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PERIODS OF DIFFERENTIALS

AND RELATIVE EXTREMAL LENGTH, I

BY HISAO MIZUMOTO

Introduction.

Let R be an open Riemann surface and its ideal boundary be denoted by 3.
Let {Aj, BJ} be a canonical homology basis modulo 3 and {C/} be a homology basis
of dividing cycles. Let Γh be the space of harmonic differentials on R with finite
Dirichlet norm. It seems to be an important problem to decide when there exists
a differential ωsΓh which satisfies a period condition

\ ω = aj9 \ ω = bj, \ ω=c3
J Aj J'B j vGj

for an arbitrarily given system of real numbers α/, bj, and c3.
In the present paper we shall concern ourselves with the problem to decide

the existence of such differentials in the important subspaces Γ$>, Γ%m, Γ% Π Γhse (cf.
[3]) and further the more general subspaces Λf0, Λfm (see §1. 5). In the terms of
relative extremal length (see §1. 10 for the definition) we shall state a perfect
condition in order that there exists the differential with given periods in each of
these spaces (Theorems 2.1, 2. 2, 2. 3 and 3.1). Further it is shown that the
differential gives an extremal metric of a certain relative extremal length problem.

In the subsequent paper II, some applications of the present consequences will
be shown.

The problem concerning the existence of differentials with given periods has
been studied by many authors: Virtanen [16], Kusunoki [6] and Sainouchi [15], etc.
They are mainly based on such the algebraic method as the orthogonalization of
differentials. Our present method is quite different from these and very geometrical.

§ 1. Preliminaries.

1. Canonical homology basis modulo the ideal boundary. Let R be an open
Riemann surface. A singular cycle is said to be a dividing cycle, or homologous to
0 modulo the ideal boundary, if it is homologous to a singular cycle which lies
outside of any given compact set. Let €> and €>$ be the groups formed by the
homology classes of all singular cycles and dividing singular cycles respectively.
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The quotient group ξ>/ξ>θ is the homology group modulo dividing cycles. It can
also be called the relative homology group modulo the ideal boundary.

It is known that there exists a system of cycles [Ajt #y}J-ι (fl^oo) on R satis-
fying the following conditions (see [2], [3]):

( i ) Each cycle C on R is homologous to a linear conbination of a finite
number of the cycles AJ} B3 modulo 5, that is

C~ Σ (xjAj+yjBj) (mod 3; Λ;<OO),
.7 = 1

where x3, y3 (/=1, •••, A;) are integers and 3 denotes the ideal boundary of R\
( i i ) The intersection numbers between them satisfy

AjXAk=BjXBk=Q, AjXBk=δjk (j, 4=1, •••, g),

where δy* denotes the Kronecker symbol.
Such a system is called a canonical homology basis of R modulo the ideal
boundary 3.

Let {Rn}n=ι be an exhaustion of R. Then there exists a system of cycles
(Aj, Bj}g

J=ί furthermore satisfying the following condition (see [2]):
(iii) For every n there exists a finite number κn such that Alt Bι, •••, AΛ, BKn

form a relative homology basis of Rn mod 3Rn, that is, each cycle Cc.Rn is
homologous to a linear combination of Ai, Bly •••, ^4*w, B*n modulo dRn, where dRn

denotes the relative boundary of Rn.
We shall call such a system a canonical homology basis modulo the ideal
boundary 3 associated to the exhaustion {Rn}.

2. Canonical homology basis of dividing cycles modulo β. Let R be the
Kerekjartό-Stoϊlow compactification of R. Partition the ideal boundary 3 of R into
two disjoint sets a and β such that a is closed on R. Let Ω be a subregion of R
which is not relatively compact and of which the relative boundary dΩ consists of
a finite number of Jordan analytic curves. Then Ω will be called a non-compact
regular region. Further the subsets of a and β which are boundary components of
Ω are denoted by a(Ω) and β(Ω) respectively.

A dividing cycle is said to be homologous to 0 modulo β, if it is homologous
to a cycle which lies on Ω with a(Ω)=φ. Let €>/3 be the group formed by the
homology class of all dividing cycles homologous to 0 modulo β. The quotient
group €><j/€>/3 is called the homology group of dividing cycles modulo β.

