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PERIODS OF DIFFERENTIALS
AND RELATIVE EXTREMAL LENGTH, I

By Hisao MizumoTto

Introduction.

Let R be an open Riemann surface and its ideal boundary be denoted by 3.
Let {A,, B;} be a canonical homology basis modulo & and {C;} be a homology basis
of dividing cycles. Let I, be the space of harmonic differentials on R with finite
Dirichlet norm. It seems to be an important problem to decide when there exists
a differential wel", which satisfies a period condition

S 0=0a, S w=b,, S w=Cc,
4, B, (4]

for an arbitrarily given system of real numbers ¢;, b;, and c,.

In the present paper we shall concern ourselves with the problem to decide
the existence of such differentials in the important subspaces I'f, I'f, 1'% N hse (cf.
[3]) and further the more general subspaces A%, A%, (see §1. 5). In the terms of
relative extremal length (see §1. 10 for the definition) we shall state a perfect
condition in order that there exists the differential with given periods in each of
these spaces (Theorems 2.1, 2.2, 2.3 and 3.1). Further it is shown that the
differential gives an extremal metric of a certain relative extremal length problem.

In the subsequent paper II, some applications of the present consequences will
be shown.

The problem concerning the existence of differentials with given periods has
been studied by many authors: Virtanen [16], Kusunoki [6] and Sainouchi [15], etc.
They are mainly based on such the algebraic method as the orthogonalization of
differentials. Our present method is quite different from these and very geometrical.

§1. Preliminaries.

1. Canonical homology basis modulo the ideal boundary. Let R be an open
Riemann surface. A singular cycle is said to be a dividing cycle, or homologous to
0 modulo the ideal boundary, if it is homologous to a singular cycle which lies
outside of any given compact set. Let © and y be the groups formed by the
homology classes of all singular cycles and dividing singular cycles respectively.
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The quotient group /9y is the homology group modulo dividing cycles. It can
also be called the relative homology group modulo the ideal boundary.

It is known that there exists a system of cycles {A4;, Bj}j- (¢9=c0) on R satis-
fying the following conditions (see [2], [3]):

(i) Each cycle C on R is homologous to a linear conbination of a finite
number of the cycles A,, B, modulo J, that is

C~ 2 (@,A;+y;B)  (mod S £<co),

where z,, y, (=1, -++, ) are integers and I denotes the ideal boundary of R;
(ii) The intersection numbers between them satisfy

A]XAk-':BjXBk:O; A]XBIczﬁjk (jy k:17 Tty g))

where d;; denotes the Kronecker symbol.
Such a system is called a canonical homology basis of R modulo the ideal
boundary J.

Let {R,}3-, be an exhaustion of R. Then there exists a system of cycles
{A,, Bj}5-, furthermore satisfying the following condition (see [2]):

(iii) For every = there exists a finite number &, such that A, By, -, Ax,, Bs,
form a relative homology basis of R, mod dR,, that is, each cycle CCR, is
homologous to a linear combination of A, By, -++, A«,, B:, modulo R, where oR,
denotes the relative boundary of R,.

We shall call such a system a canonical homology basis modulo the ideal
boundary I associated to the exhaustion {R,).

2. Canonical homology basis of dividing cycles modulo 3. Let R be the
Kerékjart6-Stoilow compactification of R. Partition the ideal boundary ¥ of R into
two disjoint sets a and g such that « is closed on R. Let 2 be a subregion of R
which is not relatively compact and of which the relative boundary 82 consists of
a finite number of Jordan analytic curves. Then Q will be called a non-compact
regular vegion. Further the subsets of a and f which are boundary components of
2 are denoted by «(£2) and B(2) respectively.

A dividing cycle is said to be komologous to 0 modulo B, if it is homologous
to a cycle which lies on 2 with a(2)=¢. Let 9; be the group formed by the
homology class of all dividing cycles homologous to 0 modulo 8. The quotient
group y/9;s is called the homology group of dividing cycles modulo B.

Let K be a relatively compact subregion of R. We shall call K a (compact)
regular region, if 0K consists of a finite number of Jordan analytic curves, dK
=d(R—K) and all components of R—K are noncompact. Furthermore a regular
region K is called canonical if each component of R—K has a single contour. An
exhaustion {R,} of R is called to be canonical if each R, is canonical.

