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SUBMANIFOLDS OF CODIMENSION 2 OF A EUCLIDEAN SPACE
By KEnNTARO YANO AND MARIKO TANI

The main purpose of the present paper is to generalize, to the case of submani-
folds of codimension 2, a famous theorem of Liebmann [1] and Siiss [3]: The only
convex hypersurface of a Euclidean space with constant mean curvature is a
sphere.

In §1, we recall fundamental concepts and formulas for submanifolds of codi-
mension 2 of a Euclidean space assuming that the mean curvature vector field
never vanishes and taking it as the first normal to the submanifolds.

In §2, we prove integral formulas for general submanifolds of codimension 2
of a Euclidean space.

§ 3 is devoted to the study of submanifolds whose mean curvature vector field
is parallel with respect to the connection induced in the normal bundle.

In the last section 4, we study submanifolds which admit a normal vector field
passing through a fixed point.

§1. Preliminaries.

Let E be an (rz+2)-dimensional Euclidean space and X the position vector (_)_f’
representing a point P of E, O being the origin. Let S be an x-dimensional C=
differentiable closed and orientable manifold covered by a system of coordinate
neighborhoods {U; z"} and imbedded in E with C= differentiable imbedding map
i S—FE, where and in the sequel the indices 4,17, &k, -~ run over the range
{1,2,.,n). We identify S with the submanifold i(S) and refer S sometimes as the
submanifold of E.

Let

11 X=X (z")
be the parametric representation of S and put
1.2 X;=0;X,  0,=0d[0x".

We assume that » linearly independent vectors Xi, X, -+, X, tangent to S give
the positive orientation of S. If we put

1.3 951=X;+ X
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the dot representing the inner product of vectors in E, then g;; are the components
of the metric tensor of S with the Riemannian metric induced from the Euclidean
metric of E.

If we denote by F, the operator of covariant differentiation with respect to the
Christoffel symbols {%} formed with the g¢;;, then we see that the vectors of £

h

1. 4) V,X,=08,X;— ji}Xh

are all normal to the submanifold S and consequently the so-called mean curvature
vector

(1. 5) H= %gﬁV]X@

is an intrinsic normal vector field defined along S.

We assume that the mean curvature vector field A never vanishes along S
and take the first unit normal C of S in the direction of the mean curvature vector
field H. We choose the second normal D of S in such a way that 42 vector
fields X3, Xz, «+, Xu, C, D give the positive orientation of E.

Now, the equations of Gauss of S are

1. 6) V,X,=h;C+kuD,

where % and kj; are components of the second fundamental tensors of S with
respect to unit normals C and D respectively. Since C is in the direction of mean
curvature vector field, we have

(1. 7) gﬁkﬁ:O.

We note here that since C and D are intrinsic normal vector fields of S, /;;
and k7 are also intrinsic tensor fields of S, and consequently

(1. 8) WV ;. X0)=hT*h;C+hitk ;D
and
1.9 kWY, X)=k7h;C+ kIR D

are also intrinsic normal vector fields of S, unless they do not vanish.
The equations of Weingarten are

(1. 10) Vi C=—h!X:+1;D
and

(1.11) ViD=—ksX;—1,C,
where

ht=hg", k)t =k,
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¢ being contravariant components of the metric tensor and /, are the third
fundamental tensor of S.

Now, as integrability conditions of (1.6), (1.10) and (1.11), the equations of
Gauss are

(1. 12) Kkjih:hkhhﬁ—~hjhhki—l—kkhkji—kjhkm,

=l )0l + (L )

are components of the curvature tensor of S, from which

where

(1. 13) Kji=hihyi—hth—Ry ke
and
(1. 14) K=hths’—hthi’ — kRS,

K;; and K being the Ricci tensor and the scalar curvature respectively.
The equations of Codazzi are

1. 15) Vihji—V ihrs— ik i+ Likr =0,
(1. 16) Viksi—V skestlihji—Lihin =0,
which are also written as

1€.1n Vihit—V et — ek -1k =0,
(1. 18) Vikit—V ikt +lch— ik =0,
from which, by contraction,

(1.19) Vbt =V it -+lkyt,

(1. 20) Vikit=—bh,t ik
respectively. Finally the equations of Ricci are

(L 21) Vili—V i+ Ratkeos— b, =0.

