KODAI MATH. SEM. REP.
21 (1969), 326—330

A FIXED POINT THEOREM FOR NONEXPANSIVE
MAPPINGS IN METRIC SPACE

By Yoicu1r KijimA AND WATARU TAKAHASHI

Let X be a metric space with a metric d. A mapping U of X into X is said
to be nonexpansive if for each pair z, y of elements in X, d(Uzx, Uy)=d(x, v).

Recently several fixed point theorems for nonexpansive mappings in Banach
space have been derived by Belluce and Kirk [1], [2], Browder [3], de Marr [4] and
Kirk [6].

In this paper we shall prove a fixed point theorem for nonexpasive mappings
in metric space under certain conditions.

1. Notations and definitions.

Let X be a metric space with metric d. For a subset A of X, the diameter
of A is denoted by d6(A), that is,

d(A)=sup{d(z, y): x, ye A},
and for a point pe A, we define
p(p, A)=sup {d(p, x): zeA}.

A point peA is called @ nondiametral point of A if p(p, A)<d(A). A subset of X
is said to be admissible (cf. Dunford and Schwartz [5] p. 459) if it is an intersection
of closed spheres.

Throughout this paper, S(z,7) denotes the closed sphere of center x and
radius r.

2. Fixed point theorem.

LEMMA. If a bounded metric space X satisfies the following coditions (1) and
(2), then every nonexpansive mapping U of X into X has a fixed point.

V) If a family of closed spheres has finite iniersection property, then the in-
tersection of the family is nonempty.

(2) FEach admissible subset which contains more than ome point contains @
nondiametral point.
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Proof. Let @ be the family of all nonempty admissible subsets invariant under
U. By boundedness of X, Xe® and hence @ is a nonempty family. @ is con-
sidered to be partially ordered by usual set inclusion. Let {A4,: iel} be a totally
ordered subfamily of @®. We show that the intersection A of all A)’s is an element
of @. It is obvious that A is admissible and mapped into itself by U. Since every
A, is admissible, it can be written in the form

Ai=N{S(x;, rj): jeTi}

where J, is an index set. We can assume that /,, and J,, are disjoint whenever i,
and i, are distinct. Therefore

A=n{S(x,, ry): jeJ}

where J=U{/,, iel}.

Now we consider the family {S(x,, 7;): jeJ} and take arbitrary finite elements
S(@p 711), S(@yy, 715)s -+, S(&5,, ¥4,) from it. Every S(z,, 7;) (jeJ) contain some
A, Gel). Thus

N Ay, C N Sy 72p)-
k=1 k=1

Since the family {A,: iel} is totally ordered, Ng.,A.,, is nonempty, and so is
NiS(@yy 75,). This shows that the family {S(w,, 7;): jeJ} has finite intersection
property and A= N{S(x,, 7;): jeJ} is nonempty because of the condition (1). It is
evident that A is a lower bound of the family {A,: ¢eI}. Therefore by Zorn’s
lemma, @ has a minimal element F.

We can put F=N{S(x,, #;): yel'} and define

r=1inf {p(y, F): yeF},
Fe={zeF: o(z, F)=r}.
We prove F.e® as follows. It is easy to see that
F.=[n{S(x,, rp): reININ{S(x, r+1/n): zeF, n=1,2, ---}].
This shows that F, is admissible. We consider the family
{S(x,, ;) (yeI'), S(x, r+1/n) (zeF, n=1, 2, ---)}.

In order that it has finite intersection property, it is sufficient that Np,S(xx, 7
+1/n;) contains a point of F for any i, a3, -+, zn€F and any positive integers
N1, Nz, *+°y N Lt

n= max {#ni, #s, ***, Hm}.

By the definition of #, there exists some x€F such that
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oz, FY=r+1/n.

Since xx€F and d(x, xx)=r+ ln=r+1/n, for k=1,2, -, m, then xe NSz, 7
+1/nx). Hence F, is nonempty by the condition (1).

