A FIXED POINT THEOREM FOR NONEXPANSIVE MAPPINGS IN METRIC SPACE

By Yōichi Kijima and Wataru Takahashi

Let X be a metric space with a metric d. A mapping U of X into X is said to be *nonexpansive* if for each pair x, y of elements in X, $d(Ux, Uy) \leq d(x, y)$.

Recently several fixed point theorems for nonexpansive mappings in Banach space have been derived by Belluce and Kirk [1], [2], Browder [3], de Marr [4] and Kirk [6].

In this paper we shall prove a fixed point theorem for nonexpasive mappings in metric space under certain conditions.

1. Notations and definitions.

Let X be a metric space with metric d. For a subset A of X, the diameter of A is denoted by $\delta(A)$, that is,

$$\delta(A) = \sup \{ d(x, y) \colon x, y \in A \},\$$

and for a point $p \in A$, we define

$$\rho(p, A) = \sup \{ d(p, x) \colon x \in A \}.$$

A point $p \in A$ is called a nondiametral point of A if $\rho(p, A) < \delta(A)$. A subset of X is said to be *admissible* (cf. Dunford and Schwartz [5] p. 459) if it is an intersection of closed spheres.

Throughout this paper, S(x, r) denotes the closed sphere of center x and radius r.

2. Fixed point theorem.

LEMMA. If a bounded metric space X satisfies the following coditions (1) and (2), then every nonexpansive mapping U of X into X has a fixed point.

(1) If a family of closed spheres has finite intersection property, then the intersection of the family is nonempty.

(2) Each admissible subset which contains more than one point contains a nondiametral point.

Received February 10, 1969.

Proof. Let Φ be the family of all nonempty admissible subsets invariant under U. By boundedness of $X, X \in \Phi$ and hence Φ is a nonempty family. Φ is considered to be partially ordered by usual set inclusion. Let $\{A_i: i \in I\}$ be a totally ordered subfamily of Φ . We show that the intersection A of all A_i 's is an element of Φ . It is obvious that A is admissible and mapped into itself by U. Since every A_i is admissible, it can be written in the form

$$A_i = \bigcap \{ S(x_j, r_j) \colon j \in J_i \}$$

where J_i is an index set. We can assume that J_{i_1} and J_{i_2} are disjoint whenever i_1 and i_2 are distinct. Therefore

$$A = \bigcap \{ S(x_j, r_j) \colon j \in J \}$$

where $J = \bigcup \{J_i, i \in I\}$.

Now we consider the family $\{S(x_j, r_j): j \in J\}$ and take arbitrary finite elements $S(x_{j_1}, r_{j_1}), S(x_{j_2}, r_{j_2}), \dots, S(x_{j_n}, r_{j_n})$ from it. Every $S(x_j, r_j) (j \in J)$ contain some A_i ($i \in I$). Thus

$$\bigcap_{k=1}^n A_{i_k} \subset \bigcap_{k=1}^n S(x_{j_k}, r_{j_k}).$$

Since the family $\{A_i: i \in I\}$ is totally ordered, $\bigcap_{k=1}^n A_{i_k}$ is nonempty, and so is $\bigcap_{k=1}^n S(x_{j_k}, r_{j_k})$. This shows that the family $\{S(x_j, r_j): j \in J\}$ has finite intersection property and $A = \bigcap \{S(x_j, r_j): j \in J\}$ is nonempty because of the condition (1). It is evident that A is a lower bound of the family $\{A_i: i \in I\}$. Therefore by Zorn's lemma, Φ has a minimal element F.

We can put $F = \bigcap \{ S(x_r, r_r) : \gamma \in \Gamma \}$ and define

$$r = \inf \{ \rho(y, F) \colon y \in F \},$$

$$F_c = \{ x \in F \colon \rho(x, F) = r \}.$$

We prove $F_c \in \Phi$ as follows. It is easy to see that

$$F_c = [\cap \{S(x_r, r_r): \gamma \in \Gamma\}] \cap [\cap \{S(x, r+1/n): x \in F, n=1, 2, \cdots\}].$$

This shows that F_c is admissible. We consider the family

$$\{S(x_r, r_r) \ (r \in \Gamma), S(x, r+1/n) \ (x \in F, n=1, 2, \cdots)\}.$$

In order that it has finite intersection property, it is sufficient that $\bigcap_{k=1}^{m} S(x_k, r + 1/n_k)$ contains a point of F for any $x_1, x_2, \dots, x_m \in F$ and any positive integers n_1, n_2, \dots, n_m . Let

$$n=\max\{n_1, n_2, \cdots, n_m\}.$$

By the definition of r, there exists some $x \in F$ such that

$$\rho(x, F) \leq r + 1/n.$$

Since $x_k \in F$ and $d(x, x_k) \leq r + 1/n \leq r + 1/n_k$ for $k = 1, 2, \dots, m$, then $x \in \bigcap_{k=1}^m S(x_k, r + 1/n_k)$. Hence F_c is nonempty by the condition (1).

Next we show that F_c is mapped into itself by U. If $x \in F_c$, then by the property of U,

$$d(Ux, Uy) \leq d(x, y) \leq \rho(x, F) = r$$
 for all $y \in F$,

and hence $U(F) \subset S(Ux, r)$. Since $U(F) \subset F$, it is easy to see that

 $U(F \cap S(Ux, r)) \subset F \cap S(Ux, r).$

Evidently $F \cap S(Ux, r)$ is a nonempty admissible subset. Thus

 $F \cap S(Ux, r) \in \Phi$.

By the minimality of $F, F \subset S(Ux, r)$. This shows $\rho(Ux, F) = r$, and we conclude $Ux \in F_c$.

