ί and f\X=-f\X. (Moreover,
^Eu-i and ̂ Vi^2', 3*0/1 =0.)

THEOREM 10. ^L globally framed quartic manifold of dimension m and rank r
with m—r^λ possesses an underlying globally framed f- structure, and conversely.

COROLLARY. A noninvariant hypersurface of an almost contact manifold with
the restricted quartic structure possesses a globally framed f -structure.

Proof. Immediate from Theorem 1.

THEOREM 11. Let P(f, Ea, η
a) be a globally framed quartic manifold of dimen-

sion m and rank r with m—r^2. Then, the (1,1) tensor field fι=f+ηzi~l®Ezi
gives rise to a quartic structure (/i, Ea, η

a) of maximal rank which is not globally
framed.

Indeed, /}=/• Moreover, rank /Ί= w. For fίX=Q implies fiX= -X+2ηa(X)Ea

=0, a=l, ~,m—r. Applying (6. 4), we get ηΛ®Ea=Q, so X=0. That (fl9 Ea, η
a}

is not globally framed is a consequence of the relation f\=—

The globally framed quartic structure (/, Ea, ff} is said to be normal if the
underlying globally framed /-structure (/i, Ea, η

a},fι=f— η2ί®E2ί-ι, is normal (cf.
§4). The condition for this is given by the vanishing of the tensor field Sfl of
type (1, 2) given by

(see [4]). In this case, the Ea are infinitesimal automorphisms of the structure
(/i, Ea, η

a} and the differentials dηa are of bidegree (1, 1) with respect to /i (see
[4], Lemma 2). A calculation identical to that in § 4 shows that P(f, Ea, η

a} is
normal, if the tensor field S/ given by

is zero.

THEOREM 12. The almost complex (respectively, almost contact) structure in
Theorem 9 is integrable (respectively, normal) if the quartic structure is normal.

Proof. Similar to that of Theorem 6 if dimP is even. The computation in
the odd dimensional case is analogous to the former case, that is, the torsion is
evaluated in terms of the structure tensors of the almost contact manifold.

Theorem 7 lends itself to the following generalization.
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THEOREM 13. Let P(f, Ea, η
a) be an even dimensional globally framed quartic

manifold of rank r, 0=1, •••, m— r, whose induced almost complex structure /=/
— τfi-1®E2i, i=l, •••, [(m— r)/2], is integrable. Then, if the drf1^ are of bidegree
(1, 1) with respect to f and the vector fields E2i are holomorphic, the quartic
structure is normal.

We also have the following odd dimensional analogue.

THEOREM 14. Let P(f, Ea, tf} be an odd dimensional globally framed quartic
manifold whose induced almost contact structure I=f—η2ί~l®Ezi is normal. Then,
if the drf1-1 are of bidegree (1, 1) with respect to f and the LEziJ vanish, i=l, •••,

[(m—r)/2\, the quartic structure is normal.

7. Quartic metric manifolds. The manifold P(f, Ea, η
a), a=l, -,m—r, is

called a globally framed quartic metric manifold if P carries a Riemannian metric
Q such that (i) ηa'=g(Ea, •), a=l, ~,m—r, and (ii) / is skew symmetric with res-
pect to g. In this case, we denote the structure by P(f, ηa, g). Unlike /-manifolds,
a globally framed manifold does not, in general, carry a metric with these pro-
perties. To see this, consider the hypersurface P(f, U, a, F, β) of the almost
contact manifold M(φ9 η,G) with the restricted quartic structure. Since G(φx, φy)
=G(x, y)-η(χ)η(y} and r^N) is zero, G (N, i*Y) = G(φN, φi*Y) = - G(i*U, i*fY
+a(Y)N)=-g(U,fY)+a(Y)G(φN,N)=-g(U,fY) where g=i*G. If / is skew
symmetric with respect to g, then g(U,fY)=—g(fU9 Γ)=0 by (2.7). But this is
impossible since N is not the metric normal with respect to G.

We put F(X, Y) = g(fX, Y) and call it the fundamental 2- form of P(f, rf, g).
Let P be a globally framed metric manifold of dimension m=2n with quartic

structure tensor /. Then, by Theorem 9, an almost complex structure J=f—ηzί~l

(x)£W is defined on P in terms of which the metric g is hermitian where g(X, Y)
= (l/2)[0tx; Y)+g(JX, JY)]. Setting Ω(X, Y) = 9(JX, F), we obtain

If the fundamental form F and the 5?α, 0=1, •••, 2n— r, are closed forms, the almost
hermitian structure on P is almost Kaehlerian. It is Kaehlerian, if and only if /
has vanishing covariant derivative with respect to g. Thus, P(f, ηa, g) has an
underlying Kaelllerian structure if its structure tensors are covariant constant (with
respect to g).