Let C be a generic component of 9K. Partition the set of all components of
0K into two disjoint sets @x and fx in such a manner that Ceag if a(2)=¢ for Q
with 92=—C and otherwise Cepx.
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Let {R.}7-; be a canonical exhaustion of R. For simplicity we set an=az,
and B.=Pr, Let the elements of «; be denoted by C, (j=1,---,s). We denote by
Q; (=1, -+, s) the component of R,—R; which has C, in a common boundary
component with R;. The boundary components of @, belonging to a: are denoted
by Cjx 1=k=s;). Then 0Q,= X3z, Cj—C;+ X, (comp. of 0Q;€8;). Next, we denote
by Qji the component of R;— R, which has Cjx in a common boundary component
with Q,.

When we continue in this way we obtain the symbol C;,.,, for each element
of a, with the subscript j, running from 1 to a number s,,.,,_,. The component
of Ru.1—R, which has C,,..,, in a common boundary component with @,,..,,_, has
a name Q,,.,, and

BQJI...M::‘][. Ciyini—Cipgy+ 2 (comp. of 0Qj,...;, € Bus).

Lemma 1. 1. (Cf. [3] for the case 3=¢ and also [9].) A homology basis modulo
B of an open Riemann surface R is formed by the combined system of all cycles
A, B, of a canonical homology basis modulo the ideal boundary associated to a
canonical exhaustion {R,} and all cycles C, with j.>1.

1+Jn

Such a system of cycles will be called a canonical homology basis modulo B
associated to the exhaustion {R,}. FEach cycle C satisfies a unique homology
relation

CN? (x]Aj+ijj)+]§12]1...]nCJ1...]n (mod ﬁ),

where x,, ¥, and z,,..,, are integers, the sum is finite, and C is a dividing cycle if
and only if all #, and y, are 0.

The system of cycles C,,..;, (ja>1) determines a basis for 9y/9, which is
called a canonical homology basis of dividing cycles modulo B associated to the
exhaustion {Rn}.

If B=¢ and thus a=J, then the term “modulo 8” in the above may be
omitted.

For simplicity of notation, a canonical homology basis C,,..,, (v=1, -+, n; 5,>1)
of dividing cycles modulo $, of R, is also denoted by Ci,:--,C,, with the changed
subindices.

3. Conjugate relative cycle of C,,..,,. Let C* be a one-dimensional singular
chain. We shall say that C* is a relative cycle if and only if the boundary
dC*=0. The group of relative cycles contains the subgroup of cycles.

Consider a point on Cj,..,, (j»>1). It can be joined by a simple curve in
Q;,s, to @ point on C,,.,.;. This point can be joined to a point on Cj,..;,u by a
simple curve in @,,.,,;, and so on. In the opposite direction we can pass from
the point on C,,..,, through @,..., , to a point on C,,.,, .1, then through @;..;,_1
to a point on C,,..,, 11, and so on. Here we take the curves so that each of them
does not intersect any element A, or B, of canonical homology basis modulo J
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associated to the exhaustion {R,}, which is possible. Then the product of the
curves between consecutive points is a relative cycle, which we denote by C¥.j,
and we call the comjugate relative cycle of Cj,.j,. Its direction can be fixed so
that Cj,..;, XC¥.jn=1. Then C,.; 1.1XC.3,=1, Cj .y 1.1 XCF.jy=—1, and for
all others Cy,..x, XC¥..s,=0, A;XC¥.;,=0 and B,xC¥..;,=0.

4. Space of differentials I",. Let w; and w, be two real harmonic differentials
on R. Then the inner product of w, and o, is defined by

(01, 02)r= Swaw;k»

where w¥ denotes the conjugate differential of w, and w0y the exterior product of
o; and of, and further the worm ||wi||z of w: by |loi|lk=(01, ®1)r. Let I'y, be the
Hilbert space of the real harmonic differentials on R with finite norm. We define
the some subspaces of I (cf. [3]).
The: the space of exact harmonic differentials.
Ihse the space of semi-exact harmonic differentials.
welny if and only if for each ¢>0 and each compact set F there exist a
regular region R, and a harmonic differential w, on R, such that
ECR,, =0 along dR, and ||o—wol|r,<e.
w€lny if and only if for each ¢>0 and each compact set £ there exist a
canonical region R, and an exact harmonic differential w, on R, such
that EC Ry, wo=0 along R, and |lo— ||z, <e.
We can easily see that the inclusion relations

