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ON THE GROWTH OF ALGEBROID FUNCTIONS
WITH SEVERAL DEFICIENCIES, II

By Mitsuru OzAwWA

In our previous paper [6] we proved the following result:

Let y(z) be an z-valued transcendental entire algebroid function with # finite
deficient values a,, =1, ---,%#. Then the lower order of y(z) is positive.

A corresponding result for a general algebroid function was established with
an additional condition. In this paper we shall prove the following theorem:

THEOREM 1. Let y(2) be an n-valued transcendental algebroid function. As-
sume that y has n+1 deficient values a,, =1, ---,n+1. Then the lower order of y
is positive.

Toda [7] generalized the following Nevanlinna theorem [4] to algebroid func-
tions: Let f(z) be a meromorphic function of order 2<co. Then there is a posi-
tive constant k(1) for which

— N(;0,)+N(r; o0, f)

= i 2
K)=Tm 70, 7) =k,
unless 2 is a positive integer.
Toda’s definition of %(1) is

n+1l

__ L Nwaw
. S o

inf K(f)=inf lgg—————T(r’ PR

where infimum is taken over all the n-valued algebroid functions of order A.
Again it is an important problem to determine the exact value of 2(2). We
shall determine it for 0=1=1.

THEOREM 2.
1 for 0=21<L1/2,
k(ﬂ)={
sinzd  for 1/2=1=1.

As an obvious corollary we have
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CoroLLARY 1.
n+l n for 0=1<1/2,
2 0a,y)= .
7=1 n+l—sinzd  for 1/2=1=1.
§1. Proof of Theorem 1. Edrei-Fuchs [2] proved the following inequality:
For a meromorphic function f(z)

T, f) £ Tlor, £+ max (N7 0, 1), Nior; oo, /)+0(0g 7,

where ¢>1, r>2. Let F(z,v)=Aw"}+-+A,=0 be the defining equation of .
Let g, be F(z, a;). Put f;=g;/gn:1. Applying the above inequality to f;,, we have

T(n fj)é

Ufl T(or, f))+max {N(o7; 0, g5), N(o7;0, gn)}+O0(log 7).

Summing up these inequalities, we have

3 16, ) =2 3 Tr £
=1 g =1

+ Z}l max {N(o7; 0, 9), N(o7;0, gns1)}+O(0g 7).
-

By Cartan’s [1] and Toda’s inequalities [7] we have

4n?

nT(r,y)= 1 T(or, y)+n*c’ T(or, y)+-O(log 7),

o—

where y=max (1—éd(a,, ¥))<c’<c<1 and r=7r,>2. Now we have

Tenry _ 1 1
Try) —n_4 A logr
c—1 n® T(or,v)
=1 1
n
g—1 e

for r=n=r,. Taking ¢=1+4/c(1—c), we have

Tery 1 1
T(r,y) — #n c@—c)’

The same reasoning remains valid as in [2] and then we have the desired result.

§2. Proof of Theorem 2. Firstly assume that A=0. Then by Theorem 1
there are at most » deficient values. Hence
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n+l

Z N(T; d.h y)

K(y)=Tim 2=

= =1,
r—00 T(T, y)

v

Let y be
9()y"—g(2)+1=0,
where ¢(z) is an arbitrary transcendental entire function of order zero. Evidently
nT(r, y)~T(, g).

By the well-known result there is no deficient value of ¢(z) other than oo. Hence
d(co, ¥)=0, which shows
l—iﬁ N (7’; o, y) -1
r—00 T(r, y) :
However y has » Picard exceptional values exp(2zji/n), j=1,---,n. Hence K(y)=1.
Thus k(0)=1.
Secondly assume that 2=1. We may consider

Y e —1=0.

Evidently K(y)=0. Thus k(1)=0.
In the third place assume that 0<i<1. Let g; be F(z a;). Denote its zeros
by b,. Then

o z
95@=c[] (1_ b )

v=1 v
Here we may assume that ¢;(0)=x0. This assumption does not make any trouble
in our problem. Let §;(2) be

e 11 <1+1b—z,1>'

v=1

Then
m(r, g)=m(r, §;)

=~ {"Nt;0,09 BB
T Jo

t24-2tr cos B;+-1* di+0(og )

1

_ SmN(’; 0, 0) g or SR By
T Jo

T atrcos e 2 TOUgn)

where B; depends on r. Since
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n+l
nT(r) ?/)é Zl m(r! gf))
7=

n+1

nT =] | “N;0,0) P, 5)d+0(0g ),

J=1

where

rsin B,

1
P&n B)= - P oty cos pr

Let P(t,7,7)=max P(¢,r, 8;). Then

nT(r,y) éS: :Li N0, 9;) P, 7, 7)dt+0dog 7).
Hence

nT(r, y)=nK(®) g: T, )P, 7, t)dt+0(log 7).

Now we make use of the same process as in [3]. Then we have

1= gup K6y
If 0<4<1/2, then sin rA=sin zi. Hence
K@=l
If 1/2=2<1, then sint2=<1. Hence
K(y)=sin za.

Now we consider equality parts. Let f(z;2) be the Lindelof function

f(z 0= ﬁ (1+ ;)

v=1

b,=v'?, v=1,2,3, .