Let K be a relatively compact subregion of R. We shall call K a (compact)
regular region, if dK consists of a finite number of Jordan analytic curves, dK
=d(R—K) and all components of R— K are noncompact. Furthermore a regular
region K is called canonical if each component of R— K has a single contour. An
exhaustion {Rn} of R is called to be canonical if each Rn is canonical.

Let C be a generic component of dK. Partition the set of all components of
dK into two disjoint sets CXK and βx in such a manner that Ceα# if a(Ω)^φ for Q
with 3Ω=—C and otherwise
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Let {Rn}%=ι be a canonical exhaustion of R. For simplicity we set ccn=aRn

and βn=βιtn. Let the elements of aι be denoted by C3 (j=l, —,5). We denote by
Qj (j=l, •••,5) the component of R2—Rι which has C3 in a common boundary
component with Rlt The boundary components of Qj belonging to a2 are denoted
by Cjk (l^k^Sj). Then dQj=Σ&ιCjt—Cj+Σ (comp. of dQj£βz). Next, we denote
by QJJC the component of Rs—R2 which has C^ in a common boundary component
with Qj.

When we continue in this way we obtain the symbol CJr..Jn for each element
of an with the subscript jn running from 1 to a number Sjr..jn_Γ The component
of Rn+i—Rn which has CJr..Jn in a common boundary component with Qjr..Jn^ has
a name QJr..3n and

i. Of dQjr..jn£βn+\)

LEMMA 1.1. (Cf. [3] for the case β=ψ and also [9].) A homology basis modulo
β of an open Riemann surface R is formed by the combined system of all cycles
Aj, Bj of a canonical homology basis modulo the ideal boundary associated to a
canonical exhaustion {Rn} and all cycles C3γ..3n with /n>l

Such a system of cycles will be called a canonical homology basis modulo β
associated to the exhaustion {Rn} Each cycle C satisfies a unique homology
relation

3 3 3 Jn>1 ^ JU

where x3j y3 and z3l...3n are integers, the sum is finite, and C is a dividing cycle if
and only if all x3 and y3 are 0.

The system oί cycles C3v..3n (jn>l) determines a basis for €W€>/5, which is
called a canonical homology basis of dividing cycles modulo β associated to the
exhaustion {Rn}.

If β=φ and thus α=S, then the term "modulo β" in the above may be
omitted.

For simplicity of notation, a canonical homology basis C3v..3v (v=l, " ,w; Λ>1)
of dividing cycles modulo βn of Rn is also denoted by Ci, •• ,Cίw with the changed
subindices.

3. Conjugate relative cycle of CJr..Jn. Let C* be a one-dimensional singular
chain. We shall say that C* is a relative cycle if and only if the boundary
dC*=0. The group of relative cycles contains the subgroup of cycles.

Consider a point on C3v..3n (jn>l). It can be joined by a simple curve in
Qjr..Jn to a point on CJr,.Jnι. This point can be joined to a point on CJr..Jnn by a
simple curve in QJr..Jnι, and so on. In the opposite direction we can pass from
the point on CJr..Jn through Qj^jn^ to a point on Cι7l...ι;n_1ι, then through QjY-jn^\
to a point on CJl..Jn_lnf and so on. Here we take the curves so that each of them
does not intersect any element A3 or B3 of canonical homology basis modulo 3



208 HISAO MIZUMOTO

associated to the exhaustion {Rn}> which is possible. Then the product of the
curves between consecutive points is a relative cycle, which we denote by Cfr.jn

and we call the conjugate relative cycle of Cjr..jn. Its direction can be fixed so
that CJr..jnxCfΓ.Jn=l. Then C .̂̂ xC*...̂ !, C^^xCf,..^-!, and for
all others Ctr..vxC£...,n=0, A,xC£..,n=0 and BjXCfΓ.Jn=Q.

4. Space of differentials Γh Let oh and ω2 be two real harmonic differentials
on R. Then the inner product of ωι and ω2 is defined by

where ωf denotes the conjugate differential of ω2 and ωiωf the exterior product of
oii and ώf, and further the norm \\ωι\\R of ωi by ||<MI|&=(<UI, ωι)R. Let Γh be the
Hubert space of the real harmonic differentials on R with finite norm. We define
the some subspaces of Γh (cf. [3]).

Γhe: the space of exact harmonic differentials.
Γhse the space of semi-exact harmonic differentials.
ω$ΓM if and only if for each ε>0 and each compact set E there exist a

regular region R0 and a harmonic differential ω0 on R0 such that
Ec.fto, ω0=0 along dR0 and ||α>— ω0|U0<ε.