Iim C e C 1 pse, IinC 0 C 1 pse

hold. The subspaces formed by all conjugate differentials of differentials in I pe,
Thsey 'nm and I'ne are denoted by I'f, I'ke, 'k, and I'¥ respectively.
The following orthogonal decompositions hold (cf. [3]):

(L. 1) Iu=TnoA =T+ The,
(1 2) Fh=th‘:l‘FlTse=F#m‘i‘Fhse
and

thrhsenrlfse';_rhm"i‘['}fm-
Hence we have further the decomposition
(1 3) Fh:rhm'i'plwnF;':se‘i‘F!Te:Flﬂ;n’i'FhﬂznFhse';‘[’he-

Here the space I'noNI'k. is identical to the closure of the space of the canonical
harmonic differentials in Kusunoki’s meaning whose conjugate differentials are
semi-exact (cf. [6], [11]).
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5. Space of differentials A,. Partition the ideal boundary I of R into two
disjoint sets « and B such that « is closed on R. The subspace Ap=An(a, B) of 'y,
is defined as the collection of all wel’, which satisfy the following conditions for
every non-compact regular region £ such that 92 consists of a Jordan curve and
a()=¢:

(i) For each ¢>0 and each compact set EC® there exist a region 2,C2
and a harmonic differential w, on £, such that ECQ,, d2Cd2,, 2,:=020K for a
certain regular region K, wo=0 along 02,—02 and ||o—wlle,<¢;

(ii) o* is semi-exact on 0.

It is shown that the present A,=/x(a, p) is identical to the space An=An(e, B, ¢)
for the case of y=¢ defined in [10]. The proof is omitted.

The subspaces Ao and Apn, of 4, are defined by Ane=AnN1ne and Apm=AnN1 1m.
The spaces formed by all conjugate differentials of differentials in Ay, 4no and Apm
are denoted by A¥, 4% and /%, respectively. Obviously, if f=¢, then Ap=AF=1I,
Ah0=rh07 AhmZFhm, A;g):['lfo and Ahﬁn—__]ﬁhﬁn

By (1.1), (1.2) and (1. 3) we obtain immediately the following orthogonal de-
compositions:

(1. 4) An=Ano+ AN TE, A =A%+ AEO T he,
1.5) M= Aum A0 Tsey M= M AN The
and

M= Aum+ Ano O e A N T
Here we can easily see that
Ano NI 3se=An(p, aU B)=I"no N e
Thus we have that

Mn=AumA+Tno NN T,
1. 6) . )
A*zA;fm F}Tonrhse'l‘/l;f N1 he.

6. Elementary differentials of I',. Let 2 be a non-compact regular region.
A function # being harmonic on £ and continuous on the relative closure 2 is
called a normalized function on £, if for each ¢>0 and each compact set FC 2
there exist a region 2,CQ and a harmonic function #, on £, such that ECQ,,
002C08y, 2,=02NK for a certain canonical region K,

u on 059,
uo =
0 on 082,—0df2

and ||du—du||e,<e (cf. [12], [6]). For the sake of conformity a harmonic function
# on a relatively compact subregion £ of R is always assumed to be a normalized
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function on 2. The differential du of a normalized function # is called a »or-
malized differential.

Let C be a dividing cycle in R which divides R into two subregions Ry and
R, so determined that C=dRs=—dR;. A harmonic function #¢ on R is called a
harmonic measure associated to C if ue and 1—wu¢ are normalized functions on
Re and Ry respectively. ¢ is uniquely determined up to the case where both
harmonic measures on R¢ and Rg with respect to their ideal boundaries vanish.
In the latter case we define us=0. Except for the latter case we have that

Z{c-f—ﬁo:l,

where #y denotes the harmonic measure associated to —C. By o¢ and &¢ we
denote du¢ and diic. Then g¢=—do.

Let {A,, B;}9., (¢g=o0) be a canonical homology basis of R modulo J. The
elementary differential o4, (s5;) is defined as an element of I', which satisfies the
conditions:

(i) o4, (o8, is a normalized differential on R—A, (R—B));

(ii) | oa=0, \, oa=on
4y By,

(S o5y=— i Sij=o> G, k=1, g).
4 By

We can easily see that each of the differentials o4, (98;) is uniquely determined
(cf. [12], [6D).

