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MARKOV CHAINS WITH RANDOM TRANSITION MATRICES

BY YUKIO TAKAHASHI

Introduction.

Let Pι (t=l, 2, 3, •••) be the transition matrix from epoch t—1 to t of a Markov
chain with a finite state space S, and aw (n=0,1,2, •••) be the probability distri-
bution at n. Then we have

Now we assume that αCo) and Pι are mutually independent random variables and
that αCw) is defined by (*). Then {αCw)} is a Markov process on the space of proba-
bility distributions on S. OCr° represents the probability distribution at n, starting
with the initial distribution αc o ) and following to the random transition matrices
PK) Such a process will be called a "Markov chain with random transition matrices"
{M.C. with R.T.M.).

The author intended to generalize ordinary Markov chains as briefly mentioned
above, by the following reason.

Markov chains have been applied in many fields, and one of their applications
is in the analysis or prediction of market shares. Many authors have worked with
so-called Markov brand-switching models, in which am represents the market
shares at epoch n and Pt represents the transition matrix from epoch t—1 to t.
In many cases they assume that these Markov chains (they consider that αCr° is
the distribution of a Markov chain at step ή) are stationary. However some other
authors have given warnings of the failure of stationarity and of other defects of
these models (see e.g. A. S. C. Ehrenberg [1]). The author thinks that one of the
causes of the warnings is in the assumption that αc o ) and Pι are a priori given
(known) and hence have no stochastic fluctuation. The transition matrix Pι reflects
the choices of purchasers, and so it is essentially stochastic. Hence it seems to be
natural to consider that P £ and αCw) are random variables. The most simple
stochastic model for market shares is the model using our M.C. with R.T.M.

In this paper, properties of M.C. with R.T.M., in particular moments of aw

and conditions for the convergence (in law) of am> are given. And we classify
stationary and irreducible M.C. with R.T.M. into three groups; ergodic chains,
aperiodic and non-ergodic chains, and periodic chains. Finally we prove some
ergodic theorems.

Received June 17, 1969.

426



MARKOV CHAINS WITH RANDOM TRANSITION MATRICES 427

1. Markov chains with random transition matrices.

Let S={1,2, •••, 5} be a finite state space, Jl be the set of all probability
measures on S, and £P be the set of all stochastic matrices with index sets S and
S. We may be consider Jl and £P as subsets of 5- and s2-dimensional Euclidean
spaces respectively;

a=(au

(1.2) &={P =

^O ί = l , —, 5,

Therefore we can define random variables which take values on Jl or £P.

Given a sequence of probability spaces (Ωb, £F*, Pr*) (ί=0,1,2, ), a vector valued
random variable

(1.3) α c w(β>°) = (α? )(ω°) i = l , 2 , . . . , 5 )

on 42° with values in <_>?, and matrix valued random variables

(1.4) P W = ( ^ M f,y=l,2,...,5)

on Ωι (t=l, 2, 3, •••) with values in £P, then we define the product probability space
(β, £F, Pr) by

(1.5) ( β , f f , P r ) = Π W ί , 3 r t

ί=0

and random variables aco:>(ώ) and P^ω) on i2 by

(1.6) αco)(ω)=α<o)(ω°) and Pt(ώ) = Pt(

respectively, where

(1.7)

DEFINITION. A Markov chain with random transition matrices (MC.
R.T.M.) {αcn)(ω)} is a Markov process on Ω with values in Jl of the form

(1. 8) a™(ω)=a™(ω)PKω) ~Pn(ω).

In the following sections we mainly study the stationary case where all proba-
bility spaces (Ω\ &', PrO (t=l, 2, 3, •••) but (Ω\ £F°, Pr°) are identical and random
variables P W ) have a common distribution. We will refer to such a chain as a
stationary M.C. with R.T.M.

We denote the ^-step transition probability matrix by

(1. 9) P^{ω) = {p%\ω)) = P\ω)'-Pn{ω).
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Clearly {Pw(ω)} is a Markov process and so we sometimes call it also a M.C. with
R.T.M.

In the following sections, ω will be omitted when no confusion arises.

2. Moments.

We first calculate the moments of am(ω) and of P ( r ι )(ω). We prepare some
notations.