Let /.(2)=f(a¥*(z+¢); ). The asymptotic behavior of f(z;2) is well known [4].
Now we consider

ho(2)y"—ha(2)+1=0.
Then we have
n+1
2 Nrayy) N(7; o0, )

K ='__—__.___]=1 = —_—
@ 1‘}2 T(r,y) 132 T(r,v)
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for a;=exp(2rji/n), j=1, -, n; @ni1=co and further
1 for 0<2<1/2,
{sin A for 1/2=i1<1.
Hence Theorem 2 follows.
§3. By the way we state the following theorem.

THEOREM 3. Let y(2) be an n-valued transcendental entire algebroid function
of order 2, 0<A<1. Let M(r,y) be the maximum modulus of y on |z|=r. Then
there is at least one a, among n different finite numbers a,v=1,---, n, satisfying

— uN(r; a,,vy) - sin 72

}LIE log M(r,y) — =

Proof. Evidently we have

log M(r, y)=max max log|y,(2)|
|z]=r 1=Sv=n

+
=max max log|y,(2)|

|z]=r 1sv=n
n o+
éfnla_x ; log|y.(2)!.
By Valiron’s argument [8]
7+
z log|y.(2)| =log A(2)+0(1)

=log g(2)+0(1),
where
A(m)=max (1, | An-l, -+ | Ao,
g(z)=max (lgsl, -+, lgnl);
9.(2)=F(z, a.).

Here F(z,y)=0 is the defining equation of y and A, is the coefficient of ", A,=1.
Further we have

mlax log g(z)=log xlnlax 9(2)
|z[=7 z|l=r

=log max max |g,(2)|
1=v=n |z|=7r

=max log M, g.).

1=v=n
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Let ¢.(2) be
o z
1— =
n.0-%)
and § be
i z
1
( + |bk|)
Then
M(r, g ) =M, §.).
Further
log M(r @)—rSmN(t‘ 0,09 -2
g »y Jv) — 0 » Vo Jy, (t-l—?’)z
Hence
log M(r, y)érlrggg N 0,9.) =+ (H—r)z +0(1)
=rlr£i)§n8 N a0, y)—— (H‘ ? +0Q@).
Assume that for all v
I uN(r;a,,y) _ sinzd
_— log M(7, v) 7a
Then
uN(r; a,y) _sinzid
log MGr,yy ~ a1 =0 >0
for r=#,. Thus
log M(r, <rUS log M(t, 1.
g M(r,y) og (y)(t_]_)2+0()

Now we make use of the notion of Pélya peaks. Let 1>6>0, 2+d<1. Then
there is a sequence {r,} such that
log M(t,y) _ log M(ra, )

tl_a —S—- rnx_‘; ’ 70§t§1’n)

log M(t,y) _ log M(rn )

~ = Yn=t.
t1+o rn/H-é

=
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Thus, using r instead of 7,

dt

4 t =0
1 v = =
og M0 )< Ur 1o M) oz

U "1og M, (L) L
0 Jow () i 00

=uree ] () g 1 (7)o row

2]

Hence

1
<v V+O< log M(r, y))’

A A
V_rgt.,<7> (t+r? +7ST (7) E+nE

V can be obtained explicitely.

__m(2+9) 1
" sin #(A-+0) +0(5)+0< r)'
Thus »—oo along {r,} implies

1= { n(2+-0)

sin z(2+9) +O(5)}

and then letting 6—0 we have

A sin 74 A
= - = —_ -
1=U sin ( 73 e) sin zA
e,
sin wd

which is a contradiction. Hence Theorem 3 follows.

§4. It is very easy to prove

|sin 74| P T
wq—l—lsin =T 9<i=q+ 5 ¢ 1nteger,
k)=
|sin 74| 1 - .
——q—l—l ) q+~2—<l=q+1, g: integer.

Consider the Lindelof function f(z;2) already defined. In this case A=1. Consider
f(z Dy"—f(2; )+1=0. Evidently we have
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K@)=K(f(z 0))=1-0d0, f(2; 2)

|sin 7]

1
Z+sin Al 9=2=q++, q=I[,

|sin 74|
g+1

1
. gk <A<l g=[A.

Thus we have
RA)=K(y),
which is the desired result.

§5. It should be remarked that theorems 2 and 3 can be formulated by
making use of the lower order p instead of the order 2. We shall not give any
proof of them here.

§6. By the way we shall give a supplementary fact to our previous result [5].

THEOREM 4. Let y be a two-valued entire algebroid function of order A (ov of
lower order p) 0=A=1 (or 0=u=1). Suppose that there ave three finite different

values ai, as, as Satisfying
o(a1, y)+06(as, y)-+d(as, y) > 2.
Then 2>5/6 (or p>5/6).

Proof. By the previous result in [8] we have
dav =1, oas P=0lan 1>+
for example. Hence by corollary 1 for 1/2=21=<1
% < (00, y)-+d(as, y)+0(as, y)=3—sin 2.
Thus

sin wA< %

This implies 2>5/6. For 0=<21<1/2
5(007 y)+5(aly y)+5(a2’ y)éz

by corollary 1, which is untenable.
This is best possible. Consider again f(z;1). Then the two-valued entire

algebroid function y defined by
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y*+f(z; Hy—1=0

satisfies 6(0, y)=1, (1, y)=06(—1, y)=1—sin =2 for 21>1/2. Then

000, v)+0(1, y)+o(—1, y)=3—2sin 72 >2

if and only if 5/6<a1=<1.
We can prove a similar result for the three-valued case.
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