THEOREM 15. An even dimensional globally framed metric manifold P(f, τf9 g)
with a quartic structure f carries a Kaehler structure (/, g\ where f=f—τfί~1^Ezi
and g(X, Y)=(ll2)[g(X, Y)+g(fX, f Y ) ] , if f and the <ηa, a=l, •••, 2n-r, are parallel
fields with respect to g.

In the odd dimensional case the globally framed metric manifold P(/, ηa, g)
gives rise to the almost contact metric manifold P(/, rfn~r-1, g). For, g(JX, JY)
=g(X, Y)-7f*-*-\XW»-r-\Y). If Φ(X, Y) = g(JX, F), then
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If the fundamental 2-form Φ and the 1-form γf n~r~l are closed, the almost
contact structure on P is almost cosymplectic [2]. It is cosymplectic, if and only
if, the almost contact structure is normal.

THEOREM 16. An odd dimensional globally framed metric manifold P(f, ηa, g)
with a quartic structure f carries a cosymplectic structure (/, ^2n~r~1, g), where J
=f-tfί-1®E2z and g(X, Y) = (ll2)[g(X, Y)+g(JX, JY)], if f and the η*, a=l, -,
2n—r—l, are parallel fields.

Proof. Since / and the ηa have vanishing covariant derivatives with respect
to the Riemannian connection of g, so does /. Hence, the torsion (DjχJ)Y
-(^F/)^+/φF/)J^ where
D denotes covariant differentiation with respect to the Riemannian connection of g.
Thus, P(/, η2n-r-\ g) is normal.

THEOREM 17. Let P be a complete simply connected globally framed quartic
metric manifold. Then, if its structure tensors are parallel fields, it is a product
manifold with one of its factors Kaehlerian.

Proof. If dim P is even this is immediate from Theorem 15. If P is odd dimen-
sional, this is a consequence of Theorem 16. For, since DΦ=Q, P'v={XzPp\Φ(X, Pp)
=0} defines a parallel distribution. Thus, the orthogonal complement Pp (with
respect to g) also gives a parallel distribution. Note that the Ea(p), <z=l, •••, m— r,
do not belong to Pp. By the de Rham decomposition theorem P— P'xP", where
Φ=0 on P' and Φ has maximal rank on P" '. Since / and the ηa, a=l, •••, m—r,
are parallel fields, [/, /] must vanish. Hence, the almost complex structure on P",
obtained by restricting / to P", is integrable. Since Φ is closed, P" is symplectic;
in fact, since DΦ=Q, P" is a Kaehler manifold.

8. Automorphisms. Let M(f, Ea, if) and M'(f, E'a, η'a) be globally framed
quartic manifolds whose structures have the same rank. A diffeomorphism μ of M
onto M' is called an isomorphism of M onto Mf if

μ*°f=f'°μ*
and

where μ* denotes the induced map on tangent spaces. If M'=M and /'=/, Er

a=Ea,
η'a=ηa, a=l, '-,m—r, then μ is said to be an automorphism of M. The set of all
automorphisms of M clearly forms a group which we denote by A(f, Ea> ηa).

LEMMA 4. Let μeA(f, Ea, rf). Then,
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where μ* is the induced map on forms.

LEMMA 5. Let μtA(f, Ea, η
a}. Then, μeA(flt Ea, η

a), that is

μ*°fι=fι°μ*,

where /ι=/— ̂ (gEW-i. Conversely, if μeA(fί9 Ea, η
a), then μeA(f, Ea, 5?α).

Thus, an automorphism of the globally framed quartic structure (/, Ea, η
a) on

M is also an automorphism of the induced globally framed /-structure (/i, Ea, rf}
on My and conversely. Since A(fι, Ea, η

a) is a Lie group (see [4], [5]) and M(f, Ea, rf)
is normal if and only if M(/ι, Ea, η

a) is normal, we have

THEOREM 18. The group of automorphisms of a compact normal globally
framed quartic structure is a Lie group.
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