Let Sic (£=1,2,3, •••) be the set of all ordered ^-tuples (zΊ, •••,4) of states in S
(e.g. when S={1,2}, Si = {(l), (2)}, S2={(1,1), (1, 2), (2,1), (2, 2)}, ».). The ft-th moment
of am(ω) is denoted by the row vector

(2.1) £in)=(€ϊ°(ii, - , 4), (ii,

where

(2. 2) ξ«\iu .-, i*)=£'{< )(ω). βίy

and the &-th moment matrix of P^ω) is denoted by

(2.3) Σk=(σk(ilf -,ί*;Λ, -,./*), (ίi, •••>ί*;Λ,

where

(2. 4) σί(ίi, •••, ijt ii, •• ,iA;)

In the stationary case Σk will be abbreviated to Σk. The same notations as the
moments of P *(<*/) will be used for the moments of PC7°(ω) with brackets on their
shoulders.

We note that ξk

n) may be considered as a probability measure on Sk and that
Σk and Σk

n) are stochastic matrices. In fact

Σ . . f?}(ii, • » , « = . . Σ .

(2. 5)
i / . x , . xi

which proves the first statement, and a similar calculation leads to the second.
Furthermore, we may prove the following

THEOREM 1. For a M.C, with R.T.M. we have

(2.6) ΣP=Σi...Σi and ξ^=ζk

Q)Σ^=ξ^Σl^Σΐ.

In particular , for a stationary chain we have

(2.7) Σ^=(Σk)
n and ξ^=ζ^(Σk)

n.

Proof. We shall show that ξk

n)=ζk

0)Σ(

k

n\ By the independence of variables we
have
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(2.8)

= Σ

= Σ
C ί ί )

The first relation in (2. 6) can be proved by a similar calculation. Q.E.D.
Now we consider the convergence problem of αCr°(ω). We need a lemma for

the convergence of a sequence of random variables (e.g. see Feller [3] p. 244).

LEMMA 2. Let {Xn} be a uniformly bounded sequence of random variables in
r-dimensional Euclidean space and μ% be the k-th moment vector of Xn. Xn

converges in law to a limit X if, and only if, for each k, μ% converges to a limit
vector μk. In this case μk is the k-th moment vector of X.

Applying this lemma to our chains, we obtain the following theorem.

THEOREM 3. A M.C. with R.T.M. converges in law if, and only if, ξ^=ξ^Σl "Σΐ
converges for each k.

3. Classification of stationary M.C. with R.T.M. (I)—Periodicity.

The theory of ordinary Markov chains suggests us that stationary M.C. with
R.T.M. could be classified by similar ideas. For convenience we consider PCw)-process
instead of am-process. Theorem 1 shows that for the expectation of Pm we can
consider the ordinary Markov chain with transition matrix 2Ί.' It seems to be
natural to classify stationary M.C. with R.T.M. by the properties of M.C. 2Ί (we
refer to an ordinary stationary Markov chain by its transition matrix and write as
M.C. 2Ί). We might define that a stationary M.C. with R.T.M. is irreducible
{reducible) if M.C. 2Ί is irreducible (reducible), and that a stationary and irreducible
M.C. with R.T.M. is aperiodic (periodic) if M.C. 2Ί is aperiodic (periodic). This
definition of an irreducible chain is adequate in the sense that for each pair i,j (eS)
there is an n such that

(3.1) Pr{ϋ8>(α>)>0}>0.

However Example 1 below shows that the above definition of an aperiodic chain
does not seem to be adequate.

In the following sections (except in Theorem 8) we will consider stationary
and irreducible M.C. with R.T.M. only, and sometimes the words "irreducible" and
"stationary" will be omitted.

EXAMPLE 1. Let $=3 and the distribution of P% be
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/0 0 1\ /0 1

P
2
= 0 1 0 and P

8
= 1 0

(3.4)

Hence M.C. 2Ί is aperiodic.
Now let

\1 0

1/3 1/3 l/3\

1/3 1/3 1/3

1/3 1/3 1/3/

\0 0

(3.5)

Since

(3.6)

we have

(3.7)

1 0

0 1 0 , P 6 = 1 0 0 and P β = 0 0

P1P1=P2P2=PsPs=P4f P,P1=PδP2=PQPs=Pu

Γ) ΊD T> ΊD JD ΊD JD ΊD JD D D JD JD JD
•L1-L2 — ± 2-L3 — ί μ i — i 5 ) A A — Γ5Γ3 — ΓjΓi — -Γ 2,

P1P3 = = P2P1 = = P3P2 == Pβi PiPs == Γ5Γ1 = P&P2

 = P3,

Pr

if w is odd, and

1
(3. 8) Pr {Pc n ) = P4}=Pr {P ( 7 l )=P 5}=Pr {PCw) = P6} = -^

if ^ is even. Hence we would rather say that this M.C. with R.T.M. has "period
two".