§2. Integral formulas.

We write the position vector X in the form

@.1) X=0X;+aC+pD,
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where ¢* is a vector field on the submanifold S and «, f are functions on S.
Differentiating (2. 1) covariantly, we find

X, = v) X+ v(h;:C+k;:D)
—I—(Vja)C—l—a(—-lzsz—!—ljD)
+ 7 ;8)D+ B(— ks X;—1,C),

from which

2.2) V jpr=6i4-ah+ Pk
or

2.3) V ivs=gji-+ahji+ Bkjs,
where v;=g;0", and

@. 4 hyvr+a;— Bl, =0,
2.5) ki~ Bi+al, =0,

where a,=V;a and 8,=F;p.
From (2. 2), we have

2. 6) Vit =n-+ah,

because of k=0, from which, integrating over S and applying Green’s theorem,
we find

2.7 S (n+aht)dS=0,
N
dS being the surface element of S, that is,
dS=n/"g dz* Adz: A+ Adz",

where ¢ is the determinant formed with gj.
For the divergence of %;%’, we have, using (1. 19) and (2. 2),

V i(hjv?)=(F she -+ 1Lk, Yo7+ b0+ ahy! + BRi),
that is,
V(hiv?y=F shé + Lk Y07+ b+ ah™ s BhP ke,
@ 8) S (7 st L, 07+ st -t P+ By AS =0,
s

For the divergence of k,;v?, we have, using (1. 20) and (2. 2),
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Vi(kjv?)=—(lLihst— Lkt v! + k(6] 4 ahd 4 BR:),
that is,
Vi(kitv?)=—(Lihi—Lih" )07+ ahtkis+ RS kys,

from which, integrating over S, we find
2.9 S [(lehst — Pt )07 — ahP ys— PRT s dS=0
S

Also, for the divergence of (&‘hj+kik)v?, we have, using (1. 17), (1. 18), (1. 19),
(1. 20) and (2. 1),

Vil(hsthit 4+ kil Hv ) =V i(hith it 4 ik )vI + (hith 4 Rk 4V 7
= (7 - LYyt A P it 4Lk f— Lot
— Uik —LhORS ke ikt — Lk - R) 07
+ Atk kil 614 ahi? 4 BRi7),
that is,

Vil(hihy'+kitk )] = [% V {(B lus+ B Res) +RitV chi+ R,k ]vf + 1" hest+ kR

(2. 10)
+alls b byt s’ k') + B(hs R Ryt + R kR,

and for the divergence of %:‘h;v?, we have, using (1. 19) and (2. 2),
V(b)) = shhivi+ kW k- Lk v+ hthi 0+ ahd + pRiY),
that is,

2.11) P y(hlthito?)=F h)hivi+ % P ihiths®)+-htlik 07 4 bt (Bt + ah s+ BR°T Rsy).
Thus, subtracting (2. 11) from (2. 10) and integrating over S, we find

Ss [% VW hos+ kP kes— s ) Yo"+ B s+ B Res— huths’
(2. 12)
Fa(bs b b+ s Bkt — BT hse) -+ B(hs Rt - Res R Ry — lz,‘h”ksr)]ds =0

Thus, taking account of (1. 14), we get
Ss [—;- :Ky+K ]dS — Ss laes B P+ BT eyt — b sy

2. 13)
+ B(hs hi’ ket s R Ryt — 1T R )]dS =0
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§3. The case in which the mean curvature vector H is parallel with respect
to the connection induced in the normal bundle.

Take an arbitrary vector field along S

V=2C+uD,
which is normal to S. Then
V. V=—@hi'+ pk) Xi+(0:2—Lip)CH-(0: 0+ 1:2)D,
and consequently, we define the connection ‘7 induced in the normal bundle by
"V id=08,—lip, Vip=0ip+1:A.

