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REMARKS ON THE EXISTENCE OF ANALYTIC MAPPINGS
By Mitsuru Ozawa

§1. Introduction. Let R be an ultrahyperelliptic surface defined by y2=g(x),
g(@)=(eX—y)(eX—0d), yd(r—0)x0, K(0)=0 with a non-constant entire function K.
We already proved that the Picard constant P(R) of R is four and vice versa.

Let S be an ultrahyperelliptic surface defined by ¥?=G(x),

Gx)=1 _ZﬂleH"2,8291'+,81262H—2‘31‘32€H+L+‘3382L,
BiB:x0, H0)=L0)=0

with two non-constant entire functions H and L. We already proved that the
Picard constant P(S) of S is at least three. If K is a polynomial, then R is called
to be of finite order. If H and L are polynomials, then S is called to be of finite
order.

In our previous paper [5] we proved that if S is of finite order then P(S) is
equal to three with four exceptional cases for which P(S)=4. As an easy cor-
rollary of the above result we proved the following fact:

Let R and S be ultrahyperelliptic surfaces of finite order in the above sense.
Assume that P(S)=3. Then there is no non-trivial analytic mapping of R into S.

The first purpose of this paper is to prove the following improvement of the
above result:

THEOREM 1. Let R be an ultrahyperelliptic surface of finite order in the
above sense with P(R)=4. Let S be an ultrahyperelliptic surface defined above
without any assumption on its order. Assume that P(S)=3. Then there is no
non-trivial analytic mapping of R into S.

Hiromi-Muto [1] proved the following result: Let R and S be two ultra-
hyperelliptic surfaces defined by y?*=¢(z) and w?=G(z), respectively, where G and
g are entire functions having no zero other than an infinite number of simple
zeros. Let g. and G, be the canonical products formed by the zeros of ¢ and G,
respectively. Assume that the order pg;,<co and 0<pg,<co and that there is a
non-trivial analytic mapping of R into S. Then p,, is a positive integral multiple

of 0Ge-
We shall prove the following fact, which is the second purpose of this paper:

THEOREM 2. Under the same assumplions in Hiromi-Muto's theorem and
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denoting the lower order of X by px we have that pweg is @ positive integral
multiple of pncro,6).

This theorem 2 gives a powerful criterion for the non-existence of non-trivial
analytic mappings.

Niino [3] posed the following problem: Is there any relation between two
non-trivial analytic mappings ¢; and ¢, which map analytically the same R into
the same S?

His formulation of this problem is somewhat restrictive.

The third and final purpose of this paper is to give some informations on this
problem and to give an interesting example.

§2.
LEMMA. Let G(x) be
1—-2p,e% —2B.e*+ B,%e* —2p, Bre "L 4- By2e?,
BiB=0,  H(0)=L(0)=0.
Then for an arbitrary given ¢>0 and for a sufficiently large r=r,
(2—¢) max (m(r, ef), m(r, e%))=Nx(r; 0, G),
where Ny(r;0, G) indicates the N-function of the simple zeros of G.

Proof. The last part of this method was suggested by Niino [2]. First of all
we shall prove that the equation y?=G(z) defines an ultrahyperelliptic surface S.
Let f(x) be

N T N e[}

Then f satisfies
F(z, f)=12—14pie*H —B:e®L) f+ Pie®E.

Now F(z,0)=pe*® and F(x,1)=p:¢*:. Thus f is an entire algebroid function,
which is at most two-valued and f%0,1,c0 in S. Assume that S is not ultra-
hyperelliptic. “Then either S splits into two punctured discs D, and D, over
r*¥=|z|<oco or S is two-sheeted but one punctured disc over there. If the latter
case occurs, then the big Picard theorem implies that the exceptional values are
at most two in number when f is transcendental there. When f is not trans-
cendental there, then f can be continued analytically onto z=oco, which shows
that f reduces to an algebraic function. Then f takes every value in S at least
once excepting oo. Anyway we arrive at a contradiction. If the former case
occurs, we put f; and f, as two determinations of f in D, and D, respectively.
Assume that both of f; and f; are transcendental. Then fi, f; have at most two
exceptional values oo, @; in D; and oo, @, in D,, respectively. If a@;=a, then a;
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is taken by f: in D, infinitely often. If @;=a,, then f has two exceptional values
co, @; in DiUD,. Anyway f has at most two exceptional values in D;UD,, which
is a contradiction. If one of f; and f, is not transcendental, we have similarly a
contradiction. Thus we have the desired result.

Now we can make use of Selberg’s theory on algebroid functions [7]. Since f
has two finite exceptional values 0 and 1 and f is regular in S, we have

3= Zda)=2+¢,

where
1 N(r;a, 1)
oa)=1 111711 iuP——T(r, B
... NnYS)
§=1lim inf Z A

2N(r, S)=N,(r; 0, G)4-0O(log 7).