Thus we must make a new definition of the period of a stationary M.C. with
R.T.M. By Lemma 2, for the convergence of Pw we are enough to examine the
convergence of its moments only. We shall show that there is an integer r ^ l
such that Σξιr+m>=(Σk)

nr+m converges as n^oo for each * and m (m=0y 1, 2, •••, r-1) .
(Convergence of a sequence of matrices means element-wise convergence.)
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By the theory of ordinary Markov chains, each state (zΊ, •••,/&)€& has its own
period with respect to M.C. Σk. We define that (Jw"fjh)^Sh and (zΊ, •••, ik)£Sk be
equivalent if both consist of the same states in S. (For example, (1,1, 2) is equiva-
lent to (2,1, 2, 2).) Let (ji> ~ ,jh) be equivalent to (zΊ, •••, ik). By the very definition
we have

(3. 9) σ£Kiu - , ik; il9 - , i*)

and

(3.10) σ£KJu - , h ; j u ' " J X

So the equivalence of (z\, •••,4) and (jΊ, •• ,ifc) implies that the values in both braces
in the right sides of (3. 9) and (3.10) vanish simultaneously. Therefore σf\iu •••, ik;
ii, ~,ik)=0 if, and only if, σf\jly --JK'JU - Jn)=0. Thus equivalent states have
the same period if they are periodic. And it is easily shown that if a state in Sk

is transient (with respect to M.C. Σk), then each state, which is equivalent to it, is
also transient. Therefore equivalent states have a common period.

Let r be the least common multiple of the periods of states in Ss (s is the
number of states in S). Then Σinr+m=(Σs)

nr+m converges as n->oo for each m
(ra=0,1, 2, •••, r—1) and the limit matrices are different for different m's. We note
that each state in Sk has an equivalent state in S«. Hence r is also a common
multiple of the periods of states in Sk and Σίnr+m:> = (Σk)

nr+m converges as n-^oo for
each m (m=0,1, 2, •••, r— 1). Therefore applying Lemma 2 to r requences {pcw+m)}
(w=0,1, 2, •••, r— 1) we obtain the following

THEOREM 4. For a stationary and irreducible M.C. with R.T.M. there exists
unique integer r ^ l such that r sequences {P (wr+m)} (m=0,1,2, •• ,r—1) converge in
law as n^oo and that their limit distributions are dijferent from each other.

DEFINITION. The period of a stationary and irreducible M.C. with R.T.M. is
the number whose existence is assured in Theorem 4.

The discussion preceding Theorem 4 shows that the period of a M.C. with
R.T.M. is the least common multiple of the periods of states in Ss. Turning to
Example 1, the states (1,1,1), (2, 2, 2) and (3, 3, 3) have period one with respect to
M.C. 2*3 and other states in S3 have period two. Hence the chain has period two.
Thus the new definition of the period seems to be adequate.

4. Classification of stationary M.C. with R.T.M. (II)—Ergodicity.

In the last section we classified stationary and irreducible M.C. with R.T.M.
by their periods. However, there is another and more essential classification; ergodic
chains or non-ergodic chains. We shall start with two examples.

EXAMPLE 2, Let 5=2 and the distribution of Pt be
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(4 1) Pr{P«=Λ}=Pr {P ί=Λ}=y

where

(4» Λ - ζ ^ and Λ

Then

/ l/2\
(4.3) J

\l/2 1/2

/1/2 l/2\
1 =

\l/2 1/2/

and it is easily shown that this chain is aperiodic. Since

P1P1=P2P2=P1 and(4.

we

(4.

for

(4.

4)

have

5)

each

6)

Hence if αc0)=(^>, 1— ̂ >) with probability one,

Pr {«<»>=(£, l-Λ}=Pr { α w = ( l - A ί » = { .

Thus the distribution, of am is independent of n, and the limit distribution is
given also by (4. 6). We note that the limit distribution depends on α c o ).

