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ON THE GROWTH OF ALGEBROID FUNCTIONS WITH
SEVERAL DEFICIENCIES

BY MlTSURU OZAWA

In this paper we shall generalize some results on the growth of meromorphic
functions with several dedicient values to ^-valued algebroid functions. Edrei-
Fuchs [1] had given several striking results on the growth of meromorphic
functions.

Let y(z) be an ^-valued transcendental algebroid function defined by an irre-
ducible equation

F(z,y)Ξ=Any
n-\-An-1y

n-1+~ +A1y+Ao=Q,

where An, ,A0 are entire functions. Here we assume that there is no common
zero for all A3,j=§, ~ ,n. If An=l, then y(z) is called an n-valued entire algebroid
function.

THEOREM 1. Let y(z) be an n-valued transcendental entire algebroid function
with n finite deficient values cij, j=l, --,n. Then the lower order of y(z) is positive.

THEOREM 2. Let y(z) be an n-valued transcendental algebroid function. Assume
that there is a constant a such that

am(r, A)^nμ(r, A),

Assume that there are n+l deficient values ajf j=l, ,n+l of y. Then the lower
order of y is positive.

Here A=mzx(\An\, |A»_ι|, •••, \Aι\, |A>|) and

nμ(ry A) = ~ Γ log A dθ, m(r, A)=-£- Γ log A dθ.
Aπ Jo £κ Jo

THEOREM 3. Let y(z) be an n-valued transcendental entire algebroid function
of finite order λ. Assume that y(z)=aj, j=l., ,n have their roots only on the
negative real axis. Then the lower order μ of y(z) satisfies μ^λ^μ+l.

Theorems 1 and 2 are generalizations of Edrei-Fuchs' theorem 4, Corollary 4. 1
in [1]. Theorem 3 is an extension of Shea's theorem 2 in [3].

The following fact gives several extensions of Edrei-Fuchs' theorems to entire
algebroid functions: For an entire algebroid function y

This is almost trivial. By Valiron's theorem [5]
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Further we have

nμ(r, A)=m(r, A)

for y and hence

nμ(r, A)=m(r, A)^m(r, F(z> #)).

Therefore

AΓ(r; 0, j/)

JV(r 0, FQg, g)) — m(r, Ffe g))
= r"~ m(r,F(z,ά))

^il—<5(0, F(z, a)).

% 1. Proof of Theorem 1. Let F(z, aj) denote by g3. Edrei-Fuchs' argument
does work in our case. They proved the following inequality: For z=reίθ and

(A) log \gj(z)\ ^N(R; 0, gj)+ —~ (m(R, gj) + m (R, —}} +0(log r).
σ—1 \ \ Qj II

Starting from (A) we have

l°g \gj(z)\ =N(R', 0, gj)-\ ^-m(Ry flf,/)+O(log r).
a—1

Hence

max (log Ig/z)|,0)

^_A

Let g be

Then

j^c+ max (log\Aj\,Q)=c+logA

Hence

Further by Valiron's theorem

T(r,y)-μ(r,A)=0(V.

Hence
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m(r, g) ̂  - =- max m(R, gj) + max N(R; 0, gj)+O(log r).
~

Since

m(r, g) rg
9 g) + max N(R; 0, gj)+O(log r).

Let ^ be the maximum of 1— δ (aj, y), j=l, ~,n. Let cr, c satisfy

Then for

Thus for

Hence

Here we put

m(σr,g)

σ—1
i c

Then

This implies

m(σr,g)
c(2-cY

m(r*> g) * ι wζσ*-^ *, g

Let r satisfy σnr*^r<σn+1r*. Then

logm(r,g) log mfoV*, g)
log r log /)»+1r*

n log _ + log m(r*, g)
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log Γ(r, y) log m(r, g)
=hm —

£= logr

1

logr

log
c(2-c)

logo-

Here by letting c-*γ Theorem 1 follows.

§ 2. Proof of Theorem 2. For a general ^-valued algebroid function it appears
a new difficulty. As in § 1 we have

max

Hence for

^ max max m(R,gj)+O(logr).

r),

where

Since

Hence

m(r, g)^

nμ(r, A)^c'n

= max

^nμ(r, A)/a,

—
Oί ί A)+O(logr).

Now the same process as in § 1 does work. Hence we have the desired result.
By Tsuzuki's example [4] there is an algebroid function satisfying

,. nμ(r,A) Λlim , Λ( =0-7=zz m(r,A)

In this case we cannot carry out our discussion as in the above. However it is
still conjectured that Theorem 2 without the assumption nμ(r, A)^am(r, A), 0<α^l
does hold.

In our previous paper [2] we gave several sufficient conditions for #m(r, A)
^nμ(r,A), (Kα gl.

§3. Proof of Theorem 3, If λ^l, then the result remains true trivially.
Assume that Λ>1. Let
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where ςr/z) is the canonical product formed by the zeros of F(z, aj). Let qj be
the genus of F(z,dj) and d3 the degree of Qj(z). Put q=maxqjt d=maxdj. Let
sj be the genus of QJ(Z). Put s= max Sj. Firstly we have

log f»(r, y) «— log m(r, max |F(z, αy)|)
/= lim — - = lim-

logr r-*oo logr

^ « — log m(r, F(, *
^ max lim — - — V — =max λj.

r-»oo log r

Further evidently λ^λ. Hence max^=λ By the well-known theorem
^̂ •+1. Hence q^λ^q+l. By the definition of genus

Thus

^=max (d, s)

Assume that d^s. Hence q=s. Since λ>l and q is an integer, s=l. Then there
is an index k such that sfc=s. Applying Edrei-Fuchs' argument in [1], Theorem
2, we have

m(r,F(z,αk))
lιm - ̂  - =00'r-»oo 7 Λ

m(r,F(z,αk))
lιm - ̂ Fϊ - =α

r-»oo / Λ

This implies that, putting μk the lower order of m(r, F(z,

Evidently

Hence

Therefore

Next assume that d>s. Then ^=^>5^0. Evidently ^=(/f Since $ and ^ are
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integers, d= 5+1. However by the well-known property of canonical product

*»(r, Qj)=o(rs+1), j=l, •••, n.

On the other hand

m(r, e^)=
7Γ

where AjZdί+ =Qj(z). Thus for some

m(r,eQ*)=c

Thus

Therefore

In this case Theorem 3 follows.

Shea's formulation is somewhat different. However his formulation is equiva-
lent to ours. Further theorem 1 implies the positivity of μ.
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