If '7;2=0, 'V;u=0, that is, if I,V is tangent to the submanifold S, then we say
that V is parallel with respect to the connection induced in the normal bundle.

In this section, we assume that the mean curvature vector H is parallel with
respect to the connection induced in the normal bundle.

From
V:H=V 1 sy, X —117 hitC
2 —i';g ts—‘;i(t)
[ b Xt (7 i)+ D),
we find
3.1 ht=constant=0, /,=0.

Thus, from (2. 8), we get

3.2) |, U+t prtdds =o.

Thus subtracting (2. 7) multiplied by (1/z)4s° from (3. 2), we obtain
(3.9) ), [ (e %hﬁhs) o Bl 45 =0
or

6ot ol (= L) (e L)+ i koo
S

Thus, if
a>0

and
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Bhkes— akt ki =0,
that is, the vector field k74(V,X;) vanishes, or vectors
R 1 X5) =Nk C+ B ResD
and
X—v!X,=aC+8D
form the positive orientation of the normal bundle, or if
a<0
and
Bhks— akt ki =0,
that is, the vector field &/%FV,X,) vanishes or vector fields A/%(V,X,) and X—v'X,
form the negative orientation of the normal bundle, we have

1
hji— o hig;:=0, k=0,

that is, S is totally umbilical.
Thus, from the equations of Weingarten (1. 10) and (1. 11), we have

(3.5) ViC=— %MX,
and

3. 6) V;D=0,
respectively, from which

3.7 Ct - WX=A4,
3.8 D=5,

A and B being fixed vectors. From (3.7) we obtain
X=rA—1C,

7 being a constant equal to »/Ak¢f, which says that the point X is in a constant
distance r from a fixed point »A. From (3. 8), we have

Vy(X-D)=0,
from which

X-D=constant,
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that is, X lies in a hyperplane.
Thus, S being closed, S must be an #-dimensional sphere. Thus we have

THEOREM 3. 1. Let S be a closed and orvientable submanifold of differentiability
class C= of codimension 2 of an (n+2)-dimensional Euclidean space. If

(1) the mean curvature vector of S never vanishes and is parallel with respect
to the commection induced in the normal bundle,

(ii) a>0, (@<0),

(iii) the vector field k7V ,X,) vanishes, or this vector field and the vector field
X—vtX,=aC+pD form the positive (negative) orientation of the normal bundle,

then S is a spherve of codimension 2.

(See Okumura [2], Yano and Okumura [4].)

§4. The case in which there exists a normal passing through a fixed point.

In this section, we assume that there exists a normal passing through a fixed
point, that is, there exist two scalar functions 2 and g such that

@1 7 (X+1C+pD)=0,
from which
X+ iCHA—hit Xs+1; D)+ jp) D+ p(— k£ X:—1;C) =0,

and consequently

4.2) 9ji—Ahji— pki=0,

4. 3) V ja— pl,=0,

4. 4 V ju+21,=0.
From (4. 2), we find

4. 5) n—2Aht=0,

4. 6) Rt — A hs— phRis=0,

4.7 AR ks pkP ks =0,

Equation (4. 5) shows that 2 and % never vanish.
From (4. 3) and (4. 4), we find

VAV sp=0,
that is,
4. 8) 22+ p*=const.

(I) We first assume that the mean curvature of the submanifold is constant,



SUBMANIFOLDS OF CODIMENSION 2 OF A EUCLIDEAN SPACE 73

that is,
4.9 ht=const.=:0.
Then we have, from (4. 5)
4. 10) A=const.=0,
and consequently (4. 8) shows
4. 11) p=const.
Hence, from (4. 4),
4. 12) £,=0.

Thus equations (2. 8) and (2. 9) reduce to

4.13) Ss(lz;‘—l—ah”/m—l—ﬂh‘sk;s) aS=0
and

(. 14) SS (@l PRg)dS =0
respectively.