EXAMPLE 3. Let S and the distribution of Pt be as in Example 2, but this
time we put

A/2 l/2\ /1/2 l/2v
(4.7) Λ = and P 2 =

V 1 0 / \ 0 1 /

Then 2Ί is given by (4. 3) and the chain is aperiodic too. But the distribution of
αCr° is not so simple as the preceding example. Direct calculation shows that

(4.8)

where

ί (Pn,k 1-Pn,7c\) f /1-Pn,k pn,1c\} 1
P ^ = =Pr \p™ = [ = ^

I Vtfn.fc 1—^n,fc/J I M—q n,k qn,k') Δ

(4.9) pnk=*h-± a n d qn,k=-^— (*

Therefore P C n ) converges in law to a random matrix
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(4.10) <" ^

where q is a random variable following to the uniform distribution on the unit
interval [0,1]. Hence even if α ( 0 ) = ( A l - ί ) with probability one, am converges in
law to

(4.11) (q, l-q)

which does not depend on αC0).
Two chains in above have the same Σlt but their behaviors are quite different.

Therefore we have to distinguish aperiodic chains into two types.

DEFINITION. A stationary and irreducible M.C. with R.T.M. is ergodic if it is
aperiodic and its limit distribution does not depend on the initial variable α ( 0 ) .

It is easily shown that a chain is ergodic if, and only if, P ( 7 l ) converges in
law to a random variable

(4.12) Q=l\

which has the same row vectors. In section 6 we shall obtain some necessary
and sufficient conditions for ergodicity.

5. Dual processes.

We shall define the "dual process" which plays an important role in ergodic
theorems, and introduce some notations.

We have denoted the n-step transition probability matrix by

If the order of multiplications in (5.1) is reversed, the value of the matrix differs
from (5.1), so we denote it by

Clearly P ( w ) is a Markov process, and we will call it the dual process (of a chain

aw o r pc«>). Similarly, we denote the ^-step transition probability matrix from
epoch m (tn=l,2f •••) by

(5. 3) mP<n\ω)=(mp\f(ω))=Pm+Kω)- -Pm+nW,

and its dual by

(5.4) m f B ) W = ( m f / W ) = P m > ) P m + 1 H
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For a stationary M.C. with R.T.M., random variables P%ώ) are mutually inde-
pendent and have a common distribution. Hence the distributions of PCn\ Pw,
mpcn ) a n c [ » p w coincide with each other. So, for any s2-dimensional Borel set B

(5. 5) Pr {P

We denote the maximum and the minimum of the -th column of P ( n ) [ P ( n ) ] by

(5. 6) Mf\ω)==MaxpTΛω) \Mf\ω)=

and

(5.7) m?\ω)=MmpW(ω) Γmίw)(ύ>)=Min pw

respectively. Since

s
W O) Pij — 2_ι Pik PkJ >

we have

(5. 9) pf3^^Mr Σ Ptt^Mf
k = l

and similarly

(5. 10)

Hence we obtain the following relation:

(5.11)

Since {Mf \ω)} and {mf \ω)} are bounded monotone sequences, there exist their limit
variables Mj(ω) and mj(ω) for each j :

(5. 12) lim mf\ω) = mj(ω)^Mj(ω) = \im Mf\ω).
n—>oo n—>oo

Using these M3 we define the matrix valued random variable M with the same
row vectors by

(5.13) M(ω)=

6. Ergodic theorems.

In this section we shall obtain some ergodic theorems. Theorem 5 shows the
fundamental relation between the ergodicity and the convergence of the dual
process, and Theorem 6 gives us a good criterion for the ergodicity. Theorem 9
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also gives a necessary and sufficient condition for the ergodicity, but it might be
useful to study non-ergodic chains. Theorem 8 treats the non-stationary case and
states that under some mild assumptions the effect of the initial variable vanishes
in the long run.

THEOREM 5. For a stationary and irreducible M.C. with R.T.M., the following
four statements are equivalent'.

(a) The chain is ergodic.
(b) Pw(ω) [Pw(ω)] converges in low to M(ω).
(c) PCw)(ω) converges in probability to M(ω).
(d) PCn:>(ω) converges with probability one to M(ώ).

(We note that the expression in (b) is justified by the relation (5. 5).)

