ON THE GROWTH OF ALGEBROID FUNCTIONS WITH SEVERAL DEFICIENCIES

By Mitsuru Ozawa

In this paper we shall generalize some results on the growth of meromorphic functions with several dedicient values to n-valued algebroid functions. EdreiFuchs [1] had given several striking results on the growth of meromorphic functions.

Let $y(z)$ be an n-valued transcendental algebroid function defined by an irreducible equation

$$
F(z, y) \equiv A_{n} y^{n}+A_{n-1} y^{n-1}+\cdots+A_{1} y+A_{0}=0,
$$

where A_{n}, \cdots, A_{0} are entire functions. Here we assume that there is no common zero for all $A_{j}, j=0, \cdots, n$. If $A_{n} \equiv 1$, then $y(z)$ is called an n-valued entire algebroid function.

Theorem 1. Let $y(z)$ be an n-valued transcendental entire algebroid function with n finite deficient values $a_{j}, j=1, \cdots, n$. Then the lower order of $y(z)$ is positive.

Theorem 2. Let $y(z)$ be an n-valued transcendental algebroid function. Assume that there is a constant α such that

$$
\alpha m(r, A) \leqq n \mu(r, A), \quad 0<\alpha \leqq 1 .
$$

Assume that there are $n+1$ deficient values $a_{j}, j=1, \cdots, n+1$ of y. Then the lower order of y is positive.

Here $A=\max \left(\left|A_{n}\right|,\left|A_{n-1}\right|, \cdots,\left|A_{1}\right|,\left|A_{0}\right|\right)$ and

$$
n \mu(r, A)=\frac{1}{2 \pi} \int_{0}^{2 \pi} \log A d \theta, \quad m(r, A)=\frac{1}{2 \pi} \int_{0}^{2 \pi} \log A d \theta
$$

Theorem 3. Let $y(z)$ be an n-valued transcendental entire algebroid function of finite order λ. Assume that $y(z)=a_{j}, j=1, \cdots, n$ have their roots only on the negative real axis. Then the lower order μ of $y(z)$ satisfies $\mu \leqq \lambda \leqq \mu+1$.

Theorems 1 and 2 are generalizations of Edrei-Fuchs' theorem 4, Corollary 4.1 in [1]. Theorem 3 is an extension of Shea's theorem 2 in [3].

The following fact gives several extensions of Edrei-Fuchs' theorems to entire algebroid functions: For an entire algebroid function y

$$
\delta(a, y) \geqq \delta(0, F(z, a)) .
$$

This is almost trivial. By Valiron's theorem [5]
Received November 6, 1969.

$$
|T(r, y)-\mu(r, A)|=O(1)
$$

Further we have

$$
n \mu(r, A)=m(r, A)
$$

for y and hence

$$
n \mu(r, A)=m(r, A) \geqq m(r, F(z, a)) .
$$

Therefore

$$
\begin{aligned}
1-\delta(a, y) & =\varlimsup_{r \rightarrow \infty} \frac{N(r ; a, y)}{T(r, y)} \\
& \leqq \varlimsup_{r \rightarrow \infty} \frac{N(r ; 0, F(z, a))}{m(r, F(z, a))} \varlimsup_{r \rightarrow \infty} \frac{m(r, F(z, a))}{m(r, A)} \\
& \leqq 1-\delta(0, F(z, a)) .
\end{aligned}
$$

§ 1. Proof of Theorem 1. Let $F\left(z, a_{j}\right)$ denote by g_{j}. Edrei-Fuchs' argument does work in our case. They proved the following inequality: For $z=r e^{i \theta}$ and $R=\sigma r, \sigma>1$
(A) $\quad \log \left|g_{j}(z)\right| \leqq N\left(R ; 0, g_{j}\right)+\frac{2}{\sigma-1}\left(m\left(R, g_{j}\right)+m\left(R, \frac{1}{g_{j}}\right)\right)+O(\log r)$.

Starting from (A) we have

$$
\log \left|g_{j}(z)\right| \leqq N\left(R ; 0, g_{j}\right)+\frac{4}{\sigma-1} m\left(R, g_{j}\right)+O(\log r)
$$

Hence

$$
\begin{aligned}
& \max _{1 \leq j \leq n}\left(\log \left|g_{j}(z)\right|, 0\right) \\
\leqq & \frac{4}{\sigma-1} \max _{1 \leq j \leq n} m\left(R, g_{j}\right)+\max _{1 \leq j \leqq n} N\left(R ; 0, g_{j}\right)+O(\log r) .
\end{aligned}
$$

Let g be

$$
\max _{1 \leq j \leqq n}\left(\left|g_{j}(z)\right|, 1\right)
$$

Then

$$
\begin{aligned}
\log g & \leqq c+\max _{0 \leqq j \leqq n-1}\left(\log \left|A_{j}\right|, 0\right)=c+\log A \\
& \leqq d+\log g .
\end{aligned}
$$