Since 230, we have, from (4. 2),
W= % (9" — pk")
Substituting this into (4. 14), we find
4. 15) Ss(x,s— )Ry dS=0,

by virtue of ¢®k,;=0. Thus, if 48— pa has constant sign, that is, the concurrent
vector

AC+pD
and the projection of X on the normal space
aC+BD

form the positive orientation or the negative orientation in the normal bundle,
then we have

k¥hs=0,
or

4. 16) kj;=0.
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Thus, we have, from (4. 2)

1
(4. 17) hji= 7 ji-

From (4.16) and (4.17) we can conclude that S is a sphere of codimension 2.

Thus we have

THEOREM 4. 1. Let S be a closed and orientable submanifold of differenti-

ability class C> of codimension 2 of an (n+2)-dimensional FEuclidean space. If

(1) there exists a normal vector field passing through a fixed point,

(ii) the mean curvature is a constant different from zevo,

(ili) the concurrent normal vector field and the projection of the position vector
field on the mormal space form always the positive orientation or the
negative orientation of the normal bundle,

then the submanifold S is a spheve of codimension 2.

(II) We next assume that the scalar curvature of the submanifold is constant,
that is,

(4.18) K=h¢hs— hi'hs — Rkt =const.

We then have, from (2. 13),
4. 19) S [K—a(ls bbb+ hs' kbt — Rt hsy)— Blhs" Bkt ks Rkt — BB ks, )]dS =0.
S
On the other hand, we have, from (4. 5),
(4. 20) ht=2,
2
and consequently, (4.19) can be written as

S [[K—a(lz{hfkr‘ kAR 2 hh)
S

. 21
- ﬁ(hs’hﬁk/ R >]dS= 0.

From (2.7) and (4. 20), we have

S <1+ ﬁ)dszo,
ST

from which, K being a constant,

. 22) Ss [K+ & thd—~hihi— kfkf)]ds:O.
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Thus, subtracting (4. 22) from (4. 21), we obtain

S a[h{hﬁh,‘ ¥ bk — %{(n—kl)h"lzsr n /e"ksr—ht%s‘}]ds
S
4. 23)
n S 8 [Izs%ﬁkr‘ Rt~ Ry ]dSzO.
S

On the other hand, from (4. 2), we have
1
B’ = - (05— peks”),
2 being different from zero, from which
I ltt: —7%7
2
ST 1 2 T
W hg= 72— (n+/£ R Rsr),
Ik =— £ khar,
1 r
hs bl = - (n+3p2k ke — 1°ksRR,Y),
hs'hik,t = 5—2 (— 285kt pks kRS,
1 r
hsThik, = T (B5Tksy— pks RCR,).
Substituting these into (4. 23), we find
1 25LSr 3L TLSL U 1 ST TLS8L U
Sa _23-(”4‘3,11 RS ksr — Y ks ki ReY)+ T(k ksr—‘,llks ki)
1

1 2
- 7‘—2—2—(n+1)(n+ (25 R+ B By — —’;—}]ds

o] 2bh b R RO SRR Jas=o

or

75
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9,2
_ S a[% B R+ 7‘:_ 2+ ﬂz)k,’kﬁk,‘]ds
S

+ SS 8 [xi (=2 e+ %(l“r#z)ks'kfk/]dS:O,

or, 224 yu* being a constant,

A3 s

(n—Z)S B—p pk"ksrdS—l-(/'lz—i-yZ)S —lﬁ;ik,’kfkr‘ds=0
S

Thus, if #>2, k'k’k, =0 and Au(2f—pa) has constant sign, we have

kji=0
and consequently
1
hji= 7!]1@'

and S is a sphere of codimension 2. Thus we have

TueoreM 4. 2. Let S be a closed and orientable submanifold of differentiability
class C> of codimension 2 in an (n+2)-dimensional Euclidean space, (n>2).

(1) there exists a novmal vector field passing through a fixed point,

(ii) the scalar curvature of the submanifold is constant and ks k’k,=0,
(iii) ke vector fields AC+puD and aC+BD are situated in such a way that

Ap(AB— pa)

has constant sign,
then S is a sphere of codimension 2.
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