ωsΓnm if and only if for each ε>0 and each compact set E there exist a
canonical region R0 and an exact harmonic differential ω0 on R0 such
that EdRo, ω0=0 along d^o and ||ω— ω0|U0<ε.

We can easily see that the inclusion relations

Γ hm^ Γ he^ Γ 'hse, Γhm ̂  jΓftO C Γhse

hold. The subspaces formed by all conjugate differentials of differentials in
Γhse, Γhm and Γhϋ are denoted by Γjfc, Γ%se, Γ%m and ΓJ0 respectively.

The following orthogonal decompositions hold (cf. [3]):

(1. 1)

(1. 2)

and

^Λ = ̂ Λse Π Γ*se

Hence we have further the decomposition

(i. 3) rΛ=r

Here the space ΓΛ0nΓ£e is identical to the closure of the space of the canonical
harmonic differentials in Kusunoki's meaning whose conjugate differentials are
semi-exact (cf. [6], [11]).
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5. Space of differentials Λh. Partition the ideal boundary 3 of R into two
disjoint sets a and β such that a is closed on R. The subspace Λh=Λh(a, β) of Γh

is defined as the collection of all ωzΓh which satisfy the following conditions for
every non-compact regular region Ω such that 3Ω consists of a Jordan curve and
a(0) = φ:

(i) For each ε>0 and each compact set EdΩ there exist a region Ω0c.Ω
and a harmonic differential ωQ on Ω0 such that Ec:Ω0, dΩc.dΩ0, Ωo = ΩnK for a
certain regular region K, ω0=Q along dΩ0—dΩ and \\ω— ωo\\Q0<ε;

(ii) ω* is semi-exact on Ω.
It is shown that the present Ah=Ah(ce, β) is identical to the space ΛΛ=ΛΛ(αr, /3, 0)

for the case of p=0 defined in [10]. The proof is omitted.
The subspaces AM and Λhm of Ah are defined by Λho=AhΓ{ΓM and yi/ιm=^nΓ/lm.

The spaces formed by all conjugate differentials of differentials in Ah, AM and Ahm

are denoted by A$, A$> and Λ%m respectively. Obviously, if β=φ, then Λh=Λ%=Γhy

Aho=Γho, Ahm=Γhm, A*Q=Γ*Q and Af^n=Γ^n.
By (1. 1), (1. 2) and (1. 3) we obtain immediately the following orthogonal de-

compositions:

(1.4) Ah=AM+AhnΓ&, A

(1. 5) Λ=Λm+ΛΛnΓ£β, At

and

Here we can easily see that

AM Π Γ%se = Λh(φ, a\Jβ) = ΓMn Γ*se.

Thus we have that

Λh=A
(1. 6)

6. Elementary differentials of Γh Let Ω be a non-compact regular region.
A function u being harmonic on Ω and continuous on the relative closure Ω is
called a normalized function on £?, if for each ε>0 and each compact set EdΩ
there exist a region ΩQc.Ω and a harmonic function u0 on £?0 such that Ec.ΩQ,

Ω0=ΩΓ\K for a certain canonical region X",

on 3Ω,

0 on dΩo-dΩ

and P^— J^0|U0<ε (cf. [12], [6]). For the sake of conformity a harmonic function
14 on a relatively compact subregion Ω of 7? is always assumed to be a normalized
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function on Ω. The differential du of a normalized function u is called a nor-
malized differential.

Let C be a dividing cycle in R which divides R into two subregions ^ and
Rc so determined that C=dRc=—dRc. A harmonic function #<? on R is called a
harmonic measure associated to C if UG and 1— ̂ c are normalized functions on
Re and Rc respectively, uc is uniquely determined up to the case where both
harmonic measures on Rc and KG with respect to their ideal boundaries vanish.
In the latter case we define uc=Q. Except for the latter case we have that

where UG denotes the harmonic measure associated to — C. By σc and σc we
denote due and due. Then σc=—8c.

Let {Aj, Bj}g

3^ (g^oo) be a canonical homology basis of R modulo $. The
elementary differential σAj (σsj) is defined as an element of Γh which satisfies the
conditions:

( i ) σAj (σBj) is a normalized differential on R— A3 (R—Bfo

(ϋ)

«*k JBk

We can easily see that each of the differentials σAj (σSj) is uniquely determined
(cf. [12], [6]).

