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SUBMANIFOLDS OF CODIMENSION 2 OF A EUCLIDEAN SPACE

BY KENTARO YANO AND MARIKO TANI

The main purpose of the present paper is to generalize, to the case of submani-
folds of codimension 2, a famous theorem of Liebmann [1] and Sίiss [3]: The only
convex hypersurface of a Euclidean space with constant mean curvature is a
sphere.

In § 1, we recall fundamental concepts and formulas for submanifolds of codi-
mension 2 of a Euclidean space assuming that the mean curvature vector field
never vanishes and taking it as the first normal to the submanifolds.

In § 2, we prove integral formulas for general submanifolds of codimension 2
of a Euclidean space.

§ 3 is devoted to the study of submanifolds whose mean curvature vector field
is parallel with respect to the connection induced in the normal bundle.

In the last section 4, we study submanifolds which admit a normal vector field
passing through a fixed point.

§ 1. Preliminaries.

Let E be an (n+2) -dimensional Euclidean space and X the position vector OP
representing a point P of E, O being the origin. Let S1 be an ^-dimensional C°°
differentiate closed and orientable manifold covered by a system of coordinate
neighborhoods {U;xh} and imbedded in E with C°° differentiate imbedding map
i: S-^E, where and in the sequel the indices h,i,j,k,-" run over the range
{1,2, ~ ,ri\. We identify S with the submanifold i(S) and refer S some times as the
submanifold of E.

Let

(1.1) X=X(xh)

be the parametric representation of S and put

(1.2) Xi=dtX9 di=d/dx\

We assume that n linearly independent vectors Xi9X29—9Xn tangent to S give
the positive orientation of S. If we put

(1.3) gJi=Xj Xl,
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the dot representing the inner product of vectors in E, then g^ are the components
of the metric tensor of S with the Riemannian metric induced from the Euclidean
metric of E.

If we denote by Vτ the operator of covariant differentiation with respect to the
Christoffel symbols {fa} formed with the g^ then we see that the vectors of E

(1.4)

are all normal to the submanifold S and consequently the so-called mean curvature
vector

(1.5) H=^g^,Xl

is an intrinsic normal vector field defined along S.
We assume that the mean curvature vector field H never vanishes along S

and take the first unit normal C of S in the direction of the mean curvature vector
field H. We choose the second normal D of S in such a way that n+2 vector
fields Xι,X2, ,Xn,C,D give the positive orientation of E.

Now, the equations of Gauss of S are

(1. 6) VjX^hjiC+kjiD,

where hji and kji are components of the second fundamental tensors of S with
respect to unit normals C and D respectively. Since C is in the direction of mean
curvature vector field, we have

(1.7) g»kjt=0.

We note here that since C and D are intrinsic normal vector fields of S, hji
and kjί are also intrinsic tensor fields of S, and consequently

(1. 8)

and

(1.9)

are also intrinsic normal vector fields of S, unless they do not vanish.
The equations of Weingarten are

(1.10)

and

(1.11)

where
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gu being contravariant components of the metric tensor and 13 are the third
fundamental tensor of S.

Now, as integrability conditions of (1. 6), (1. 10) and (1. 11), the equations of
Gauss are

(1. 12) Kkjί

h=h1c
hhji-hj

hhkί^klc

hkji-kj

hk^

where

* *

are components of the curvature tensor of S, from which

(1. 13) K^hfhu-hfhu-kfk*

and

(1. 14) K=hίhf-hfhf-kίkf,

Kji and K being the Ricci tensor and the scalar curvature respectively.
The equations of Codazzi are

(1. 15) Pkhji-P

(1. 16) Pkkjt-P

which are also written as

(1. 17) Pkhf-P

(1. 18) Pkkf-P

from which, by contraction,

(1. 19) Ptk

(1.20) Γ fft

respectively. Finally the equations of Ricci are

(1. 21) Γ^-Γ

§2. Integral formulas.

