ON THE GROWTH OF ALGEBROID FUNCTIONS WITH SEVERAL DEFICIENCIES, II

By Mitsuru Ozawa

In our previous paper [6] we proved the following result:
Let $y(z)$ be an n-valued transcendental entire algebroid function with n finite deficient values $a_{j}, j=1, \cdots, n$. Then the lower order of $y(z)$ is positive.

A corresponding result for a general algebroid function was established with an additional condition. In this paper we shall prove the following theorem:

Theorem 1. Let $y(z)$ be an n-valued transcendental algebroid function. Assume that y has $n+1$ deficient values $a_{3}, j=1, \cdots, n+1$. Then the lower order of y is positive.

Toda [7] generalized the following Nevanlinna theorem [4] to algebroid functions: Let $f(z)$ be a meromorphic function of order $\lambda<\infty$. Then there is a positive constant $k(\lambda)$ for which

$$
K(f)=\varlimsup_{r \rightarrow \infty} \frac{N(r ; 0, f)+N(r ; \infty, f)}{T(r, f)} \geqq k(\lambda),
$$

unless λ is a positive integer.
Toda's definition of $k(\lambda)$ is

$$
\inf K(f)=\inf \varlimsup_{r \rightarrow \infty} \frac{\sum_{j=1}^{n+1} N\left(r ; a_{\jmath}, y\right)}{T(r, y)}
$$

where infimum is taken over all the n-valued algebroid functions of order λ.
Again it is an important problem to determine the exact value of $k(\lambda)$. We shall determine it for $0 \leqq \lambda \leqq 1$.

Theorem 2.

$$
k(\lambda)=\left\{\begin{array}{lll}
1 & \text { for } & 0 \leqq \lambda<1 / 2, \\
\sin \pi \lambda & \text { for } & 1 / 2 \leqq \lambda \leqq 1 .
\end{array}\right.
$$

As an obvious corollary we have

Received November 10, 1969.

Corollary 1.

$$
\sum_{j=1}^{n+1} \delta\left(a_{j}, y\right) \leqq\left\{\begin{array}{lll}
n & \text { for } & 0 \leqq \lambda<1 / 2 \\
n+1-\sin \pi \lambda & \text { for } & 1 / 2 \leqq \lambda \leqq 1
\end{array}\right.
$$

§ 1. Proof of Theorem 1. Edrei-Fuchs [2] proved the following inequality: For a meromorphic function $f(z)$

$$
T(r, f) \leqq \frac{4}{\sigma-1} T(\sigma r, f)+\max \{N(\sigma r ; 0, f), N(\sigma r ; \infty, f)\}+O(\log r)
$$

where $\sigma>1, r>2$. Let $F(z, y) \equiv A_{n} y^{n}+\cdots+A_{0}=0$ be the defining equation of y. Let g_{j} be $F\left(z, a_{j}\right)$. Put $f_{j}=g_{j} / g_{n+1}$. Applying the above inequality to f_{j}, we have

$$
T\left(r, f_{j}\right) \leqq \frac{4}{\sigma-1} T\left(\sigma r, f_{j}\right)+\max \left\{N\left(\sigma r ; 0, g_{j}\right), N\left(\sigma r ; 0, g_{n+1}\right)\right\}+O(\log r)
$$

Summing up these inequalities, we have

$$
\begin{aligned}
\sum_{j=1}^{n} T\left(r, f_{j}\right) \leqq & \frac{4}{\sigma-1} \sum_{j=1}^{n} T\left(\sigma r, f_{j}\right) \\
& +\sum_{j=1}^{n} \max \left\{N\left(\sigma r ; 0, g_{j}\right), N\left(\sigma r ; 0, g_{n+1}\right)\right\}+O(\log r)
\end{aligned}
$$

By Cartan's [1] and Toda's inequalities [7] we have

$$
n T(r, y) \leqq \frac{4 n^{2}}{\sigma-1} T(\sigma r, y)+n^{2} c^{\prime} T(\sigma r, y)+O(\log r),
$$

where $\gamma=\max \left(1-\delta\left(a_{j}, y\right)\right)<c^{\prime}<c<1$ and $r \geqq r_{0}>2$. Now we have

$$
\begin{aligned}
\frac{T(\sigma r, y)}{T(r, y)} & \geqq \frac{1}{n} \frac{1}{\frac{4}{\sigma-1}+c^{\prime}+\frac{A}{n^{2}} \frac{\log r}{T(\sigma r, y)}} \\
& \geqq \frac{1}{n} \frac{1}{\frac{4}{\sigma-1}+c}
\end{aligned}
$$