Hence £=1. Further by Valiron’s theorem [8] or [7]

1 2n
T, )= —4780 log max (1, ||, [14-pre*” — Boe* |)df+O(1)

= —;—m(r, B:e*H)+-0(1).

Therefore T'(r, f)=m(r, e¥)+01). Thus
N, 9)z(E—T(r, £)=(E—Imlr, e")+0(1)
for r=7,. This implies
Q—e)m(r, e®)=<Ny(7; 0, G).
By symmetry we have
@2—e)m(r, eL)= Ny(7; 0, G).

Thus we have the desired result.
This Lemma is best possible. Consider the case 2H=L, 5,2=168;. Then

G=(14 /B (1— ¥/ Boe® (/2 —1— ¥/ pre™"?)
W21+ Y Bie ) (W2 =1+ BeT 22 +1— ¥/ Bae™?).
This implies that
Ny(7; 0, G)~Am(r, e2'?)=2m(r, e®).

§3. Proof of Theorem 1. By our earlier result in [4] we may consider the
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possibility of the following functional equation
F(®)g(x)=G ().
By the above Lemma we have
(2—e¢) max (m(r, ef°r), m(r, eL?)) < Ny(7; 0, Goh).
Further we have

Nx(r; 0, Go )= Ny(r; 0, g)~2m(r, )

= —Ikn! 7’" <1+0<—1—>>s
T r

where K(x)=Fknx"+--+kiz, knx0. Thus Hes and Los must be polynomials. By
Pélya’s theorem again H, L and %2 must be polynomials. Now we can make use
of our earlier result in [5] and then we have the desired result.

§4. Proof of Theorem 2. We may change the last past of Hiromi-Mutd’s
proof of their theorem. Let A(x) be a polynomial of the form a@oz’+ai 2"+ -+a,.
Then we have for an arbitrary positive number ¢ (<1)

vn(|aolr*(1+¢); 0, Ge)+O(1)
zZn(r; 0, Gee ) Zvn(ao|r"(1—e); 0, Ge) —O(1)
for r=7. Hence
N(laolr"(1+¢); 0, Go)+O(log 7)
=N 0, Geo )= N(|ao|r'(1—e); 0, Go)—O(og 7).
Since G, is transcendental and is a canonical product, we have

(1+0)N(laolr'(1+¢); 0, G)=N(7; 0, Geo ) Z(1—)N(|@o|r*(1—¢); 0, G).

Hence
VIUNCr; 0,6) = [AN(r; 0, Gooh) = VIN(r; 0, G)-
Further
Ne(7;0, Gee ) =N (730, 90)=N(7; 0, 9)
and

N(;0,9)=N(;0, Gee)—2N(r; 0, f),
N(#;0, £)=2T(r, h)=0(log 7),
N(7; 0, Geohl)=Ny(r; 0, Goo i) +O(log 7).

Hence we have
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HNCr; 0,90 = UN(r; 0, Geoh)e

Thus we have the desired result:

HNCr; 0,90 = VIN(r; 0,6)+

By Theorem 2 together with Hiromi-Mutd’s theorem the regularity of growth
is preserved by non-trivial analytic mappings under our assumptions.

§5. Let ¢; and ¢, be non-trivial analytic mappings of R into S. Let 4; and
4. be their projections. Assume that there is an algebraic relation between %, and
ks, that is, there is an irreducible algebraic equation F(x,y)=0 satisfying F(%i, %)
=0. Then if one of 4, 4, is transcendental the Riemann surface W defined by
F(x,y)=0 must be of genus at most one by Picard’s uniformizatior. theorem,
since /u, h, are defined in |z|<co. Assume that W is of genus one. Then 7%,
must be doubly periodic. Hence %, must have poles, which contradicts the re-
gularity. Thus W must be of genus zero.

THEOREM 3. Suppose that two mnon-trivial analytic mappings of an wultra-
hyperelliptic surface R into another such surface S satisfies an algebraic relation.
Then the surface defined by the algebraic relation is of genus zero, if at least one
of the two projections is transcendental.

Next we shall give an example. Let G(z) be an entire function whose zeros
are +pni, ta/14+ps? where p, is real positive =1 and p,<pny1, pa—00 as n—oco.
Let ¢(z) be Gosinz. Then ¢(z) has no zeros other than an infinite number of
simple zeros. On the other hand Gocos z=g*(z) has the same zeros as g(z). Hence
g*(2)=eX®g(z). Let R and S be two surfaces defined by y%=¢(z), w*=G(z), respec-
tively. Then there are two analytic mappings whose projections are cos z, sin z,
respectively.

Hence

z*+y*=1

is satisfied by x=cosz, y=sinz. This is really a circle.
Niino has given an example of parabola recently. Following is an open pro-
blem. Is there any example of y=qz", n=37
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