We write the position vector X in the form

(2. 1) X=*Xι+aC+βD,
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where vτ is a vector field on the submanifold S and a, β are functions on S.
Differentiating (2.1) covariantly, we find

from which

(2.2) PjV

or

(2.3) Pjvt

where Vi=gίhv
h, and

(2.4) h

(2. 5) k

where a3=Vjo. and βj = Pjβ.
From (2. 2), we have

(2.6)

because of kt=§, from which, integrating over S and applying Green's theorem,
we find

(2.7) (
Js

dS being the surface element of S, that is,

where g is the determinant formed with g^.
For the divergence of hfυ3, we have, using (1. 19) and (2. 2),

that is,

(2. 8) ( [(Γjhtt+ίtkjt)v^+htt+αhtshts-\-βhtskts]dS=0.
Js

For the divergence of kfv3, we have, using (1. 20) and (2. 2),
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that is,

from which, integrating over S, we find

(2. 9) ( [(lth3

t-ljhtt)υ>-ah
tskts-βktskts}dS=Q

JS

Also, for the divergence of (hjhf+kj kfiv1, we have, using (1. 17), (1. 18), (1. 19),
(1. 20) and (2. 1),

that is,

(2. 10)

and for the divergence of hίhfv1, we have, using (1. 19) and (2. 2),

that is,

(2. 11)

Thus, subtracting (2. 11) from (2. 10) and integrating over S, we find

J Γ-ί{Fί(A
ί

ί̂s

(2. 12)

Thus, taking account of (1. 14), we get

(2. 13)
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§ 3. The case in which the mean curvature vector H is parallel with respect
to the connection induced in the normal bundle.

Take an arbitrary vector field along S

V=λC+μD,

which is normal to S. Then

and consequently, we define the connection Ψ induced in the normal bundle by

If TίΛ=0, 'Pi//=0, that is, if F1V is tangent to the submanifold S, then we say
that V is parallel with respect to the connection induced in the normal bundle.

In this section, we assume that the mean curvature vector H is parallel with
respect to the connection induced in the normal bundle.

From

Pίff=Pi( igr''F*X;) = ~^iWQ

= - [-hMXi+ViWyC+hfliD],
ft

we find

(3. 1) /V-constant^O, 4-0.

Thus, from (2. 8), we get

(3. 2) [ [ht

t+ah?th,+βh»kώdS=0.
Js

Thus subtracting (2. 7) multiplied by (l/n)hs

s from (3. 2), we obtain

(3. 3) ( ϊa (htshts - ~ hfhλ + βhtsktλ dS= 0

or

(3. 4)

Thus, if

α>0

and



SUBMANIFOLDS OF CODIMENSION 2 OF A EUCLIDEAN SPACE 71

that is, the vector field kji(V 3XΪ) vanishes, or vectors

and

form the positive orientation of the normal bundle, or if

α<0

and

that is, the vector field kJi(ΓjXt) vanishes or vector fields kji(V 3X1) and X—vίXl

form the negative orientation of the normal bundle, we have

hji - — hfgji = 0, kn = 0,
f l

that is, S is totally umbilical.
Thus, from the equations of Weingarten (1. 10) and (1. 11), we have

(3.5)
il

and

(3. 6) ΓjD=0,

respectively, from which

(3.7) C+ — ht

tX=A,
n

(3. 8) D=B,

A and B being fixed vectors. From (3. 7) we obtain

X=rA-rC,

r being a constant equal to n\ht, which says that the point X is in a constant
distance r from a fixed point rA. From (3. 8), we have

rt(χ.D)=o,

from which

X D= constant,
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that is, X lies in a hyperplane.
Thus, S being closed, S must be an ^-dimensional sphere. Thus we have

THEOREM 3. 1. Let 3 be a closed and orient able submanifold of differentiability
class C™ of co dimension 2 of an (n-\-2)- dimensional Euclidean space. If

( i ) the mean curvature vector of S never vanishes and is parallel with respect
to the connection induced in the normal bundle,

(ii) α>0, (α<0),

(iii) the vector field kJ'i(7JXl) vanishes, or this vector Held and the vector field
X—vίXl=aC-{-βD form the positive (negative) orientation of the normal bundle,

then S is a sphere of codimension 2.
(See Okumura [2], Yano and Okumura [4].)

§ 4. The case in which there exists a normal passing through a fixed point.