7. Elementary differentials of Λh. Let a and β be the partition of the ideal
boundary 3 of R defined in 2. Let Ω be a non-compact regular region. A func-
tion u being harmonic on Ω and continuous on Ω is called a normalized function
on Ω with respect to the space Λh, if for each ε>0 and each compact set EaΩ
there exist a region Ω^Ω and a harmonic function u0 on ΩQ such that EdΩo,

ΩQ=ΩΓ\K for a certain canonical region K, \\du-du0\\Ω0<ε and

u on 9/2,

0 on CΪΌLK (Ccβ),

const, on Cζβκ (Ccβ)

with the constant so chosen that fcduf=Q for each Ceβ# (Ccβ), where aκ and
/}# denote those defined in 2. The present normalized function u with respect to
the space Λh is obviously identical to the normalized function for the case of γ=φ
defined in § 1. 4 of [10].

Let C be a dividing cycle in R which divides R into two subregions Rc and
Rc so determined that C=dRc=—dRc> A harmonic function UG on R is called a
generalized harmonic measure (with respect to Λh) associated to C if UG and \—UG
are normalized functions on RG and j?σ respectively with respect to Λh The
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existence and the uniqueness of uc refer to [10]. By σc we denote duc.
Let {Aj, Bj}°J=ί (g<oo) be a canonical homology basis of R modulo 3. The

elementary differential σAj (GBJ) with respect to the space Ah is defined as an
element of Ah which satisfies the conditions:

(a) σAj (σSj) is a normalized differential on R— A3 (R—Bj) with respect to
the space Λh

m,

(b) f C -
JAk JBk

/ Γ Γ \

vLfc Bj Jk' jBk

 Bj i
The differential σAj (σBj) uniquely exists (cf. [10]).

Especially the elementary differential σAj (σBj) with respect to Au(R\ φ, a U β)
=ΓhoΓιΓ%se is denoted by τAj (τBj).

8. Integral formulas.

LEMMA 1. 2. (Cf. Theorem 1. 3 of [10].) Let ω€A% and u be a normalized
function on a non-compact regular region Ω with respect to Ah. Then the equation

(ω, du*)o=\ uω

holds.

COROLLARY 1.1. (Cf. Corollary 2. 3 of [10].) Let ωsΛ% and σc be the differ-
ential of the generalized harmonic measure with respect to Λh defined in 7. Then
the equation

(ω, Λ
holds.

COROLLARY 1. 2. (Cf. Corollary 2. 4 of [10].) Let ω€A%, and σAj and σBj be
the elementary differentials with respect to Ah defined in 7. Then the equations

)R= \ ω, (ω, °BJ)R= \
jAj ' Jl

hold.

COROLLARY 1.3. Let ωeΓfanΓhse, and τAj and τBj be the elementary differ-
entials with respect to ΓMΓ\Γ%se defined in 7. Then the equations

T*J)R= \ ω, (ω> τ%j)R= \
•JAj Jβ«
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hold.

9. Theorem. Let {Rn}n=\ be a canonical exhaustion of R. Let {A/, Bj}9

J=ί

be a canonical homology basis modulo 3 associated to {7?w}. Let {C/}f=1

be a canonical homology basis of dividing cycles modulo β associated to
{Rn} Let σAj and σBj (/=1, •• ,9 f) be the elementary differentials with respect to
An and σ^ (/=!,•••, A/") be the differentials of the generalized harmonic measures
with respect to An associated to C3 respectively. Let TAJ and τBj 0"=1, •••, 0) be
the elementary differentials with respect to ΓhoΓ\Γ%se. By making use of Corol-
laries 1. 1, 1. 2 and 1. 3 and the orthogonal decompositions (1. 4), (1. 5) and (1.1)
we can prove the following theorem (cf. Ch. V, Theorem 20 C of [3] for the proof
and also [6]).

THEOREM 1.1. (i) (σAp <7Bj ,σck} O'=l, " ,0; *=1, —,N) spans ΛM; (ii) {<τ<7y}
(.7 = 1,—,N) s/w«s ΛΛTO; (iii) {τAj9τBj} (/=!,—, 0) "

10. Definition of relative extremal length. The various extensions of the
concept of extremal length have already been introduced and investigated by
Jenkins [5], Fuglede [4] and Ohtsuka [13]. In the present paper we shall make
effective use of the relative extremal length defined in [10].