Proof. As stated in section 5, (a) is equivalent to
(a7) Pm(ώ) [Pw(ω)] converges in law to a random variable

(6. 1) Q(ω') =

which has the same row vectors, where (£?', £F7, Pr7) is a certain probability space.
By the well known theorems for convergences of random variables, it is clear

that (d) implies (c) and that (c) implies (b). Also it is obvious that (b) implies (a7).
So we need only to show that (c) implies (d) and that (a7) implies (c).

Suppose that (c) is satisfied. Then there is a subsequence {P<w*>} which con-
verges with probability one to M, i.e., for every i,j

(6.2) pf^-^Mj (k—>oo) w.p. 1.

Hence

(6.3) mf&-*M3 (&^oo) w.p. 1.

By the monotonicity of {ήif>}, (6. 3) implies that

(6.4) mf^Mj (»->oo) w.p. 1.

Since for every i,j

(6.5) ήιT^pf^Mf\

we have

(6.6) pf^Mj (n-*oo) w.p. 1.

which is the same as (d).
Now we show that (a7) implies (c). Let / be an interval of continuity for the

distribution of Q (i.e., / is open and its boundary has probability zero. See Feller
[3] p. 242.), then (a7) implies that
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(6. 7) Pr {P w €/}—Pr ' {Qel} (n—oo).

We can choose a finite set of points {av} 0 = 0 , 1 , •••, u) such that each av is a point
of continuity for each marginal distribution of q3 and that

(6.8) tfo<O, au>l and

for arbitrary given positive number <5. Let

/ (y i , , vs) = (tfυ i_i, α v i ) X X (ύfVί_i, tf ,

(6.9) I 5 times.

Then /Oi, •••, w) (vj=l,- ,u) are intervals of continuity of the distribution of Q
and they are mutually exclusive. From (6. 7) we have

(6.10) Pr {JP(w)€/(w,.», w)HP:

Summing up them with respect to (vly •• ,w), we obtain that

Pr {£<*>€ U /(yi,...,w)}= Σ Pr{Pw€/(P! , ..,w)}

(6.11)

We first show that the right side of (6.11) is equal to one. Let

X (fl0, #w) X

I 5—1 times

X (tfo, a**) X X (tfo, <^M)^

and

(6. 13) [ s times.

Since Q has the same row vectors, we have

Pr'

(6.14) -P r 7

=Pr '

Hence we obtain the desired result as follows:
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Σ Pr'
(vi,-.«'•)

Pr/{Q€/*(n,-,w)}
)

=Pr'JQ€ U / * K - , w)

=Pr' {Qe/*}

=Pr' {O^g^l for all ;}

437

that is

(6.16) Σ Pr'

Next we calculate the left side of (6. 11), then

Pr U

= P r U iβv _i < pg } < av for all i, j)

(6.17) = P r | U (ύrVj-i<m5n) and av>Mψ for all j)\

U (Mf-m™<δ for all j)\

-ίhψKδ for all j}

^ P r {Ip}3>-Mf}I <δ for all ΐ, j}.

Combining (6.16) and (6.17) with (6.11), we obtain that for any positive number δ

(6.18) Pr{|pβ>—Λfy°|<δ for all ί,;}->l (^->oo).

If we denote the length of a vector P in s2-dimensional Euclidean space by
, we have

(6.19)
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For any positive number δ, each term in the last summation in (6. 19) tends to
zero as n—>oo, so we have proved that (a') implies (c). Q.E.D.

THEOREM 6. A stationary and irreducible M.C. with R.T.M. is ergodic if, and
only if,

(6. 20) Pr {rhj(ω) > 0} > 0 for some j ,

or equivalently if, and only if, for some j and N

(6. 21) Pr {pψ3Xω)>ΰ for all z}=Pr {pfl>(ώ)>0 for all i}>0.

Theorem 6 is an easy corollary of Theorem 8 or of Theorem 9, but the proof
of Theorem 8 is complicated while the proof of Theorem 6 is rather simpler by
using the dual processes. The structures of both proofs are similar to each other,
hence we shall prove Theorem 6 first and then modify it for Theorem 8. To prove
these theorems we need the following lemma.

LEMMA 7. Let P=(ρij), Q=(qυ) and R=QP=(n3) be stochastic matrices {i.e.,
they are elements of £P). We denote the maximum and the minimum of the j-th
column of P by

(6.22) M , = M a x ^ and m3=Minpi3

and similarly those of R by

(6.23) Mi =Max r%3 and m;

3=Mm n3.

