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ON THE GROWTH OF ALGEBROID FUNCTIONS WITH
SEVERAL DEFICIENCIES

By Mrrsuru OzAwA

In this paper we shall generalize some results on the growth of meromorphic
functions with several dedicient values to n-valued algebroid functions. Edrei-
Fuchs [1] had given several striking results on the growth of meromorphic

functions.
Let y(2) be an n-valued transcendental algebroid function defined by an irre-

ducible equation
F@z9)=A"+Anay™ 4 Ay + A0 =0,
where A,, -+, A, are entire functions. Here we assume that there is no common

zero for all A,, j=0,.--,n. If A,=1, then y(z) is called an #n-valued entire algebroid
function.

THEOREM 1. Let y(z) be an n-valued transcendental entive algebroid function
with n finite deficient values a,, =1, ---,n. Then the lower order of y(z) is positive.

THEOREM 2. Let y(2) be an n-valued transcendental algebroid function. Assume
that there is a constant o such that

am(r, A)=nu(r, A), 0<a=l.

Assume that there are n+1 deficient values a,, j=1,---,n+1 of y. Then the lower

order of y is positive.
Here A=max (|Aql, |An-il, -+, | A1), |Ao]) and

1 2z 1 2z +
npr, Ay =5 So log Ads,  mlr, A= SO log A db.

THEOREM 3. Let y(2) be an n-valued transcendental entive algebroid function
of finite order A. Assume that y(2)=a,, j=1,---,n have their roots only on the
negative real axis. Then the lower order p of y(2) satisfies p=A=p+1.

Theorems 1 and 2 are generalizations of Edrei-Fuchs’ theorem 4, Corollary 4.1
in [1]. Theorem 3 is an extension of Shea’s theorem 2 in [3].
The following fact gives several extensions of Edrei-Fuchs’ theorems to entire

algebroid functions: For an entire algebroid function y
aa, y)=a0, F(z, a)).

This is almost trivial. By Valiron’s theorem [5]

Received November 6, 1969.
122



GROWTH OF ALGEBROID FUNCTIONS 123
|T(r, y)— plr, A)|=0Q).
Further we have
nu(r, A)=m(r, A)
for y and hence

nu(r, A)=m(r, A)=m(r, F'(z, @)).

Therefore
_— N(r;a,9)
1=day) = 1123 T(r,v)

<Tm N(;0,F(2,a)) —— m(r, F (2, a))
= M, Fz, @) e m(r, A)
=1-0d(0, F(z, a)).
§1. Proof of Theorem 1. Let F(z, ;) denote by g¢,. Edrei-Fuchs’ argument
does work in our case. They proved the following inequality: For z=re* and
R=or, 6>1

B g lu@I=NR; 0,0+ 5o (mR, g)+m (R, —=))+Oog ).
J

Starting from (A) we have

4
log |9:(I=N(R; 0, g)+ ——m(R, 9;)+O(log 7).

Hence
max (log |g;(2)l, 0)
1sjsn
= { max m(R, g;)+ max N(R; 0, g;)+0O(og 7).
o— isj=sn 1=sjsn
Let g be
max (|g;(2)|, 1).
15jsn
Then
log g=c+ max (log |4;],0)=c+log A
0sjsn—1
=d+logg.
Hence

m(r, g)=np(r, A)+01)=m(r, 9)+O0(1).
Further by Valiron’s theorem
T(f, y)— ﬂ(r’ A) =O(1)-

Hence
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max m(R, g;)+ max N(R; 0, g;)+0(og 7).
sJ=n 1=ys=n

4
mr, 9) =~ I

Since
m(R: gi)§m(R’ g)’
4
m(r, g) = p— m(R, g) + max N(R; 0, g;)+0(log r).
g— 1<ysn

Let 7 be the maximum of 1—6 (aj;,%), j=1, -, 5. Let ¢/, ¢ satisfy

r<c’<c<1.
Then for r=r,

L N(®;0,0)<c'T(R,v)
=o' > m(R, 0)+0(0).
Thus for r=r=7r

4 ,, Alogr
m(r, g)§<a—1 +c'+ pg)

)0

< (-(:—1 —I-C)m(R, 9).