7. Elementary differentials of 4,. Let « and B be the partition of the ideal
boundary I of R defined in 2. Let £ be a non-compact regular region. A func-
tion # being harmonic on 2 and continuous on 2 is called a normalized function
on Q with respect to the space A, if for each ¢>0 and each compact set EC 2
there exist a region £2,Cf and a harmonic function %, on £, such that Ec,,

02C 02, 2,=Q2NK for a certain canonical region K, ||du—duol|le,<e and
u on 02,
uo=+0 on Ceax (CC9),
const. on Cefx (CcO)

with the constant so chosen that [¢du¥=0 for each Cepx (CCQ), where ax and
Px denote those defined in 2. The present normalized function # with respect to
the space 4, is obviously identical to the normalized function for the case of y=¢
defined in §1. 4 of [10].

Let C be a dividing cycle in R which divides R into two subregions R¢ and
R so determined that C=0Ry;=—af¢. A harmonic function #; on R is called a
generalized harmonic measure (with respect to An) associated to C if ue and 1—uc
are normalized functions on Ry and K¢ respectively with respect to A,. The
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existence and the uniqueness of #¢ refer to [10]. By o¢ we denote duc.

Let {A,, B;}9-1(g<co) be a canonical homology basis of R modulo §. The
elementary differential o4, (63,) with respect to the space /, is defined as an
element of 4, which satisfies the conditions:

(a) o4, (o) is a normalized differential on R—A, (R—B;) with respect to
the space As;

b S —o0, S -3,
() AkOAJ BkoA] Jk

(S P SaBFo) Gy k=1, g).
Ag By

The differential o4, (65,) uniquely exists (cf. [10]).
Especially the elementary differential ¢4, (o8, with respect to Au(E; ¢, aU f)
=T NI is denoted by 74, (vs)).

8. Integral formulas.
LemMmA 1. 2. (Cf. Theorem 1.3 of [10].) Let wed¥ and u be a normalized
Sfunction on a non-compact regular region 9 with respect to An. Then the equation

(o, du*)9=S 20
a0

holds.

CoroLrARry 1.1. (Cf. Corollary 2.3 of [10].) Let weA¥ and oc be the differ-
ential of the generalized harmonic measure with respect to A, defined in 7. Then
the equation

(@ oz>R=Scw

holds.

CoroLLARY 1.2. (Cf. Corollary 2.4 of [10].) Let wedf, and o4, and og; be
the elementary differentials with respect to Ay, defined in 7. Then the equations

(o, ojj)RZS , (o, 0§j)R:S [
45 By

hold.

CoroLLARY 1.3. Let we€l$NI'nse, and ta, and tp, be the elementary differ-
entials with respect to I'noNI ke defined in 7. Then the equations

(a)) Tjj)R: S w, (a)y ng)Rz S [0}
4 5
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hold.

9. Theorem. Let {Rn}7-, be a canonical exhaustion of R. Let {A;, Bj}J-
(9g=o0) be a canonical homology basis modulo I associated to {R,}. Let {C;}i,
(N=co) be a canonical homology basis of dividing cycles modulo g associated to
{R.}. Let 04, and o3, (j=1,-,9) be the elementary differentials with respect to
An and ¢, (j=1, -+, N) be the differentials of the generalized harmonic measures
with respect to 4, associated to C, respectively. Let 74, and 7, (=1, -, 9) be
the elementary differentials with respect to I'noNI'%.. By making use of Corol-
laries 1.1, 1.2 and 1.3 and the orthogonal decompositions (1. 4), (1. 5) and (1.1)
we can prove the following theorem (cf. Ch. V, Theorem 20 C of [3] for the proof
and also [6]).

Tueorem 1. 1. (i) {04y 08; 00} (j=1,--,9; k=1,--,N) spans Ano; (ii) {oc;}
(j=1, -, N) spans Anm; (iil) {4 t8;} (G=1, -, 9) spans I'noN I Fse.

10. Definition of relative extremal length. The various extensions of the
concept of extremal length have already been introduced and investigated by
Jenkins [5], Fuglede [4] and Ohtsuka [13]. In the present paper we shall make
effective use of the relative extremal length defined in [10].