Next we show that F, is mapped into itself by U. If zeF,, then by the
property of U,

d(Uz, Uy)=d(x, y)=p(z, F)=r for all yeF,
and hence U(F)cS(Ux, 7). Since U(F)CF, it is easy to see that
UFENS(Uz, r))cFNS(Uxz, r).
Evidently FNS(Ux, r) is a nonempty admissible subset. Thus
FNS(Ux, r)ed.

By the minimality of F, FcS(Ux, ). This shows p(Uz, F)=r, and we conclude
UzxeF.,.

We have proved that F.e®, and hence F,=F by minimality of . We use the
fact F.=F to show that F contains only one point. If F contains more than one
point, then by the condition (2), F has a nondiamental point z, that is, p(ze, F)
<6(F). Hence

0(F)=sup{d(y, 2): y, 2€ Fe} = sup {o(y, Fe): yeFe}
=sup{o(y, F): yeF}=r=inf{p(x, F): xeF}
= o(wo, F)<(F).

This shows 6(F;)<d6(F), but it contradicts F,=F.
We have seen that F contains only one point. It is evident that the point is
fixed by U.

THEOREM. Let X be a bounded metric space, and suppose that X satisfies the
conditions (1) and (2) of Lemma.

If F is a finite commuting family of nonexpansive mappings of X into X, then
F has a common fixed point.

Proof. Let @ be a family of all nonempty admissible subsets invariant under
each Ue%. By the same method in the proof of Lemma, we can find a minimal
element F of @.

Let F={Uy, Us, -+, U} and W={zxeF: U,U; -+ Ux=x}. We can apply Lemma
to the nonexpansive mapping U,U, --- U, of F into F, and we get W=g.

It is shown that U (W)=W for i=1,2, -, n In fact, if xeW, then Uz
=U;U U, -+ Upx = U U, -+ U, Uye. Conversely if xeW, then U,U, ---Up—1Uyyy -
UpxeW and z=UU, -+ Upz=U;U U; -+ UpmiUyyy -+ Upa.

Let K be the least admissible set containing W. Since F is admissible, KCF.
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If we assume that K contains more than one point, then, by the condition (2), K
must contain a point x, such that

o(@o, K)=r<o(K).

We put
C=FnNn[N{S(z, r): zeK}].

Then C is a nonempty admissible subset of /. We note that C can be written in
the following form

C=FN[N{S(z r): ze W}].

For, if d(x, z)<r for all ze W, then WcS(x, ) and since K is the least admissible
set containing W, it follows KcCS(x, #), that is, d(x, z)=r for all ze K. Thus for
any ceC and we W,

d(Uiec, Uw)=d(c, w)=r.

Since Uy(W)=W, we get U;(C)cC.
We have showed that C is a nonempty admissible subset invariant under each
U,. Therefore C=F by the minimality of #. Thus

IK)=d(FNK)=0dCNK)=r<iK),

but this is a contradiction.
We conclude that K contains only one point and this point is the desired fixed
point.

CoroLLARY. If X is a compact metric space which satisfies the condition (2)
of Lemma, then every commuting family of nonexpansive mappings of X into X
has a common fixed point.

Proof. X satisfies all the conditions of Theorem.

Let {U,: iel} be a commuting family of nonexpansive mappings. We define
F,={x: Ugx=x). It is easy to see that F, is a closed subset. We consider the
family {F,: ielI} of closed subsets. Its family has finite intersection property because
of Theorem.

Since X is compact, there exists a point which is contained in all the Fy's.
Its point is fixed by all the U,’s.

Note. Let X be a subset of a Banach space. A mapping U of X into X is
said to be nonexpansive if ||Ux— Uy||=<||z—y|| for any x, yeX. A convex subset
X of a Banch space is called to have normal structure if each bounded convex
subset of X which contains more than one point, has a nondiametral point.

If X is a bounded, weakly compact, convex subset of a Banach space and X
has normal structure, than X satisfies all the conditions of Theorem.
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In case X is a compact convex subset of a Banach space, we can apply Corol-
lary to X.

The authors wish to express their hearty thanks to Professor H. Umegaki and
the members of his seminar for many kind suggestions.
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