Hence
mr,g) 1
mrno) 4,
a—1
Here we put
4
o=1+ o
Then
m(at, 9) 1

m(r,g) ~ c@2—c)
This implies

m(a"r*,g) =~ mler*, g) { 1 }"
m(r*,g)  p=1m(c* 7%, g) c@—c) ]

Let 7 satisfy o"r*=r<e¢™*'r*. Then

log m(r, 9) _ log m(c"r*, g)
log r log on+iy*

1 k
nlog—c(—Z_—C)-l—lOg m(r*, g)

(n+1) log 0+log r*

>

b
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. logT(rv) . log mf(r, g)
#=lim =lim
o log e logr
10 L
€ Co—o) c(2—c)
" loge

Here by letting ¢—y Theorem 1 follows.

§2. Proof of Theorem 2. For a general n-valued algebroid function it appears
a new difficulty. As in § 1 we have

4
max log |g;(2)|=  nax N(R 0, g;)+—— max (R, g;)+0(log ).

15jsn+1 si= —1 1gjgnh
Hence for r=7,

np(r, A)=np(r, 9)+0(1)

=c'np(R, A)+—2 m(R, 0)+0(1og 7

where
A=£;§’5|A"[’ g=1§jrn§e}3illgjl-
Since
nu(r, A)=m(r, A)=nu(r, A)la,
m(r, g)=m(r, A)+O0) =nu(r, A)la+0Q1).
Hence

4
nyu(r, A)=c'nu(R, A)+ Y % nu(R, A)+0(log 7).

Now the same process as in §1 does work. Hence we have the desired result.
By Tsuzuki’s example [4] there is an algebroid function satisfying

i T A)

7o m(r, A) =0.

In this case we cannot carry out our discussion as in the above. However it is
still conjectured that Theorem 2 without the assumption nu(r, A)=am(r, A), 0<a=1
does hold.

In our previous paper [2] we gave several sufficient conditions for ami(r, A)
=np(r, A), 0<a=1.

§3. Proof of Theorem 3. If i=<1, then the result remains true trivially.
Assume that 2>1. Let
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F(z, aj)=e@gy(2),

where g;(z) is the canonical product formed by the zeros of F(z, a;). Let g; be
the genus of F(z,a;) and d, the degree of Q;(z). Put g=maxgq,, d=maxd, Let
s; be the genus of g;(z). Put s=maxs;. Firstly we have

1= h—;—n IOg m(r’ y) — h_m lOg m(r, max |F(Z, aj)])
roe  logr or0 log r

log 3. mlr, F(z, a)

[im
= log r
=maxim log m(lg gF:z, a5)) =max ;.

Further evidently 4;=<A. Hence max 1;=A. By the well-known theorem ¢,=<2,
=gq;+1. Hence g=21=q+1. By the definition of genus

g;=max (dj, sy)-
Thus

g=max (d, s)

Assume that d=s. Hence g=s. Since 2>1 and ¢ is an integer, s=1. Then there
is an index k such that sy=s. Applying Edrei-Fuchs’ argument in [1], Theorem
2, we have

mr, & a) ___

rE ’

lim

700

m(r, F(z ar) _

rsk+1

lim 0.

r—00

This implies that, putting u the lower order of mu(r, F(z, ax)),

A=sx+1, Ue=Sk.

Evidently
pZMAX pj= = S;=S.
Hence
q=s=p=i=q+1.
Therefore

p=Asp+l
Next assume that d>s. Then ¢g=d>s=0. Evidently i=4. Since s and d are
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integers, d=s+1. However by the well-known property of canonical product

m(r, g))=0(r**"),  j=1,--,n.

On the other hand

|4y

T

m(r, )= r4(14-o(r)),

where A;z%+-..-=Q;(z). Thus for some k&

Thus

m(r, e@6)=cr¥(1+4o(r)).

m(r, g;)=0(m(r, e?)).

Therefore

p=d=2

In this case Theorem 3 follows.

Shea’s formulation is somewhat different. However his formulation is equiva-
lent to ours. Further theorem 1 implies the positivity of px.
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