If for some j0 there is a number δ > 0 such that

(6.24) qiJo>δ

for every i} then

(6.25) M'j—m^iλ-^r
\ &

for every j.

Proof of Lemma 7. Through this proof, j is arbitrarily fixed. When M3=m3,
(6.25) is trivial, because m3^m'j^Mj^M3 as in (5.11). Hence we may assume
that M3>m3. Let / be a subset of S defined by

(6.26) f=\i

Since

(6. 27)
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we have for some i

M'j=r%3=- Σ Qikpkj+ Σ

(6. 28) gM, Σ Qi*+ ^-

Similarly, for some if we have

(6. 29) r n ' j ^ r v j ^
£ kςj

Subtracting (6. 29) from (6. 28) we obtain the desired result:

- ~ Σ q*- \ Σ QP

(6. 30)

for if yo€/ then ΣkςjQi>k>δ and if jo$J then ΣwjQik>δ. Q.E.D.

Proof of Theorem 6. First we shall prove the necessity. By Theorem 5 we
may suppose that

(6.31) pT?—*M] (n-*oo) w.p. 1.

for every i,j and so we have

(6.32) m3=Mj w.p.l.

Since

(6.33) Σ P S ) = 1
. 7 = 1

for every i and n, (6. 31) and (6. 32) implies that

(6.34) Σfhj=l w.p.l.

and so we conclude (6. 20).
Next we shall prove the sufficiency by showing that (6. 21) implies (c) in

Theorem 5. We may restate (6. 21) as follows; for some j there is an integer N
and a positive number δ such that

(6. 35) Pr {plf > δ for all i} > 0.
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For these N and δ, let

(6. 36) Ak={ωeΩ \ kNpίψ>δ for all ΐ}, (*=1, 2, 3, •••).

Then Ak are mutually independent events and moreover from (5. 5) and (6. 35) we
have

(6.37) ΣPT{AM}=OO.
J c = l

Therefore using Borel-Cantelli lemma, it follows that

(6. 38) Pr {Ak occurs infinitely often}=1.

In other words, if the random variable Km(ω) denotes the number of occurrences
within the n events {Ai,A2y •••, AJ, for each integer r

(6. 39) Pr {Rw ^r}-*l (»-*oo).

We divide the whole space into 2n events as

(6.40) Ω= U
C

n Bk%k
k=l

where ik=0 or 1, and Bko=Ak, Bkl=A%. Then the number of zeros in {ik, &=1, •••,»}
is equal to the value of KCn\ If ω€BkQ=Ak then by Lemma 7 we have

(6. 41)

Because, we may replace P, Q and R in Lemma 7 by β<kN\ kNβw and
respectively.

Now we use the inequality (6. 41) for ω^Bk0 and use the inequality

(6.42) M

for ω€Bkl, then for ω£{Kw^r} we have

(6. 43) ^(l- -| V.

For each β r>0 there is an integer r such that (1—<5/2)r<<5', and therefore for
arbitrarily small δ' we have

(6.44) Pr {MfN)-m

By the monotonicity of Jf$n) and mf\ (6. 44) implies that

(6. 45) Pr {M^-mf <<5'}->l (»—oo).

So we have
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(6. 46) Pr {\ffl-Mj | <S'}->1 (Λ—oo).

Repeating the discussion at the last paragraph in the proof of Theorem 5, we
complete the proof.

Next we shall consider the non-stationary case where in general no limit exist.
However, by generalizing Theorem 6, we can show that the effect of the initial
variable vanishes in the long run.

THEOREM 8. If there is an increasing sequence {nk} of integers and a positive
number δ such that

(6. 47) Σ Pr {n*p$*+i-**)>(5 for s o m e j and all i}=oo,

then for any positive number ε

(6.48) Vr{Mf\ω)-mf\ω)<ε for every j}->l (n->oo).

Proof For a non-stationary M.C. with R.T.M., the basic relation (5. 5) does
not hold and so we cannot use the concept of the dual process. Hence we shall
define a substitutional process with which this proof can be done in parallel with
the proof of Theorem 6.