Hence

$$
m(r, g) \leqq n \mu(r, A)+O(1) \leqq m(r, g)+O(1)
$$

Further by Valiron's theorem

$$
T(r, y)-\mu(r, A)=O(1)
$$

Hence

$$
m(r, g) \leqq \frac{4}{\sigma-1} \max _{1 \leq\lrcorner \leq n} m\left(R, g_{j}\right)+\max _{1 \leq \jmath \leq n} N\left(R ; 0, g_{j}\right)+O(\log r) .
$$

Since

$$
\begin{aligned}
m\left(R, g_{j}\right) & \leqq m(R, g), \\
m(r, g) & \leqq \frac{4}{\sigma-1} m(R, g)+\max _{1 \leqq j \leqq n} N\left(R ; 0, g_{j}\right)+O(\log r) .
\end{aligned}
$$

Let γ be the maximum of $1-\delta\left(a_{j}, y\right), j=1, \cdots, n$. Let c^{\prime}, c satisfy

$$
r<c^{\prime}<c<1 .
$$

Then for $r \geqq r_{0}$

$$
\begin{aligned}
\frac{1}{n} N\left(R ; 0, g_{j}\right) & <c^{\prime} T(R, y) \\
& \leqq c^{\prime} \frac{1}{n} m(R, g)+O(1) .
\end{aligned}
$$

Thus for $r \geqq r_{1} \geqq r_{0}$

$$
\begin{aligned}
m(r, g) & \leqq\left(\frac{4}{\sigma-1}+c^{\prime}+\frac{A \log r}{m(R, g)}\right) m(R, g) \\
& <\left(\frac{4}{\sigma-1}+c\right) m(R, g)
\end{aligned}
$$

Hence

$$
\frac{m(\sigma r, g)}{m(r, g)}>\frac{1}{\frac{4}{\sigma-1}+c}
$$

Here we put

$$
\sigma=1+\frac{4}{c(1-c)}
$$

Then

$$
\frac{m(\sigma r, g)}{m(r, g)}>\frac{1}{c(2-c)}
$$

This implies

$$
\frac{m\left(\sigma^{n} r^{*}, g\right)}{m\left(r^{*}, g\right)}=\prod_{k=1}^{n} \frac{m\left(\sigma^{k} r^{*}, g\right)}{m\left(\sigma^{k-1} r^{*}, g\right)}>\left\{\frac{1}{c(2-c)}\right\}^{n}
$$

Let r satisfy $\sigma^{n} r^{*} \leqq r<\sigma^{n+1} r^{*}$. Then

$$
\begin{aligned}
\frac{\log m(r, g)}{\log r} & >\frac{\log m\left(\sigma^{n} r^{*}, g\right)}{\log \rho^{n+1} r^{*}} \\
& >\frac{n \log \frac{1}{c(2-c)}+\log m\left(r^{*}, g\right)}{(n+1) \log \sigma+\log r^{*}}
\end{aligned}
$$

$$
\begin{aligned}
\mu & =\lim _{r \rightarrow \infty} \frac{\log T(r, y)}{\log r}=\lim _{r \rightarrow \infty} \frac{\log m(r, g)}{\log r} \\
& \geqq \frac{\log \frac{1}{c(2-c)}}{\log \sigma}
\end{aligned}
$$

Here by letting $c \rightarrow \gamma$ Theorem 1 follows.
§ 2. Proof of Theorem 2. For a general n-valued algebroid function it appears a new difficulty. As in $\S 1$ we have

$$
\max _{1 \leq j \leq n+1} \log \left|g_{j}(z)\right| \leqq \max _{1 \leq j \leq n+1} N\left(R ; 0, g_{j}\right)+\frac{4}{\sigma-1} \max _{1 \leq j \leq n+1} m\left(R, g_{j}\right)+O(\log r) .
$$

Hence for $r \geqq r_{0}$

$$
\begin{aligned}
n \mu(r, A) & \leqq n \mu(r, g)+O(1) \\
& \leqq c^{\prime} n \mu(R, A)+\frac{4}{\sigma-1} m(R, g)+O(\log r),
\end{aligned}
$$

where

$$
A=\max _{0 \leqq j \leqq n}\left|A_{j}\right|, \quad g=\max _{1 \leqq j \leqq n+1}\left|g_{j}\right| .
$$

Since

$$
\begin{gathered}
n \mu(r, A) \leqq m(r, A) \leqq n \mu(r, A) / \alpha \\
m(r, g) \leqq m(r, A)+O(1) \leqq n \mu(r, A) / \alpha+O(1)
\end{gathered}
$$

Hence

$$
n \mu(r, A) \leqq c^{\prime} n \mu(R, A)+\frac{4}{\sigma-1} \frac{1}{\alpha} n \mu(R, A)+O(\log r)
$$

Now the same process as in $\S 1$ does work. Hence we have the desired result.
By Tsuzuki's example [4] there is an algebroid function satisfying

$$
\varliminf_{r \rightarrow \infty} \frac{n \mu(r, A)}{m(r, A)}=0 .
$$

In this case we cannot carry out our discussion as in the above. However it is still conjectured that Theorem 2 without the assumption $n \mu(r, A) \geqq \alpha m(r, A), 0<\alpha \leqq 1$ does hold.