for $r \geqq r_{1} \geqq r_{0}$. Taking $\sigma=1+4 / c(1-c)$, we have

$$
\frac{T(\sigma r, y)}{T(r, y)} \geqq \frac{1}{n} \frac{1}{c(2-c)}
$$

The same reasoning remains valid as in [2] and then we have the desired result.
§ 2. Proof of Theorem 2. Firstly assume that $\lambda=0$. Then by Theorem 1 there are at most n deficient values. Hence

$$
K(y)=\varlimsup_{r \rightarrow \infty} \frac{\sum_{j=1}^{n+1} N\left(r, a_{j}, y\right)}{T(r, y)} \geqq 1 .
$$

Let y be

$$
g(z) y^{n}-g(z)+1=0,
$$

where $g(z)$ is an arbitrary transcendental entire function of order zero. Evidently

$$
n T(r, y) \sim T(r, g)
$$

By the well-known result there is no deficient value of $g(z)$ other than ∞. Hence $\delta(\infty, y)=0$, which shows

$$
\varlimsup_{r \rightarrow \infty} \frac{N(r ; \infty, y)}{T(r, y)}=1
$$

However y has n Picard exceptional values $\exp (2 \pi j i / n), j=1, \cdots, n$. Hence $K(y)=1$. Thus $k(0)=1$.

Secondly assume that $\lambda=1$. We may consider

$$
y^{n}+e^{z}-1=0 .
$$

Evidently $K(y)=0$. Thus $k(1)=0$.
In the third place assume that $0<\lambda<1$. Let g_{j} be $F\left(z, a_{j}\right)$. Denote its zeros by b_{ν}. Then

$$
g_{j}(z)=c \prod_{\nu=1}^{\infty}\left(1-\frac{z}{b_{\nu}}\right)
$$

Here we may assume that $g_{j}(0) \neq 0$. This assumption does not make any trouble in our problem. Let $\hat{g}_{j}(z)$ be

$$
|c| \prod_{\nu=1}^{\infty}\left(1+\frac{z}{\left|b_{\nu}\right|}\right)
$$

Then

$$
\begin{aligned}
m\left(r, g_{j}\right) & \leqq m\left(r, \hat{g}_{j}\right) \\
& =\frac{1}{\pi} \int_{0}^{\infty} N\left(t ; 0, \hat{g}_{j}\right) \frac{r \sin \beta_{j}}{t^{2}+2 t r \cos \beta_{j}+r^{2}} d t+O(\log r) \\
& =\frac{1}{\pi} \int_{0}^{\infty} N\left(t ; 0, g_{j}\right) \frac{r \sin \beta_{j}}{t^{2}+2 t r \cos \beta_{j}+r^{2}} d t+O(\log r)
\end{aligned}
$$

where β_{j} depends on r. Since

$$
\begin{aligned}
& n T(r, y) \leqq \sum_{j=1}^{n+1} m\left(r, g_{j}\right), \\
& n T(r, y) \leqq \sum_{j=1}^{n+1} \int_{0}^{\infty} N\left(t ; 0, g_{j}\right) P\left(t, r, \beta_{j}\right) d t+O(\log r),
\end{aligned}
$$

where

$$
P\left(t, r, \beta_{j}\right)=\frac{1}{\pi} \frac{r \sin \beta_{j}}{t^{2}+2 t r \cos \beta_{j}+r^{2}} .
$$

Let $P(t, r, \tau)=\max P\left(t, r, \beta_{j}\right)$. Then

$$
n T(r, y) \leqq \int_{0}^{\infty} \sum_{j=1}^{n+1} N\left(t ; 0, g_{j}\right) P(t, r, \tau) d t+O(\log r) .
$$

Hence

$$
n T(r, y) \leqq n K(y) \int_{0}^{\infty} T(t, y) P(t, r, \tau) d t+O(\log r)
$$

Now we make use of the same process as in [3]. Then we have

$$
1 \leqq \sup _{0 \leqq \tau \leqq \pi} K(y) \frac{\sin \tau \lambda}{\sin \pi \lambda} .
$$