Let γ be a countable collection of locally rectifiable curves in R (cf. [13]) and
K be a family of such collections γ. For simplicity the elements of & are called
curves. Let p be a linear density of R (cf. [3]) and χ=χ(γ) be a non-negative real
valued function on & such that for each ^eδ a non-negative real valued χ(γ) is
assigned. Let us define

>\dz\ if χ(r)*0,

if χ(r)=0,

L(p,&,χ)=mfL(p,r,χ(r))
i ee

and

where z—x+iy denotes a local parameter. If there exists a non-void class P of p
such that L(p, (£, χ) and A(p, R) are not simultaneously 0 or oo, then we define the
extremal length of δ relative to χ or the relative extremal length of (5 by

It is permitted that Λ(K, χ) = 0 or oo. This definition is included in Fuglede's more
general one (cf. [4] and also p. 92 of [13]). The following L-normalization of the
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relative extremal length will be useful: Let PL be the subclass of P such that
ϊrP\dz\^χ(r) for any /•€(£. If PL*φ, then Λ({£, χ) - 1/inf PepL A(p,R). If P*φ and
PL=Φ, then Λ(S,χ)=0.

11. Definitions and elementary properties. Now we shall define the termino-
logies related to the relative extremal length and enumerate its elementary proper-
ties. The proofs are omitted for those which are similar to the case of the ordinary
extremal length (cf. [13]).

LEMMA 1. 3. Λ(δ, χ) is conformally invariant.

LEMMA 1. 4. Λ(K, χ) depends on R only through the requirement that the curves
of (£ are contained in R. Thus, if every γ€& is contained in Rf(^R\ then Λ#((£, χ)

DEFINITION 1.1. Assume that Λ((£, χ)^0. If the relative extremal length
problem is taken in the L-normalization, any P^PL is called an admissible metric.
If there exists po^PL for which 1/Λ(K, χ)=A(po, R), po is called an extremal metric.

LEMMA 1.5. // pi and p2 are extremal metrics for a common relative extremal
length problem, then

at most up to a set of measure zero on R.

LEMMA 1. 6. // δ'cK, then Λ(K', χ)^Λ(K, χ).

LEMMA 1. 7. // χ(r)^χι(r) f°r any r€®> ^en *(&> χ)=Λ(®, Jtι)

LEMMA 1. 8. Let Ωn (»=1, •••, \>\ y^oo) be disjoint open sets in R, Kπ (n=\, •••, v)
be families of curves in Ωn respectively, and & be a family of curves in R. If
every γn^n (n=l, •••, y) contains a γ€$ (γ=φ is permitted) and χ(γn)^χ(γ) (χ(γ)=Q
for γ=φ), then

LEMMA 1. 9. Let (£ and (£w (w=l, •••, y; y^oo) be families of curves in R such
that (Scu^iδn. ΓAew

By Lemmas 1. 8 and 1. 9, we have the following corollaries.

COROLLARY 1.4. Let Ωn (^=1, •••, y; v^oo) ^ disjoint open sets in R and
(n=l, •••, y) ^ families of curves in Ωn respectively. Then
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COROLLARY 1. 5. // Λ(<£', χ)=oo,

COROLLARY 1. 6. L^ 6o={rlχ(r)=0,

', χ)=Λ(β, χ)

Λ(e,χ)=Λ(«-6o',χ) /̂  any

By the definition, if χ(γ) = l, then Λ(&, χ) is the same as the ordinary extremal
length Λ(g); Λ(e,l)=Λ(6).

Ae inequalityLEMMA 1. 10. Let χ0=inf r e 6χ(^) <2wJ χi— supr€eχ(^).

holds provided each side has meaning.

LEMMA 1. 11. // χ(r)*Q for every
finite or infinite.

Proof. Let S»={r | l/n^χ(γ)^n,

, then Λ((£, χ) and Λ((£) are simultaneously

Then β= Uϊ-i 6» and by Lemma 1. 10

If ^(K, χ)=oo, then by Lemma 1.6 Λ(Sn, χ)=°° and thus by the above inequality
Λ((£w)=oo for all .̂ Hence by Lemma 1. 9 for χ^l we find that Λ((£)=oo. The
converse assertion is also similarly proved.