Let 7 be a countable collection of locally rectifiable curves in R (cf. [13]) and
€ be a family of such collections y. For simplicity the elements of € are called
curves. Let p be a linear density of R (cf. [3]) and y=yx(y) be a non-negative real
valued function on € such that for each ye® a non-negative real valued x(7) is
assigned. Let us define

1 .
Lo, 7, x(r))=4 2@ S,”'dz] if ()0,

(oo if (=0,

L(p, €, y)= inf L(p, 7, 2(7))
7€C

and
Alp, R>=SS ot dy,
R

where z=z+iy denotes a local parameter. If there exists a non-void class P of p
such that L(p, €, ) and A(p, R) are not simultaneously 0 or oo, then we define the
extremal length of © relative to y or the relative extremal length of & by

L*p, €, y)
0 =2r(€, )= sup ———24_
A€, N=2r€, y) SUP 0 R)

It is permitted that A(€, )=0 or co. This definition is included in Fuglede’s more
general one (cf. [4] and also p. 92 of [13]). The following L-normalization of the
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relative extremal length will be useful: Let Pr be the subclass of P such that
[y oldzl=zx() for any ye@. If Prx¢, then A(C, y)=1/infeer, Ao, R). If P3¢ and
Pr=¢, then (G, y)=0.

11. Definitions and elementary properties. Now we shall define the termino-
logies related to the relative extremal length and enumerate its elementary proper-
ties. The proofs are omitted for those which are similar to the case of the ordinary
extremal length (cf. [13]).

LemmA 1. 3. 26, %) is conformally invariant.

LEmMMA 1.4. (G, y) depends on R only through the requirement that the curves
of € are contained in R. Thus, if every ye€ is contained in R'(CR), then 2x(€,y)
=2R’ ((‘S’ X)'

DeriniTION 1.1. Assume that (6, y)=0. If the relative extremal length
problem is taken in the L-normalization, any p€ Py is called an admissible metric.
If there exists po€ Pr, for which 1/a(€, y)=A(ps, R), 0o is called an extremal metric.

LemMa 1.5. If p1 and p. are extremal metrics for a common relative extremal
length problem, then

p1(2)=p2(2)
at most up to a set of measure zero on R.
LemMma 1.6. If G'C6, then AC, )= (6, y).
LEMMA 1.7. If y()=x(y) for any ye@, then A&, x) =G, x).

LeMmMA 1.8. Let 2, (n=1, -, v; v=00) be disjoint open sets in R, €, (n=1,---,v)
be families of curves in 2, respectively, and & be a family of curves in R. If
every €€, (n=1,---,v) contains a 7€C (y=4¢ is permitted) and y(r=)=x(r) ((r)=0
for y=¢), then

1 e 1
= .
. =2

LemMa 1.9. Let € and €, (n=1, -+, v; v=0c0) be families of curves in R such
that €C U1 €, Then
1 v 1
= .
V() _"Z=]1 G, )

By Lemmas 1.8 and 1.9, we have the following corollaries.

CorOLLARY 1.4. Let 9, (n=1, -, v;v=00) be disjoint open sects in R and €,
(=1, --,v) be families of curves in 2 rvespectively. Then
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1 L 1
AU =16y, X) - 1LZ=:1 1(@7» X) )

CorOLLARY 1.5. If 2@, y)=o0, then AGUE’, =4, x).

CorROLLARY 1.6. Let Co={y|x()=0, 7€€}. Then A&, x)=A2C—6C}, ) for any
(S,,;C(‘So.

By the definition, if y(7)=1, then A(€,y) is the same as the ordinary extremal
length 2(€); (€, 1)=2(6).

LEmMA 1.10. Let yo=inf,ee x(7) and yi=sup,es x(y). Then the inequality
% A€, N =2@)=x 4G, )
holds provided each side has meaning.

LeMmMmA 1. 11, If y(7)=0 for every y€G, then A(Q, x) and X&) are simultaneously
finite or infinite.

Proof. Let C,={y|1/n=y()<n,7¢6}. Then §=Ug., €, and by Lemma 1. 10
1
pey MG, ) =2Cr) =7 2(Cry ).

If 2@, y)=o0, then by Lemma 1.6 (€, y)=cc and thus by the above inequality
A(@,)=o0c0 for all n. Hence by Lemma 1.9 for y=1 we find that 2(@)=co. The
converse assertion is also similarly proved.

§2. Existence of we}, with given periods.