If $0<\lambda<1 / 2$, then $\sin \tau \lambda \leqq \sin \pi \lambda$. Hence

$$
K(y) \geqq 1 .
$$

If $1 / 2 \leqq \lambda<1$, then $\sin \tau \lambda \leqq 1$. Hence

$$
K(y) \geqq \sin \pi \lambda .
$$

Now we consider equality parts. Let $f(z ; \lambda)$ be the Lindelöf function

$$
\begin{aligned}
f(z ; \lambda) & =\prod_{\nu=1}^{\infty}\left(1+\frac{z}{b_{\nu}}\right), \\
b_{\nu} & =\nu^{1 / \lambda}, \quad \nu=1,2,3, \cdots .
\end{aligned}
$$

Let $h_{\alpha}(z)=f\left(\alpha^{1 / \lambda}(z+c) ; \lambda\right)$. The asymptotic behavior of $f(z ; \lambda)$ is well known [4]. Now we consider

$$
h_{\alpha}(z) y^{n}-h_{\alpha}(z)+1=0 .
$$

Then we have

$$
K(y)=\varlimsup_{r \rightarrow \infty} \frac{\sum_{j=1}^{n+1} N\left(r, a_{\jmath}, y\right)}{T(r, y)}=\varlimsup_{r \rightarrow \infty} \frac{N(r ; \infty, y)}{T(r, y)}
$$

for $a_{j}=\exp (2 \pi j i / n), j=1, \cdots, n ; a_{n+1}=\infty$ and further

$$
K(y)=\left\{\begin{array}{lll}
1 & \text { for } & 0<\lambda<1 / 2 \\
\sin \pi \lambda & \text { for } & 1 / 2 \leqq \lambda<1
\end{array}\right.
$$

Hence Theorem 2 follows.
§ 3. By the way we state the following theorem.
Theorem 3. Let $y(z)$ be an n-valued transcendental entire algebroid function of order $\lambda, 0<\lambda<1$. Let $M(r, y)$ be the maximum modulus of y on $|z|=r$. Then there is at least one a_{ρ} among n different finite numbers $a_{\nu, \nu}=1, \cdots, n$, satisfying

$$
\varlimsup_{r \rightarrow \infty} \frac{n N\left(r ; a_{\jmath}, y\right)}{\log M(r, y)} \geqq \frac{\sin \pi \lambda}{\pi \lambda} .
$$

Proof. Evidently we have

$$
\begin{aligned}
\log M(r, y) & =\max _{|z|=r} \max _{1 \leq \nu \leq n} \log \left|y_{\imath}(z)\right| \\
& \leqq \max _{|z|=r} \max _{1 \leq \nu \leqq n}^{+} \log ^{+}\left|y_{\nu}(z)\right| \\
& \leqq \max _{|z|=r} \sum_{1}^{n} \log ^{+}\left|y_{\nu}(z)\right| .
\end{aligned}
$$

By Valiron's argument [8]

$$
\begin{aligned}
\sum_{1}^{n} \log ^{+}\left|y_{\nu}(z)\right| & \leqq \log A(z)+O(1) \\
& \leqq \log g(z)+O(1)
\end{aligned}
$$

where

$$
\begin{aligned}
A(z) & =\max \left(1,\left|A_{n-1}\right|, \cdots,\left|A_{0}\right|\right), \\
g(z) & =\max \left(\left|g_{1}\right|, \cdots,\left|g_{n}\right|\right), \\
g_{\nu}(z) & =F\left(z, a_{\nu}\right) .
\end{aligned}
$$

Here $F(z, y)=0$ is the defining equation of y and A_{ν} is the coefficient of $y^{\nu}, A_{n} \equiv 1$. Further we have

$$
\begin{aligned}
\max _{|z|=r} \log g(z) & =\log \max _{|z|=r} g(z) \\
& =\log \max _{1 \leq \nu \leq n} \max _{|z|=r}\left|g_{\imath}(z)\right| \\
& =\max _{1 \leq \nu \leqq n} \log M\left(r, g_{\nu}\right)
\end{aligned}
$$

Let $g_{\nu}(z)$ be

$$
\prod_{k=1}^{\infty}\left(1-\frac{z}{b_{k}}\right)
$$

and \hat{g} be

$$
\sum_{k=1}^{\infty}\left(1+\frac{z}{\left|b_{k}\right|}\right)
$$

Then

$$
M\left(r, g_{\nu}\right) \leqq M\left(r, \hat{g}_{\nu}\right)
$$

Further

$$
\log M\left(r, \hat{g}_{\nu}\right)=r \int_{0}^{\infty} N\left(t ; 0, g_{\nu}\right) \frac{d t}{(t+r)^{2}}
$$