§2. Existence of ω€/ί£0 with given periods.

1. Statement of relative extremal length problem. Let R be an open Riemann
surface. Let a and β be the partition of the ideal boundary 3 of R defined in § 1. 2.
Let {Rn}n=ι be a canonical exhaustion of R. Let {Aj,Bj}a

J=ι (0^00) be a canonical
homology basis modulo 3 associated to {Rn} Let {C/}JLι (TV^oo) be a canonical
homology basis of dividing cycles modulo β associated to {Rn}.

Let S be a class of curves defined by

is a Jordan curve in R such that (modβ)}.

Let aj, bj O'=l, •• ,g) and ^ O'=l, •••,-W) be a system of real numbers. We define
a function χ=χ(γ) on β by

(2.1) , X r)fty + X

where C^ denotes the conjugate relative cycle of C3 respectively. Our problem is
to compute the relative extremal length Λ(®, χ).
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2. Existence of ω€A%0 for R with finite character. For simplicity, by a
differential ω€Λ*Q with periods ajt bjt c3 we shall call the differential ω€A*0 which
satisfies the period condition:

f f A f ι Λ\ (ί)=a1ί \ ω^bj 0 = lf ••*, Q),
Λ I T ?
^ ̂  J t/xίj

(2.2)

f •—
JCj

We note that by Corollary 1.1 if there exists a differential ω€A%0 with periods
(tj, bj, Cj, then cfc^0 for some & implies that the differential of the generalized
harmonic measure σ^^O.

Now we shall prove that if 0<oo, N<oo and furthermore the differentials of
the generalized harmonic measures σ^.^0 0=1, •••, A/"), then there exists always
one and only one differential ω£A*Q with periods ajf bjf c3 for an arbitrarily given
system of real numbers aJ9 bj, c3.

We shall use the simplified notations:

j=l, •••, g; k=I, •••, A/");

Here σ^^ and σΰj are the elementary differentials with respect to Ah defined in § 1. 7.

LEMMA 2.1. pjk=Pkj, Σj,kXj%kPjk>Q for any real numbers Xj (j=l, ,2g+N)
not simultaneously zero and thus det. |

The present lemma is proved by a standard method making use of Corollaries
1. 1 and 1. 2.

Since by Theorem 1.1 the space Afa is spanned by σ%jy σ^j O'=l, ~ ,g) and
(7*^ (y=l, •••, A/"), and 0<oo and A/"<oo, we find that

v-ι

with some real coefficients x3 (j=l, ,2g+N). Then by the condition (2.2) we
obtain the system of equations:

ϊg+N

(2.3) Σ PjkXk=q3 O'=l>'

By Lemma 2.1 we know that (2.3) has a unique solution (#ι, •• ,#2{/+#), which
assures the existence and the uniqueness of the desired ω.
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3. The case of compact bordered surfaces. Let Ro be a compact bordered
Riemann surface. Let {AJ} Bj}g

J=1 be a canonical homology basis of R0 modulo dR0.
Partition the collection of the boundary components of Ro into two disjoint sets a
and j8. Let C0, ~ ,CN denote the elements of a. Then {QlJLi forms a canonical
homology basis of dividing cycles modulo β.

By the consequence of 2, there always exists the unique differential ωsΛ%Q with
periods ajf bjy cjf where Λj£> is one for the present R0.

We should note that the present ω can be also defined as the harmonic
differential on R0 which satisfies the conditions:

(i) ω*=0 along 3R0]

(ii) \ ω=α3, \ ω=b3 (/=!, •••,£);
JAj JBj

(Hi) \ α>=c} (j=l,-,N),
JCj

\ ω=0 for each Csβ.
Jc

Let & and χ(γ) be the class of curves and the function respectively defined in
1 for the present R0.

LEMMA 2.2. Λ(β,χ)HH|β0

2.

Proof. If ω=Q, then the equality holds in the meaning: ^(®,χ)=IMlΛ?=°°
Assume that ω^O. Since ω* has only a finite number of critical points on ^0,

each level curve / of ω* in ^0 is simple closed up to a finite number of components
through such critical points. Let (£ι be the collection of such Jordan curves /.
Obviously KjCg, \Ji^tl=RQ and l{\l'=φ for distinct IJ'z&i. We shall orient each
level curve le&i so that ω is positive along it.