1. Statement of relative extremal length problem. Let R be an open Riemann
surface. Let @ and B be the partition of the ideal boundary J of R defined in §1.2.
Let {Ra}n-1 be a canonical exhaustion of R. Let {4, B;}j-1 (¢§=co) be a canonical
homology basis modulo J associated to {R.}. Let {C;}{.1 (N=co) be a canonical
homology basis of dividing cycles modulo j associated to {Rx}.

Let € be a class of curves defined by

€={7|r is a Jordan curve in R such that y40 (mod p)}.

Let ay, b, (7=1,--,9) and ¢, (=1, -, N) be a system of real numbers. We define
a function y=yx(y) on € by

@2.1) = ;(rXBj)aj-l-;(A,Xz')bj—i-;(z'XC}‘)cj,

where C¥ denotes the conjugate relative cycle of C, respectively. Our problem is
to compute the relative extremal length A(, y).
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2. Existence of we/Af, for R with finite character. For simplicity, by a
differential weA¥, with periods a,, b,, ¢, we shall call the differential weA}, which
satisfies the period condition:

= |, o=t =10,
4, B,
2. 2)

S W=Cy (j:I,"')N)'

¢y

We note that by Corollary 1.1 if there exists a differential we/}, with periods
a,, b, ¢, then c¢xx0 for some % implies that the differential of the generalized
harmonic measure o¢,%0.

Now we shall prove that if g<co, N<co and furthermore the differentials of
the generalized harmonic measures dc,; %0 (j=1,---, N), then there exists always
one and only one differential we A} with periods «,, b,, ¢, for an arbitrarily given
system of real numbers a,, b,, c,.

We shall use the simplified notations:

Lz]_1=A], L2]=B], ng+k:Ck;
021—1=0Aj) GZJZUBJ': O2g9+5k=0C};

G27-1=0y, q2j="b;, Qgix=cr  (j=1,--,0;k=1,.--,N);

m=SL G k=1, 2+ N).

J

Here o4, and o3, are the elementary differentials with respect to 4, defined in §1. 7.

LEMMA 2.1. pjx=pi; 5.5 Tjxupin>0 for any real numbers z; (7=1,---,29+N)
not simultaneously zero and thus det.|pjx| >0.

The present lemma is proved by a standard method making use of Corollaries
1.1 and 1. 2.
Since by Theorem 1.1 the space Af is spanned by ¢%;, ¢%, (j=1,-,9) and
o¥, (j=1,-+,N), and g<oo and N<co, we find that
29+N
o= zjo’¥
=1
with some real coefficients x, (j=1,--,29+N). Then by the condition (2.2) we
obtain the system of equations:

29+N

2.3 :/:.—'1 pixxr=q,  (G=1,-,2g9+N).

By Lemma 2.1 we know that (2.3) has a unique solution (zy, -, Z24.x), Which
assures the existence and the uniqueness of the desired .
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3. The case of compact bordered surfaces. Let R, be a compact bordered
Riemann surface. Let {A,, B;}j-: be a canonical homology basis of R, modulo dR,.
Partition the collection of the boundary components of R, into two disjoint sets «
and B. Let G, ---,Cy denote the elements of a. Then {C;}i., forms a canonical
homology basis of dividing cycles modulo S.

By the consequence of 2, there always exists the unique differential we ¥, with
periods a,, b,, ¢;,, where A3}, is one for the present R,.

We should note that the present o can be also defined as the harmonic
differential on R, which satisfies the conditions:

(i) w*=0 along 9Ry;

(ii) S w=a, S w=b, (=1, q);
4y By
(iif) S o=c, (=1, N),
Oy
S 0=0 for each Cep.
(o}

Let & and yx(y) be the class of curves and the function respectively defined in
1 for the present R,.

LemMma 2.2. 26, p=llollz.

Proof. If w=0, then the equality holds in the meaning: A(€, y)=|lw||zi=co.

Assume that w%0. Since o* has only a finite number of critical points on R,,
each level curve / of w* in R, is simple closed up to a finite number of components
through such critical points. Let @; be the collection of such Jordan curves /.
Obviously €,C€, Ui, /=R, and IN/'=¢ for distinct /,/’€€;. We shall orient each
level curve /€@, so that w is positive along it.