Hence

$$
\begin{aligned}
\log M(r, y) & \leqq r \max _{1 \leq \nu \leq n} \int_{0}^{\infty} N\left(t ; 0, g_{\nu}\right) \frac{d t}{(t+r)^{2}}+O(1) \\
& =r \max _{1 \leq \nu \leqq n} n \int_{0}^{\infty} N\left(r ; a_{\nu}, y\right) \frac{d t}{(t+r)^{2}}+O(1) .
\end{aligned}
$$

Assume that for all ν

$$
\varlimsup_{r \rightarrow \infty} \frac{n N\left(r ; a_{\nu}, y\right)}{\log M(r, y)}<\frac{\sin \pi \lambda}{\pi \lambda} .
$$

Then

$$
\frac{n N\left(r ; a_{2}, y\right)}{\log M(r, y)}<\frac{\sin \pi \lambda}{\pi \lambda}-\varepsilon \equiv U, \quad \varepsilon>0
$$

for $r \geqq r_{0}$. Thus

$$
\log M(r, y)<r U \int_{r_{0}}^{\infty} \log M(t, y) \frac{d t}{(t+r)^{2}}+O(1) .
$$

Now we make use of the notion of Pólya peaks. Let $\lambda>\delta>0, \lambda+\delta<1$. Then there is a sequence $\left\{r_{n}\right\}$ such that

$$
\begin{array}{ll}
\frac{\log M(t, y)}{t^{\lambda-\delta}} \leqq \frac{\log M\left(r_{n}, y\right)}{r_{n}^{\lambda-\delta}}, & r_{0} \leqq t \leqq r_{n}, \\
\frac{\log M(t, y)}{t^{\lambda+\bar{\delta}}} \leqq \frac{\log M\left(r_{n}, y\right)}{r_{n}{ }^{\lambda+\bar{\delta}}} & r_{n} \leqq t
\end{array}
$$

Thus, using r instead of r_{n}

$$
\begin{aligned}
\log M(r, y)< & U r \int_{t_{0}}^{r} \log M(r, y)\left(\frac{t}{r}\right)^{\lambda-\bar{\delta}} \frac{d t}{(t+r)^{2}} \\
& +U r \int_{t_{0}}^{\infty} \log M(r, y)\left(\frac{t}{r}\right)^{\lambda+\delta} \frac{d t}{(t+r)^{2}}+O(1) \\
= & U r \log M(r, y)\left[\int_{t_{0}}^{r}\left(\frac{t}{r}\right)^{\lambda-\delta} \frac{d t}{(t+r)^{2}}+\int_{r}^{\infty}\left(\frac{t}{r}\right)^{\lambda+\delta} \frac{d t}{(t+r)^{2}}\right]+O(1)
\end{aligned}
$$

Hence

$$
\begin{aligned}
& 1<U \cdot V+O\left(\frac{1}{\log M(r, y)}\right), \\
V= & r \int_{t_{0}}^{r}\left(\frac{t}{r}\right)^{\lambda-\bar{\delta}} \frac{d t}{(t+r)^{2}}+r \int_{r}^{\infty}\left(\frac{t}{r}\right)^{\lambda+\bar{\delta}} \frac{d t}{(t+r)^{2}} .
\end{aligned}
$$

V can be obtained explicitely.

$$
V=\frac{\pi(\lambda+\delta)}{\sin \pi(\lambda+\delta)}+O(\delta)+O\left(\frac{1}{r}\right) .
$$

Thus $r \rightarrow \infty$ along $\left\{r_{n}\right\}$ implies

$$
1 \leqq U\left\{\frac{\pi(\lambda+\delta)}{\sin \pi(\lambda+\delta)}+O(\delta)\right\}
$$

and then letting $\delta \rightarrow 0$ we have

$$
\begin{aligned}
1 & \leqq U \frac{\pi \lambda}{\sin \pi \lambda}=\left(\frac{\sin \pi \lambda}{\pi \lambda}-\varepsilon\right) \frac{\pi \lambda}{\sin \pi \lambda} \\
& =1-\varepsilon \frac{\pi \lambda}{\sin \pi \lambda}<1,
\end{aligned}
$$

which is a contradiction. Hence Theorem 3 follows.
§4. It is very easy to prove

$$
k(\lambda) \leqq\left\{\begin{array}{lr}
\frac{|\sin \pi \lambda|}{q+|\sin \pi \lambda|}, \quad q<\lambda \leqq q+\frac{1}{2}, & q: \text { integer }, \\
\frac{|\sin \pi \lambda|}{q+1}, & q+\frac{1}{2}<\lambda \leqq q+1, \\
\hline: \text { integer }
\end{array}\right.
$$