We have proved that $F_c \in \Phi$, and hence $F_c = F$ by minimality of F. We use the fact $F_c = F$ to show that F contains only one point. If F contains more than one point, then by the condition (2), F has a nondiamental point x_0 , that is, $\rho(x_0, F) < \delta(F)$. Hence

$$\begin{split} \delta(F_c) &= \sup \left\{ d(y, z) \colon y, z \in F_c \right\} \leq \sup \left\{ \rho(y, F_c) \colon y \in F_c \right\} \\ &\leq \sup \left\{ \rho(y, F) \colon y \in F_c \right\} = r = \inf \left\{ \rho(x, F) \colon x \in F \right\} \\ &\leq \rho(x_0, F) < \delta(F). \end{split}$$

This shows $\delta(F_c) < \delta(F)$, but it contradicts $F_c = F$.

We have seen that F contains only one point. It is evident that the point is fixed by U.

THEOREM. Let X be a bounded metric space, and suppose that X satisfies the conditions (1) and (2) of Lemma.

If \mathcal{F} is a finite commuting family of nonexpansive mappings of X into X, then \mathcal{F} has a common fixed point.

Proof. Let Φ be a family of all nonempty admissible subsets invariant under each $U \in \mathcal{F}$. By the same method in the proof of Lemma, we can find a minimal element F of Φ .

Let $\mathcal{F} = \{U_1, U_2, \dots, U_n\}$ and $W = \{x \in F: U_1 U_2 \dots U_n x = x\}$. We can apply Lemma to the nonexpansive mapping $U_1 U_2 \dots U_n$ of F into F, and we get $W \neq \phi$.

It is shown that $U_i(W) = W$ for $i=1, 2, \dots, n$. In fact, if $x \in W$, then $U_i x = U_i U_1 U_2 \cdots U_n x = U_1 U_2 \cdots U_n U_i x$. Conversely if $x \in W$, then $U_1 U_2 \cdots U_{i-1} U_{i+1} \cdots U_n x \in W$ and $x = U_1 U_2 \cdots U_n x = U_i U_1 U_2 \cdots U_{i-1} U_{i+1} \cdots U_n x$.

Let K be the least admissible set containing W. Since F is admissible, $K \subset F$.

328

If we assume that K contains more than one point, then, by the condition (2), K must contain a point x_0 such that

$$\rho(x_0, K) = r < \delta(K).$$

We put

$$C = F \cap [\cap \{S(z, r) \colon z \in K\}].$$

Then C is a nonempty admissible subset of F. We note that C can be written in the following form

$$C = F \cap [\cap \{S(z, r): z \in W\}].$$

For, if $d(x, z) \leq r$ for all $z \in W$, then $W \subset S(x, r)$ and since K is the least admissible set containing W, it follows $K \subset S(x, r)$, that is, $d(x, z) \leq r$ for all $z \in K$. Thus for any $c \in C$ and $w \in W$,

$$d(U_ic, U_iw) \leq d(c, w) \leq r.$$

Since $U_i(W) = W$, we get $U_i(C) \subset C$.

We have showed that C is a nonempty admissible subset invariant under each U_i . Therefore C=F by the minimality of F. Thus

$$\delta(K) = \delta(F \cap K) = \delta(C \cap K) \leq r < \delta(K),$$

but this is a contradiction.

We conclude that K contains only one point and this point is the desired fixed point.

COROLLARY. If X is a compact metric space which satisfies the condition (2) of Lemma, then every commuting family of nonexpansive mappings of X into X has a common fixed point.

Proof. X satisfies all the conditions of Theorem.

Let $\{U_i: i \in I\}$ be a commuting family of nonexpansive mappings. We define $F_i = \{x: U_i x = x\}$. It is easy to see that F_i is a closed subset. We consider the family $\{F_i: i \in I\}$ of closed subsets. Its family has finite intersection property because of Theorem.

Since X is compact, there exists a point which is contained in all the F_i 's. Its point is fixed by all the U_i 's.

NOTE. Let X be a subset of a Banach space. A mapping U of X into X is said to be *nonexpansive* if $||Ux-Uy|| \leq ||x-y||$ for any $x, y \in X$. A convex subset X of a Banch space is called to have *normal structure* if each bounded convex subset of X which contains more than one point, has a nondiametral point.

If X is a bounded, weakly compact, convex subset of a Banach space and X has normal structure, than X satisfies all the conditions of Theorem.

In case X is a compact convex subset of a Banach space, we can apply Corollary to X.

The authors wish to express their hearty thanks to Professor H. Umegaki and the members of his seminar for many kind suggestions.

References

- BELLUCE, L. P., AND W. A. KIRK, Fixed point theorems for family of contraction mappings. Pac. J. Math. 18 (1966), 213-217.
- [2] BELLUCE, L. P., AND W. A. KIRK, Nonexpansive mappings and fixed points in Banach space. Ill. J. Math. 11 (1967), 474-479.
- [3] BROWDER, F. E., Nonexpansive nonlinear operators in a Banach space. Proc. Nat. Acad. Sci. U.S.A. 54 (1965), 1041-1044.
- [4] DE MARR, R., Common fixed-points for commuting contraction mapping. Pac. J. Math. 13 (1963), 1139-1141.
- [5] DUNFORD, N., AND J. T. SCHWARTZ, Linear operator, Part 1. Interscience, New York (1958).
- [6] KIRK, W. A., A fixed point theorem for mappings which do not increase distances. Amer. Math. Monthly 72 (1965), 1004-1006.

DEPARTMENT OF MATHEMATICS, TOKYO INSTITUTE OF TECHNOLOGY.

330