A NOTE ON PSEUDO-UMBILICAL SUBMANIFOLDS WITH M-INDEX 1 AND CODIMENSION 2 IN EUCLIDEAN SPACES

By Tominosuke Ötsuki

In the proof of the case $k_2 \neq 0$ of Theorem 3 in [2], the author made a mistake by using the Gauss' lemma. In this note he will show that the same results holds. We rewrite the related part of the theorem.

THEOREM. Let M^n $(n \ge 3)$ be an n-dimensional submanifold in (n+2)-dimensional Euclidean space E^{n+2} which is pseudo-umbilical and of M-index 1 and whose second curvature is not zero everywhere. Then M^n is a locus of a moving (n-1)-sphere $S^{n-1}(v)$ depending on a parameter v such that the radius is not constant, the locus of the centor has the tangent direction orthogonal to the tangeht space to M^n at the corresponding point and intersects obliquely the n-dimensional linear subspace containing $S^{n-1}(v)$, and $S^{n-1}(v)$ is umbilical in M^n .

Proof. Using the notations §§ 1, 2 in [2], let $k_1(p)$ and $k_2(p)$ be the first and second curvatures at p of M^n in E^{n+2} . Let $\phi: M^n \to E^{n+2}$ be the mapping defined by

(1)
$$q = \psi(p) = p + \frac{1}{k_1(p)} \bar{e}(p),$$

where $\bar{e}(p)$ is the mean curvature unit vector at p. Making use of the frame (p, e_1, \dots, e_{n+2}) such that

(2)
$$\omega_{in+1} = k_1 \omega_i, \qquad \omega_{n+1,n+2} = k_2 \omega_n,$$

where $k_1 \neq 0$, $k_2 \neq 0$ by the assumption. Differentiating the second of (2) and using them and the structure equation of M^n , we get

$$(3) d\omega_n = -d \log k_2 \wedge \omega_n,$$

which shows that the Pfaff equation

$$(4)$$
 $\omega_n = 0$

is completely integrable. Let Q(v) be the integral hypersurface of (4) depending on a parameter v. Then, we put

(5)
$$\omega_n = f dv$$
,

Received November 4, 1968.

where f is a function defined on some neighborhood in M^n . From (3) and (5), we see that

$$(6) \qquad \qquad \bar{k}_2 = k_2 f$$

depends on v only. Differentiating (1), we get

(7)
$$dq = -\frac{dk_1}{k_1^2} \bar{e} + \frac{\bar{k}_2 dv}{k_1} e_{n+2}.$$

This shows that $\psi(M^n)$ is generally two-dimensional and $dk_1=0$ along Q(v) by (2) and $n \ge 3$. Hence k_1 depends on v only. Therefore, the image of Q(v) by the mapping ψ is a point which is denoted by q=q(v). Q(v) is contained in a hypersphere $S^{n+1}(v)$ in E^{n+2} with center q(v) and radius $1/k_1(v)$. Therefore, (7) can be written as

$$\frac{dq}{dv} = \frac{\bar{k}_2}{k_1} e_{n+2} - \frac{k_1'}{k_1^2} \bar{e}.$$

Differentiating the first of (2) and using them, we get

$$\omega_n \wedge \omega_{in+2} = \frac{k_1'}{\bar{k}_2} \omega_n \wedge \omega_i,$$

in which substituting $\omega_{in+2} = \sum_{j} A_{n+2ij} \omega_{j}$, we get

(8)
$$A_{n+2ab} = \frac{k'_1}{\bar{k}_2} \delta_{ab}, \quad A_{n+2nb} = 0, \quad A_{n+2nn} = -\frac{(n-1)k'_1}{\bar{k}_2} \quad (a, b=1, 2, \dots, n-1)$$

by $\overline{m}(A_{n+2})=0$. Since *M*-index=1, $A_{n+2}\neq 0$ and

$$(9) k_1' = \frac{dk_1}{dv} \neq 0$$

Now consider a vector field with the domain of v defined by

(10)
$$X = k_1^2 \frac{dq}{dv} = k_1 \bar{k}_2 e_{n+2} - k_1' e_{n+1},$$

which has the tangent direction of the locus of q(v), depends on v only, and is orthogonal to the tangent space M_p^n , $p \in Q(v)$. From (2), (8) and (10), we get

(11)
$$X' = \frac{dX}{dv} = k_1 \bar{k}'_2 e_{n+2} - (k_1'' + k_1 \bar{k}_2) e_{n+1} + n k_1 k_1' f e_n.$$

This shows that X' is linearly independent of X and normal to the tangent space to Q(v). Since X and X' are constant along Q(v), there exist two linear subspaces $E_1^{n+1}(v)$ and $E_2^{n+1}(v)$ which are orthogonal to X(v) and X'(v) respectively and contain Q(v). Since e_{n+1} , X(v) and X'(v) are linearly independent, we can put

234

$$S^{n-1}(v) = S^{n+1}(v) \cap E_1^{n+1}(v) \cap E_2^{n+1}(v)$$

and Q(v) is contained in $S^{n-1}(v)$. $k'_1 \neq 0$ and (10) show that the curve q(v) intersects obliquely the *n*-dimensional linear subspaces containing $S^{n-1}(v)$.

Lastly, we consider the second fundamental form of Q(v) as a hypersurface of M^n . Differentiating (11) along Q(v) and using (2) and (8), we get

$$0 = k_1 \bar{k}_2' \sum \omega_{n+2a} e_a - (k_1'' + k_1 \bar{k}_2^2) \sum \omega_{n+1a} e_a + nk_1 k_1' f \sum \omega_{na} e_a + nk_1 k_1' df e_n$$

= { - k_1 k_1' (log \bar{k}_2)' + k_1 (k_1'' + k_1 \bar{k}_2^2) } $\sum \omega_a e_a + nk_1 k_1' f \sum \omega_{na} e_a + nk_1 k_1' df e_n.$

Hence we have df=0 along Q(v), which shows that the function f may be consider as a function of v only, therefore we may put f=1. Then we have

$$\omega_{an} = \frac{1}{n} \bigg\{ -\frac{k_2'}{k_2} + \frac{k_1'' + k_1 k_2^2}{k_1'} \bigg\} \omega_a$$

from the above equality, which shows that Q(v) is umbilical in M^n . q.e.d.

References

- [1] ÖTSUKI, T., A theory of Riemannian submanifolds. Ködai Math. Sem. Rep. 20 (1968), 282-295.
- [2] Ōтзикı, T., Pseudo-umbilical submanifolds with *M*-index 1 in Euclidean spaces. Kōdai Math. Sem. Rep. **20** (1968), 296-304.

Department of Mathematics, Tokyo Institute of Technology.