Consider the Lindelöf function $f(z ; \lambda)$ already defined. In this case $\lambda \geqq 1$. Consider $f(z ; \lambda) y^{n}-f(z ; \lambda)+1=0$. Evidently we have

$$
\begin{aligned}
K(y) & =K(f(z ; \lambda))=1-\delta(0, f(z ; \lambda)) \\
& =\left\{\begin{array}{l}
\frac{|\sin \pi \lambda|}{q+|\sin \pi \lambda|}, \quad q \leqq \lambda \leqq q+\frac{1}{2}, \quad q=[\lambda], \\
\frac{|\sin \pi \lambda|}{q+1}, \quad q+\frac{1}{2}<\lambda<q+1, \quad q=[\lambda] .
\end{array}\right.
\end{aligned}
$$

Thus we have

$$
k(\lambda) \leqq K(y),
$$

which is the desired result.
§5. It should be remarked that theorems 2 and 3 can be formulated by making use of the lower order μ instead of the order λ. We shall not give any proof of them here.
§ 6. By the way we shall give a supplementary fact to our previous result [5].
Theorem 4. Let y be a two-valued entire algebroid function of order λ (or of lower order μ) $0 \leqq \lambda \leqq 1$ (or $0 \leqq \mu \leqq 1$). Suppose that there are three finite different values a_{1}, a_{2}, a_{3} satisfying

$$
\delta\left(a_{1}, y\right)+\delta\left(a_{2}, y\right)+\delta\left(a_{3}, y\right)>2 .
$$

Then $\lambda>5 / 6$ (or $\mu>5 / 6$).
Proof. By the previous result in [8] we have

$$
\delta\left(a_{1}, y\right)=1, \quad \delta\left(a_{2}, y\right)=\delta\left(a_{3}, y\right)>\frac{1}{2}
$$

for example. Hence by corollary 1 for $1 / 2 \leqq \lambda \leqq 1$

$$
\frac{5}{2}<\delta(\infty, y)+\delta\left(a_{1}, y\right)+\delta\left(a_{2}, y\right) \leqq 3-\sin \pi \lambda .
$$

Thus

$$
\sin \pi \lambda<\frac{1}{2} .
$$

This implies $\lambda>5 / 6$. For $0 \leqq \lambda<1 / 2$

$$
\delta(\infty, y)+\delta\left(a_{1}, y\right)+\delta\left(a_{2}, y\right) \leqq 2
$$

by corollary 1 , which is untenable.
This is best possible. Consider again $f(z ; \lambda)$. Then the two-valued entire algebroid function y defined by

$$
y^{2}+f(z ; \lambda) y-1=0
$$

satisfies $\delta(0, y)=1, \delta(1, y)=\delta(-1, y)=1-\sin \pi \lambda$ for $\lambda>1 / 2$. Then

$$
\delta(0, y)+\delta(1, y)+\delta(-1, y)=3-2 \sin \pi \lambda>2
$$

if and only if $5 / 6<\lambda \leqq 1$.
We can prove a similar result for the three-valued case.

References

[1] Cartan, H., Sur les zéros des combinaisons linéaires de p fonctions holomorphes données. Mathematica 7 (1933), 5-33.
[2] Edrei, A., and W. H. J. Fuchs, On the growth of meromorphic functions with several deficient values. Trans. Amer. Math. Soc. 93 (1959), 292-328.
[3] Edrei, A., and W. H. J. Fuchs, The deficiencies of meromorphic functions of order less than one. Duke Math. Journ. 27 (1960), 233-250.
[4] Nevanlinna, R., Le théorème de Picard-Borel et la théorie des fonctions méromorphes. Paris (1929).
[5] Ninno, K., and M. Ozawa, Deficiencies of an entire algebrord function. Kōdaı Math. Sem. Rep. 22 (1970), 98-113.
[6] Ozawa, M., On the growth of algebroid functions with several deficiencies. Kōdaı Math. Sem. Rep. 22 (1970), 122-127.
[7] Toda, N., Sur une relation entre la croissance et le nombre de valeurs déficientes des fonction algébroïdes ou de systèmes. Kōda1 Math. Sem. Rep. 22 (1970), 114-121.
[8] Valiron, G., Sur la dérıvée des fonctions algébroïdes. Bull. Soc. Math. 59 (1931), 17-39.

Department of Mathematics, Tokyo Institute of Technology.