Except at a finite number of the critical points of ω, an integral of ω+iω* can
be used as a local parameter z. Let p be an admissible metric. Then by the
Schwarz inequality

Here we note that

Then
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Integrating in ω* for all variation over δj, we obtain

and thus Λ(δ,χ)^||ft>||βJ. On the other hand, since ρQ denned by pQ\dz\ = \ω+iω* is
an admissible metric, we obtain

4. Construction of ωGΛfa by exhaustion. Let R be a generic open Riemann
surface. In the present number we shall assume that there exists the differential
ω€/i£0 with given periods ajt bj, cjt where g or N is not necessarily finite. By the
orthogonal decomposition (1. 4) the differential ω is uniquely determined.

We shall preserve the notations in § 1. 1 and § 1. 2. Let Λ%? = Λ%0

n(an, βn)
O=l,2, •••) denote the space Λ& defined for Rn respectively in place of R. Let ωn

(n=l,2,--) be the differential of Λ*? respectively with periods ajt bj (j=l, * ,Λ;7l),
c3 (j=l, ,ίn). Now we shall prove that the sequence {ωn}n=ι strongly converges
to the differential ω.

Since ωn—ωm for n^m is exact on Rm, by the orthogonal decomposition (1. 1)
we find that

(ωm, ωn—ωm)ιtm=Q

Hence

\\ωn-ωm\\2

Rm^\\ωn\\2

Rn-\\ωm\\2

Rm

which implies that ||ωn||βn is monotone increasing with n. Similarly we see that

(ωn, ω— a)n)Rn=Q

and thus

Consequently, there exists the finite limit limn^00||α)n||βn^||α>||β<oo and the sequence
{ωn} strongly converges to a differential ω'eΛ^o Obviously the differential ω'
satisfies the period condition (2.2). Hence by the uniqueness we have o/=ω. It is
also easily shown that lim^oolWI^^IHI^.

5. Theorem. Let R be a generic open Riemann surface. Let ajt b3 O'=l, •••,#;
g^oo) and Cj (j=l,- ,N',N^oo) be an arbitrarily given system of real numbers.
Then we have the theorem.

THEOREM 2. 1. There exists the unique differential ω€Λ%0 which satisfies the
period condition*.
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\ ω=aj9 \ ω=bj O'=l,
JAj Jβj

--c, 0=1,-,ΛO,S ω=c
Cj

if and only if Λ(K, χ)>0 for the relative extremal length Λ(K, χ) defined in 1.
Further provided any of these conditions is satisfied, the equality

. /fere A(®, χ)=oo occurs if and only if aj=bj=Cj=Q for all j and thus ω=0.

The first half of the present theorem is essential only if at least one of g and
N is infinity.

Proof. Necessity: If ω=Q, then aj=bj=Cj=Q and thus Λ(®, χ) = ||ω|lΛ2==00

Assume that ω^O. Let {CL>W}~=I be the sequence of differentials defined in 4.
Let Kn (w=l, 2, •••) be the class of curves K in 1 defined for Rn respectively in
place of R. Then gwcg («=1,2,» ) and thus by Lemma 1.6 Λ(S»,χ)^(β,χ).
Further by Lemma 2. 2

Since limw^oo||iun||]zn=||(u||«, we find that

On the other hand we see that

=χ(τO for each

and thus p0 defined by pQ\dz\ = \ω+iω*\ is an admissible metric for 2(&,χ). Hence

II'

Consequently,

Sufficiency: If λ(&, χ)=oo, then ^(Kn, χ) = oo for all w, thus by Lemma 2.2
aj=bj=Cj=Q for all y and thus ω=0.

Assume that 0<y?((5,χ)<co. Then

lk»llin=l/^(6», χ)^l«δ, %)<°° ίor all n.

Thus by the consequence of 4 the finite limit
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A= lim I Wli.

exists and {ωw} strongly converges to a differential ω€/$0 such that ||ω||^=A
Obviously the differential ω satisfies the period condition.

6. Existence of ω€ΓJ0 with given periods. Let R be an open Riemann sur-
face, 3 be the ideal boundary of R and {Rn}n=ι be a canonical exhaustion of R.
Let {Aj,Bj}°j=ι (g^oo) be a canonical homology basis modulo 3 associated to {Rn}
and {C/}JLι (N^oo) be a canonical homology basis of dividing cycles associated to
{Rn}. Let ajt bj (;=1, ••-, g) and r, (j=l, ,N) be an arbitrarily given system of
real numbers. Let & be a class of curves defined by

&={γ\r is a Jordan curve in R such that γ^O}

and χ=χ(τO be the function on (£ defined by (2. 1).
The following theorem is Theorem 2. 1 of the case of β=φ.