Except at a finite number of the critical points of w, an integral of w-+iw* can
be used as a local parameter z. Let p be an admissible metric. Then by the

Schwarz inequality
2 2
<S p|dz|> :(S pa)> gs p%S 0  (e6),
l 14 l l

Here we note that
[ oleizan, (o=

Then
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Integrating in o* for all variation over €;, we obtain
llo]|z, = Alp, Ro),

and thus A€, y)=|le|lz. On the other hand, since p, defined by po|dz|=|w+iw*| is
an admissible metric, we obtain

1
|||y = A(00, Ro)= m—

4. Construction of we/}, by exhaustion. Let R be a generic open Riemann
surface. In the present number we shall assume that there exists the differential
wed¥, with given periods @,, b,, ¢;, where g or N is not necessarily finite. By the
orthogonal decomposition (1.4) the differential w is uniquely determined.

We shall preserve the notations in §1.1 and §1.2. Let A} = A¥'(an, fr)
(n=1,2, ---) denote the space A}, defined for R, respectively in place of R. Let w,
n=1,2,---) be the differential of A% respectively with periods a,, b, (7=1, -+, k),
¢; (7=1, -, t,). Now we shall prove that the sequence {w,}7-: strongly converges
to the differential w.

Since wp—w, for n=m is exact on R,, by the orthogonal decomposition (1. 1)

we find that
(Oms On—0m)r,=0  (R=m).
Hence
lwn— ol Slloallz,— lowllz,  (BZ=m),
which implies that ||w.ll%, is monotone increasing with #. Similarly we see that
(wn, 09— n) R, =0
and thus
llo—wnllz, =llollk—llwall%,

Consequently, there exists the finite limit limy.., |[|oxll%,=|lollk<co and the sequence
{wn} strongly converges to a differential w’e/f. Obviously the differential o’
satisfies the period condition (2.2). Hence by the uniqueness we have o’'=w. It is
also easily shown that liMaae ||@allk,=lloll%.

5. Theorem. Let R be a generic open Riemann surface. Let a,,b, (j=1,--,9;
g=co) and ¢, (j=1, -, N; N=co) be an arbitrarily given system of real numbers.
Then we have the theorem.

THEOREM 2.1. There exists the unique differential we/Af, which satisfies the
period condition:
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4 B,

S w=c, (=1, N),
]

if and only if A€, x)>0 for the relative extremal length A(C,y) defined in 1.
Further provided any of these conditions is satisfied, the equality

G, n=lol|z*
holds. Here A, y)=co occurs if and only if a;=bj=c;=0 for all j and thus 0=0.

The first half of the present theorem is essential only if at least one of ¢ and
N is infinity.

Proof. Necessity: If =0, then a;=b;=c;=0 and thus A(6, y)=||e||zg?=co.

Assume that w=0. Let {w.)5-1 be the sequence of differentials defined in 4.
Let €, (#=1,2,--) be the class of curves € in 1 defined for R, respectively in
place of R. Then €,c€ (#=1,2,--) and thus by Lemma 1.6 (€, x)=2(€, y).
Further by Lemma 2.2

G, ) =]|wnll7,-
Since liMye ||@allk,=lloll% we find that
llol|z*=2(C, ).

On the other hand we see that

e

and thus p, defined by poldz|=|w+iew*| is an admissible metric for 2(€, y). Hence

1
(9N

=x(7 for each 7e@

llollz=Aloo, R)=

Consequently,
0<2(6, 9 =lol|z*<oo.

Sufficiency: If (€, y)=co, then (€, y)=co for all n, thus by Lemma 2.2
aj=b;=c;=0 for all j and thus 0=0.
Assume that 0<A(€, y)<co. Then

llwnll,=1/14Cn, 1) =1/2(E, y) <oo for all .

Thus by the consequence of 4 the finite limit
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A=lim |loallz, (O0<A=1/AE, y)<oo)
n—oo

exists and {w,} strongly converges to a differential weA¥ such that [jw|z=A.
Obviously the differential w satisfies the period condition.

6. Existence of wel}, with given periods. Let R be an open Riemann sur-
face, I be the ideal boundary of R and {R,}?., be a canonical exhaustion of R.
Let {A,, Bj}%=:1 (9=o0) be a canonical homology basis modulo & associated to {R.}
and {C;}).; (N=o0) be a canonical homology basis of dividing cycles associated to
{R:}. Let @, b, (j=1,---,9) and ¢, (j=1,---, N) be an arbitrarily given system of
real numbers. Let € be a class of curves defined by

€={y|r is a Jordan curve in R such that y~+0}

and y=7y(7) be the function on & defined by (2. 1).
The following theorem is Theorem 2.1 of the case of f=4¢.