In this section, we assume that there exists a normal passing through a fixed
point, that is, there exist two scalar functions λ and μ such that

(4. 1) rj(X+λC+μD)=Q,

from which

and consequently

(4. 2) gji - λhji - μkji = 0,

(4 3) rjλ-μlj=0,

(4.4) rjμ+Uj=0.

From (4. 2), we find

(4. 5) »-W=0,

(4. 6) hf-λh!*ht,-μh»kt*=Q,

(4. 7) Wskts+μktskts=Q,

Equation (4. 5) shows that λ and hf never vanish.
From (4. 3) and (4. 4), we find

that is,

(4. 8) Λ2+μ*= const.

(I) We first assume that the mean curvature of the submanifold is constant,
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that is,

(4. 9) /y=const.^0.

Then we have, from (4. 5)

(4. 10) λ = const. =35=0,

and consequently (4. 8) shows

(4. 11) μ= const.

Hence, from (4. 4),

(4. 12) Λ=0.

Thus equations (2. 8) and (2. 9) reduce to

(4. 13)

and

(4. 14) ( (ahtskts+βktskts)dS=0
Js

respectively.
Since Λ3?0, we have, from (4. 2),

Substituting this into (4. 14), we find

(4. 15) { (2β-μa)ktsktsdS=Q,
Js

by virtue of gtskts=Q. Thus, if λβ—μa has constant sign, that is, the concurrent
vector

λC+μD

and the projection of X on the normal space

aC+βD

form the positive orientation or the negative orientation in the normal bundle,
then we have

or

(4. 16) ft/i=0.
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Thus, we have, from (4. 2)

(4.17) A*=4 tt<
Λ

From (4. 16) and (4. 17) we can conclude that S is a sphere of codimension 2.
Thus we have

THEOREM 4. 1. Let S be a closed and orient able submanifold of differenti-
ability class C°° of codimension 2 of an (n+2) dimensional Euclidean space. If

( Ί ) there exists a normal vector field passing through a fixed point,
( ii ) the mean curvature is a constant different from zero,
(iii) the concurrent normal vector field and the projection of the position vector

field on the normal space form always the positive orientation or the
negative orientation of the normal bundle,

then the submanifold S is a sphere of codimension 2.

(II) We next assume that the scalar curvature of the submanifold is constant,
that is,

(4. 18) K=htthss-htshs

t-ktsks

t=const.

We then have, from (2. 13),

(4.19) ( [K-aWhfhS+hfktkS-hth^h^
Js

On the other hand, we have, from (4. 5),

(4.20) ^-y,

and consequently, (4. 19) can be written as

kfkr1- jhsrhsr

(4. 21)

-βihfhfkS + kϊkΐkr1 - y hsrksr )~Us=0.

From (2. 7) and (4. 20), we have

( (ι+fW=o,
JS\ Λ /

from which, K being a constant,

(4. 22) J \K+ y (hfhf-hfhf- kfkfi]dS=0.
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Thus, subtracting (4. 22) from (4. 21), we obtain

JS

(4. 23)

fkfkj ~ ~hsr ksr JS = 0.

On the other hand, from (4. 2), we have

λ being different from zero, from which

ί>δϊ"ί> //j? ^I? ^ί? t\
v fvST jWrvs tvt *^T /'

Λ

Substituting these into (4. 23), we find

Js L ̂ 3

~|dS=0
J

or
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L β ["?" (n-2ϊkSrk^+-jr

or, ,?2+j«2 being a constant,

(n-2)( λβ~μa μksr

JS Λ JS

Thus, if n>2, ks

rktskr

t=0 and λμ(λβ—μά) has constant sign, we have

*/i=0

and consequently

j. X

rljί=—gji

and S is a sphere of codimension 2. Thus we have

THEOREM 4. 2. L0£ S be a closed and orientable submanifold of differentiability
class C°° of codimension 2 in an (n-{-2)-dimensional Euclidean space, (n>2). If

( i ) there exists a normal vector field passing through a fixed point y

(ii) the scalar curvature of the submanifold is constant and ks

rkt

skr

t=0>

(iii) the vector fields λC+μD and aC+βD are situated in such a way that

λμ(λβ-μoί)

has constant sign,
then S is a sphere of codimension 2.
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