THEOREM 2. 2. There exists the unique differential ω€Γ%Q which satisfies the
condition'.

(* (*

only ί/^(
Further provided any of these conditions is satisfied, the equality

holds. Here Λ(6, χ)=oo occurs if and only if aj=bj=Cj=Q for all j and thus ω=0.

7. Existence of ω€Γ£0n/\ s e with given periods. Let ajt bj (j=l, ,g) be an
arbitrarily given system of real numbers. Let K be the class of curves defined by

&={γ\γ is a Jordan curve in R such that γ^O (modS)}

and χ^χ(τ) be the function on (£ defined by

The following theorem is Theorem 2. 1 of the case of 0=3.

THEOREM 2. 3. 7%0r£ 0#&'s/s ̂  unique differential ω€Γ%oΓ\Γhse which satisfies
the condition'.
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( ( =b
L™ " }B® '

if and only if Λ(g, χ)>0.
Further provided any of these conditions is satisfied, the equality

holds. Here Λ((£, χ)=oo occurs if and only if aj =bj=Q for all j and thus ω=0.

§3. Existence of ω€Λfm with given periods.

1. Statement of relative extremal length problem. Let R be an open Riemann
surface. Let a and β be the partition of the ideal boundary 3 of R denned in § 1.
2. Let {Rn}n=ι be a canonical exhaustion of R and {CyJJLi (N^oo) be a canonical
homology basis of dividing cycles modulo β associated to {Rn} denned in §1. 2.

Let (£ be the class of curves in R denned by

&={γ\r is a dividing cycle consisting of a finite collection of Jordan curves
which uniquely determines a partition of R into two disjoint sets Rr and
Rr with γ=dRr=~dRr and is such that γ^Q (mod β)}.

Let C j ( j = l , ~,N) be an arbitrarily given system of real numbers. Let χ=χ(γ)
be the function on (£ defined by

where Cf denotes the conjugate relative cycle of C3 respectively defined in §1. 3.
Our present problem is to compute the relative extremal length Λ((£, χ).

2. Existence of ω€Λfm for R with finite character. By a differential ω€Λ
with periods c3 we call the differential ω€Λfm which satisfies the period condition:

If there exists the differential ω€Λfm with periods c,, then by Corollary 1. 1
for some k implies that the differential of the generalized harmonic measure
and by the orthogonal decomposition (1. 5) the differential ω is uniquely

determined.
By the method similar to §2. 2 it is shown that if N<oo and σcj&Q O'=l, •••, N)

then there always exists one and only one differential ωsΛ%m with given periods
GJ C/=l, •••, N).

3. The case of compact bordered Riemann surfaces. Let ^0 be a compact
bordered Riemann surface. Partition the set of components of dRQ into two disjoint
sets a and β. Let C3 O'=0, ~,N) be all elements of α. Then {C/}f=1 can be taken
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as a canonical homology basis of dividing cycles modulo β. Let ω be the harmonic
differential on R0 uniquely determined by the conditions:

(i) ω* is exact and <y*—0 along dRQ\

Jc
ω=0 for each Ce/3.

Let (£ and χ be the class of curves and the function respectively defined in 1 for
RO in place of R.

The following lemma is proved by the method similar to Lemma 2. 2.

LEMMA 3.1. J(<S, χ)=NI*!

4. Theorem. Let R be a generic open Riemann surface. Let c3 (.7=1, •••, N;
N^oo) be an arbitrarily given system of real numbers. Then we have the theorem.

THEOREM 3. 1. There exists the unique differential ω€Λ$m which satisfies the
condition:

if and only if Λ(K, χ)>0 for the relative extremal length λ(&, χ) defined in 1.
Further provided any of these conditions is satisfied, then equality

holds. Here λ(&, χ)=oo occurs if and only if Cj=0 for all j and thus ω=0.

The proof which is omitted is similar to the method of Theorem 2. 1 making
use of Lemma 3. 1.

If β=φ, then the present theorem shows the consequence with respect to the
existence of the differential ωzΓ%m with given periods c3 (.7 = 1, •••, N).
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