THEOREM 2. 2. There exists the unique diffevential welF, which satisfies the
condition:

S w=0a,, S (Uzb] (j=1y"', 9)’
4, By

S W=Cy (]21,,N),
¢y

if and only if A6, )>0.
Further provided any of these conditions is satisfied, the equality

G, p=lol|z*
holds. Here X, y)=oc0 occurs if and only if a,=bj=c,=0 for all j and thus »=0.

7. Existence of wel %N/ "1 with given periods. Let a, b, (=1, ---,9) be an
arbitrarily given system of real numbers. Let € be the class of curves defined by

G={r|r is a Jordan curve in R such that y+0 (mod J)}

and y=y(z) be the function on & defined by
1N =2 X Bpa;+ 21 (A, X1, |-
J J

The following theorem is Theorem 2.1 of the case of f=J.

THEOREM 2. 3. There exists the unique differential w€lF N\ s which satisfies
the condition:
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S w:al’ S (l):b] (]:1) "'79)
4 B,

if and only if A6, x)>0.
Further provided any of these conditions is satisfied, the equality

AG, p=llollz*

holds. Here A(C, y)=co occurs if and only if a;=b;=0 for all j and thus »=0.

§3. Existence of we/}, with given periods.

1. Statement of relative extremal length problem. Let R be an open Riemann
surface. Let « and B be the partition of the ideal boundary I of R defined in §1.
2. Let {R,}7-, be a canonical exhaustion of R and {C;})., (N=o00) be a canonical
homology basis of dividing cycles modulo 8 associated to {R,} defined in §1. 2.

Let & be the class of curves in R defined by

€={y|r is a dividing cycle consisting of a finite collection of Jordan curves
vghich uniquely determines a partition of R into two disjoint sets R, and
B, with y=0R,=—aR, and is such that y~~0 (mod g)}.

Let ¢, (=1, -+, N) be an arbitrarily given system of real numbers. Let y=yx(;)
be the function on € defined by

U

ﬂn=|;<rx0ﬁcj

where C¥ denotes the conjugate relative cycle of C, respectively defined in §1. 3.
Our present problem is to compute the relative extremal length (€, y).

2. Existence of we/¥, for R with finite character. By a differential weA¥,
with periods ¢, we call the differential weA}, which satisfies the period condition:

S o=c, (j=1, -~ N).
G,

If there exists the differential we¥, with periods ¢,, then by Corollary 1.1
cxx0 for some % implies that the differential of the generalized harmonic measure
00,50 and by the orthogonal decomposition (1.5) the differential w is uniquely
determined.

By the method similar to § 2. 2 it is shown that if N<co and o¢;#0 (j=1, -+, N)
then there always exists one and only one differential we/}, with given periods
Cy (.7:1’ ) ]\/')

3. The case of compact bordered Riemann surfaces. ILet R, be a compact

bordered Riemann surface. Partition the set of components of dR, into two disjoint
sets « and 8. Let C, (=0, -, N) be all elements of «. Then {C;}}_, can be taken
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as a canonical homology basis of dividing cycles modulo 8. Let w be the harmonic
differential on R, uniquely determined by the conditions:
(i) o* is exact and w*=0 along oRy;

(ii) SC o=c,  (j=1, - N),
J

S 0=0  for each Cep.
(o}

Let € and y be the class of curves and the function respectively defined in 1 for
R, in place of R.
The following lemma is proved by the method similar to Lemma 2. 2.

Lemma 3. 1. A€, ) =|lw||z

4. Theorem. Let R be a generic open Riemann surface. Let ¢, (j=1, :-:, N;
N=co) be an arbitrarily given system of real numbers. Then we have the theorem.

THEOREM 3. 1. There exists the unique diffevential weA¥, which satisfies the
condition:

S 0=0ey (=1, -+, N)
0y

if and only if AC, x)>0 for the relative extremal length A€, y) defined in 1.
Further provided any of these conditions is satisfied, then equality

G, p=lloll7
holds. Here A&, y)=o0 occurs if and only if c;=0 for all j and thus «=0.

The proof which is omitted is similar to the method of Theorem 2.1 making
use of Lemma 3. 1.

If B=¢, then the present theorem shows the consequence with respect to the
existence of the differential wel™, with given periods ¢, (=1, ---, N).
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