Select a large integer L and define random variables Pί(ω) (t=l, -- ,L) by

(6.49) Pt

L{ω)=PL+1~\ω\

and a process {P£°} by

(6. 50) Pr(ω) = Pl(ω)'"P1

L(ω)=L-nP^(ω) (»=1, - , L).

We will use the same symbols with tilde and L, instead of hat, for corresponding
variables as those in the dual process.

Let us denote the events in the braces of (6. 47) by

(6. 51) Ck={ωsΩ\L-n^pT^-nk\ω)>δ for some j and all i}

for nk+i^Lt then {Ck; nk+1^L} are mutually independent. Hence by (6.47), Borel-
Cantelli lemma assures that

(6. 52) Pr{Cfc occurs infinitely often}=1

or if the random variable Km(ω) denotes the number of occurrences within the n
events {&, C2, •• ,CW}, then for each integer r

(6. 53) Pr {Kw ^r}->l (Λ—OO).

Next, let ko=Max {k\nk+1^L} and divide Ω as

(6.54) Ω= U
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where 4 = 0 or 1, and Bk0=Ck, Bkl=Ck. For ω€Ck, by Lemma 7,

(6. 55)

Because, we may replace P, Q and i? in Lemma 7 by pf-nw>, £-»*+ipg*+i-»*> a n ( j
p(L-nk) respectively. Therefore, if we use the inequality (6. 55) for ωeBk0 and use
the inequality

(6.56)

for ωGBicu then for <M€{^αo)^r} we have

(6. 57)

For each <5'>0, there is an integer r such that (1—d/2)r<d'. Hence we have

(6. 58) Pr {M<f>-mf><δ' for all j}^J?r {K^^r}.

By (6. 53), for each ε>0, there is an integer k' such that for k^k'

(6.59) Vv{Kw^r}>l-e.

Therefore for any L{^nk>)

(6. 60) Pr {M^-m^<δf for all Λ>l-e

which shows (6. 48).
Now we shall prove one more theorem which is useful to examine the structure

of a non-ergodic, stationary and irreducible chain.

THEOREM 9. A stationary and irreducible M.C. with R.T.M. is ergodic if, and
only if, for each pair of subsets I and K of S (I*rφ, K^φ and IΓ)K=ψ)

fi fil Pr {there is an n=n(ω) such that jp^)(<w)=0
} for UI, HI and for ieK, k$K}<\.

Proof. We first prove the sufficiency in several steps.
( i ) Since the number of possible pairs (/, K) is finite, (6. 61) implies that there

are positive numbers δ and γ such that for each pair (/, K)

(» fiπN Pr {there is an n=n(ω) such that PiβXωXδ
1 } for ί€/, HI and for ieK, k$K}<l-γ.
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For arbitrarily fixed j , let {q^} ( ί=l , •••,5) be a set of rational numbers satisfying
the following conditions:

(6. 63)

and

(6. 64)

We put

(6. 65)

and

(6. 66)

and define

(6. 67)

and

O^qtj^l ί '=l, -- , s

Max qi3=M> m=Min qί3.

I={i\qί3=M}

K={i\qi3—m}

the positive numbers d and ε by

<i=Min Min (M—qi3), Min (̂ y—

(6.68) .= - f ,

(ii) From now on we concentrate on the i-th column of PCw)(<y). We define
the sequence of random times nt{ώ) inductively by

(6. 69)

and

(6. 70)

πi(αι)=
ίMin {n \ \p%Kω)-qtj\ <ε for all i},

j
[oo if the set in above braces is empty,

Min ω) \ | <ε for all

oo if nί_i(<y) = oo or if nί_i(ύ>)<oo and the

set in above braces is empty.

Then if nt+i(ω)<oo, we have

(6.71)

for /€/, k$I and for isK, k$K. In fact, since

(6. 72)
fl?—i
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for is I and ko$I we have

Hence for iεl, ko$I we have

(6. 74)
M-qHj d

Similarly the same relation holds for isK, kQ$K.
(iii) Next we shall show that

(6. 75) Pr {n ί+1(ω)<oo}<(l- r)
ί.