In our previous paper [2] we gave several sufficient conditions for $\alpha m(r, A)$ $\leqq n \mu(r, A), 0<\alpha \leqq 1$.
§ 3. Proof of Theorem 3. If $\lambda \leqq 1$, then the result remains true trivially. Assume that $\lambda>1$. Let

$$
F\left(z, a_{j}\right)=e^{Q_{j(z)} g_{j}(z)},
$$

where $g_{j}(z)$ is the canonical product formed by the zeros of $F\left(z, a_{j}\right)$. Let q_{j} be the genus of $F\left(z, a_{j}\right)$ and d_{ρ} the degree of $Q_{j}(z)$. Put $q=\max q_{j}, d=\max d_{j}$. Let s_{j} be the genus of $g_{j}(z)$. Put $s=\max s_{j}$. Firstly we have

$$
\begin{aligned}
\lambda & =\varlimsup_{r \rightarrow \infty} \frac{\log m(r, y)}{\log r}=\varlimsup_{r \rightarrow \infty} \frac{\log m\left(r, \max \left|F\left(z, a_{j}\right)\right|\right)}{\log r} \\
& \leqq \varlimsup_{r \rightarrow \infty} \frac{\log \sum_{j=1}^{n} m\left(r, F\left(z, a_{j}\right)\right)}{\log r} \\
& \leqq \max \varlimsup_{r \rightarrow \infty} \frac{\log m\left(r, F\left(z, a_{j}\right)\right)}{\log r} \equiv \max \lambda_{j} .
\end{aligned}
$$

Further evidently $\lambda_{j} \leqq \lambda$. Hence $\max \lambda_{j}=\lambda$. By the well-known theorem $q_{j} \leqq \lambda_{j}$ $\leqq q_{j}+1$. Hence $q \leqq \lambda \leqq q+1$. By the definition of genus

$$
q_{j}=\max \left(d_{j}, s_{j}\right) .
$$

Thus

$$
q=\max (d, s)
$$

Assume that $d \leqq s$. Hence $q=s$. Since $\lambda>1$ and q is an integer, $s=1$. Then there is an index k such that $s_{k}=s$. Applying Edrei-Fuchs' argument in [1], Theorem 2 , we have

$$
\begin{aligned}
& \lim _{r \rightarrow \infty} \frac{m\left(r, F\left(z, a_{k}\right)\right)}{r^{s_{k}}}=\infty, \\
& \lim _{r \rightarrow \infty} \frac{m\left(r, F\left(z, a_{k}\right)\right)}{r^{s_{k}+1}}=0 .
\end{aligned}
$$

This implies that, putting μ_{k} the lower order of $m\left(r, F\left(z, a_{k}\right)\right)$,

$$
\lambda_{k} \leqq s_{k}+1, \quad \mu_{k} \geqq \mathrm{~S}_{k} .
$$

Evidently

$$
\mu \geqq \max \mu_{j} \geqq \mu_{k} \geqq s_{k}=s .
$$

Hence

$$
q=s \leqq \mu \leqq \lambda \leqq q+1 .
$$

Therefore

$$
\mu \leqq \lambda \leqq \mu+1 .
$$

Next assume that $d>s$. Then $q=d>s \geqq 0$. Evidently $\lambda=d$. Since s and d are
integers, $d=s+1$. However by the well-known property of canonical product

$$
m\left(r, g_{j}\right)=o\left(r^{s+1}\right), \quad j=1, \cdots, n
$$

On the other hand

$$
m\left(r, e^{\left.Q_{j}\right)}=\frac{\left|A_{j}\right|}{\pi} r^{d_{j}(1+o(r)), ~}\right.
$$

where $A_{j} z^{a_{j}}+\cdots=Q_{j}(z)$. Thus for some k

$$
m\left(r, e^{Q k}\right)=c r^{d}(1+o(r)) .
$$

Thus

$$
m\left(r, g_{j}\right)=o\left(m\left(r, e^{\left.Q_{k}\right)}\right)\right.
$$

Therefore

$$
\mu=d=\lambda .
$$

In this case Theorem 3 follows.
Shea's formulation is somewhat different. However his formulation is equivalent to ours. Further theorem 1 implies the positivity of μ.

References

[1] Edrei, A., and W. H. J. Fuchs, On the growth of meromorphic functions with several deficient values. Trans. Amer. Math. Soc. 93 (1959), 292-328.
[2] Ozawa, M., Deficiencies of an algebroid function. Kōdai Math. Sem. Rep. 21 (1969), 262-276.
[3] Shea, D. F., On the Valiron deficiencies of meromorphic functions of finite order. Trans. Amer. Math. Soc. 124 (1966), 201-227.
[4] Tsuzuki, M., On the characteristıc of an algebroid function. Kōdai Math. Sem. Rep. 21 (1969), 277-280.
[5] Valiron, G., Sur la dérivée des fonctions algébroïdes. Bull. Soc. Math. 59 (1931), 17-39.