We may divide the event {nt+i(ω)<oo} into disjoint events as

(6.76) {nt+1(ω)<oo}= (J U

By the result obtained in (ii) we have

(6.77) {nt(o))—v, nt+i(o))z=tι>-\-μ}cz{)Jpil

k\ω)<iδ for i€l, k$I and for i

while

(6.78) {ιiί(ω) =

Therefore

(6. 79)
Γ i ί C X δ for i€/, * $ / and for ίe/ζ

The event {ιiί=^} depends only on the fraction (ω1, •••,«") of ω=(ω0, ω1, ω2, •••), and
the event {vp\i<δ for i€/, k$I and for ί€iζ ^$i^} depends on the fraction
(ωv+1,-~,ωv+μ). So they are independent. Hence we have

~Pr{nt=v,nt+i=v-\rμ}
(6. 80)

^PrΓp$<<5 for i€/, * $ / and for ίê K",

Therefore
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Pr {/tί+i<oo}= Σ Σ Pr {nt=v, nM=v+μ}
V<<X> jtί<OO

^ Σ Σ ^r{nt=v}Vr{vp^<d for iel, * $ / and for feiζ &$#}
W<OO μ<OO

= Σ Pr{/iί=j;} Pr {there is an n(ω)>v such that "pffiKδ
v<oo

(6. 81) for iel, k$I and for i€ϋΓ, k$K)

= Σ Pr{nί=v} Pr {there is an Λ(<M)>0 such that Jpg
v<oo

for ΐ€/, * $ / and for ί€

-<5) Σ Pr {nt=v}=(l-δ) Pr {Λί<oo}.
<

Using this relation repeatedly we obtain the desired result (6. 75).
(iv) If p(ij\ω) ( ί=l, - , s ) has an accumulation point in the interval fey—ε/2,

qij+ε/2) (i=l, •••, 5), then jpg^α)) visits the interval fey—ε, #*/+ε) ( i=l, •••, 5) infinitely
often. Therefore if A(qij) denotes the event that pίj\ω) has an accumulation point
in the interval fey—ε/2, fe +ε/2) (f=l, •••,$), then for every ί

(6.82) Λfey)c {

Hence

(6. 83) Pr { l̂fey)} l̂im Pr {wt<oo}^lim ( l - ^ - ^ O .
t—»oo ί—»oo

(v) Now we shall consider the case in which the chain is not ergodic. Let
B be the event that Pw(ω) does not converge to M(ω). For every ω£B, there
exists some j and fey} such that ωeA(qij). Therefore

(6. 84) Bcz LJ U A{qtJ}.
J=l{qij)

Since qi3 are rational numbers, the number of possible fey} is countable. Therefore
Pr{Z?}=0. This completes the proof of the sufficiency.

Now we shall prove the necessity. Suppose that there exists a pair of subsets
(I,K) of S (I*φ, K^φ and lΠK=φ) with which

Pr {there is an n=n(ω) such that p^)(ω)=0
(6. 85)

for f€/, k$I and for ieK, k$K}=l.

Let D (cff) be the set of all P=(pij) such that A,=0 for i€/, ^ φ / and for ίeiζ
". Then the assumption is

(6. 86) Pr {there is an n=n(ω) such that JPcn)€D}=l,
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If Pcn>€D and nP™εD, then it is easily shown that P<-n+m*>eD. Hence if we
define that t=Min{n\PmcD} then

{there exist at least two n's such that Pcn)€Z)}
(6. 87)

= U {t=v, there exists an n such that vP
<

!><OO

Therefore we have

Pr {there exist at least two n's such that Pcn)eZ)}

= Σ Pr{f=y} Pr {there exists an n such that
v<oo

(6. 88) = Σ Pr{f=v} Pr {there exists an n such that
1><OO

- Σ P r { ί = y } Ί

=Pr {there exists an n such that Pcn)€Z)}=l.

Similarly for each m we can show that

(6. 89) Pr {there exist at least m epochs (n's) such that P<n>€/)} = 1.

Therefore for every N, there is an n>N with probability one such that Pcn:>ζD.
Hence by the monotonicity of mjw) we have

(6. 90) mψ^mf ^ ^ = 0

for n=n(ώ)>N with which P^QD and for ί€/, i $ / and ί€ϋΓ, j$K. Since / c

=S, we have for each j

(6.91)

with probability one, and as TV is arbitrary, this implies that

(6.92) mJ=\imm(

J

m=0.
N—*oo

On the other hand, for every N and i

(6.93) Σ#?°^Σ#f=l

Therefore for each ω at least one M<7=limiv_ooM^ is strictly positive, and this
contradicts to (d) in Theorem 5.
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