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ON THE FAMILY OF ANALYTIC MAPPINGS BETWEEN
TWO ULTRAHYPERELLIPTIC SURFACES

By Kivosur Niino

§1. Let R and S be two ultrahyperelliptic surfaces defined by two equations
y?=G(2) and #*=g(w), respectively, where G and g are two entire functions each of
which has no zero other than an infinite number of simple zeros. We denote by
(R, S) the family of non-trivial analytic mappings ¢ of R into S. It follows from
Ozawa’s theorem [5] that for every ¢eU(R,S) there exists a non-constant entire
Sunction h(2) satisfying the equation

F(@*G(2)=9 * h(2)

with a suitable entive function f(2). Then we shall call 4(z) the projection of the
analytic mapping ¢ (cf. Ozawa [6]). We denote by $(R,S) the family of projections
of analytic mappings belonging to W(R,S). Let p; be the order of the referred
function f.

From now on we may suppose that G (or g¢) is always expressed as the canonical
product having the same zeros of the original function G (or ¢) when the order
ON @, 0,6) (OI' PN(r,o,g)) is finite.

§2. Theorem 1 in Hiromi-Muté [2] may be stated as in the following form:

THEOREM A. If pe<+o0, 0<p,< 400 and WR,S) is not empty, then every
element h(z) belonging to H(R,S) is a polynomial of same degree p.

In this paper we shall prove the following theorems:

THEOREM 1. Assume that p,<-oco and there exists a polynomial hy(z) of
degree p belonging to H(R,S). Then every element h(z) belonging to H(R,S) is a
polynomial of the same degree p.

And  further if p;,>0, or if p is odd, then we have |ap|=|by|, where
hp(Z)=ap2P+ap_12" 1+ +ay (@p=0) and h(z)=bpz"+bp_127" - +by (bp=0).

The last assertion of this Theorem 1 is best possible. This fact will be shown
by an example in §6.

THEOREM 2. Let R and S be two wultrahyperelliptic surfaces with P(R)=4 and
P(S)=4, respectively. If there exists a polynomial h,(z) of degree p belonging to
D(R,S), then every element h(z) belonging to O(R,S) is a polynomial of the same
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degree p. And further, we have |ap|=|bp|, wherve hy(2)=apz?+ap_2"+-+a
(@p=0) and h(z)=0bpz?+bp-127"14-++bo (bp=0).

In general, a study of these theorems suggests the following problem which
we have been unable to solve:

For every pair hi(z) and hi(2) belonging to D(R,S), is there a polynomial
Fo, (@, ) of x and y such that Fu, n,(h(2), ha(2))=07?

§3. In the first place we shall prove the following lemmas:

LemMA 1. If g(2) and h(z) ave transcendental entive functions and hy(2) is @
polynomial of degree p=1, then we have

lim T(r,90hp)

7—00 T(r' g°h) —O.

Proof. Since h(z) is a transcendental entire function, by Hayman [1, p. 51],
we have for any fixed N>p and sufficiently large 7,

T(0-Z 5 T, ).

On the other hand, we set Ay(2)=apz?+ap-122 '+ --+a1z+a, (ap=0). Since
|hp(2)| =|ap|r?(1+-¢) for sufficiently large |z|=7, we have

T(r, gohp) Slog My, (r) Slog My(Mi,(r) =log Milaslr*(1+2))
=3TQ|ap|r*(L+¢), 9).

And we know that T'(r,¢) is an increasing convex function of logr so that
T'(r, 9)/log 7 is finally increasing and hence

TQlaplr®1+e),9) _ T@*, g)
log 2]ap|r?(14+¢) — logr¥+t ’

that is,

T(2laylr’(1+<),0) _ plogr+log2la,li+e) _  p

TGV, g (N+1) Tog 7 Ny1 3 rotee

Thus we obtain

— T, g°hp) _ — 3T (2lay|r’1-+e), 9) 9p
lim ey = I e gy = N1’

and this proves Lemma 1. q.ed.

LEMMA 2. Let g(z) be an entive function and hi(2) and hx(z) be two polynomials
of the form apz’+ ap2" '+ -+ ay (@px0) and bp2P+bp 122+ -+ by (bp=0),
vespectively. Then we have
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(lapl/1bs])%, if 9(2) is a polynomial of degree g,

11@%‘32%= if 9(2) is transcendental and |a,| < |by|,

+o0 if 9(2) is transcendental and |ap|>|by|.

Proof of Lemma 2. The result is clearly true in the case where ¢(z) is a
polynomial of degree gq.

Suppose that ¢(z) is transcendental and |ap|<|bp|. Then for ¢>0 satisfying
[0p|(L—¢)>|ap|(1+-¢), there exists 7,>0 such that [£:(2)|=|ap|7?’(14+¢) and [As(2)]
Z|bp|rP(1—e) are valid for all »>r, r=|z|. Putting m,,(r)=min,;=,|%.(z)|, we have
for >,

My, (r) = My(Mp, (7)) = My(|ap|r?(1+¢))
and
Moy (1) = My(mny(r)) = My(|bp|7rP(1—e)).

It is well known from Hadamard’s three circle theorem that log My(r) is an
increasing convex function of log 7, so that log My(r)/log r is finally increasing and
tends to infinite as r—-+oco. Hence we have for 7>, >r,

log My(laqlr’(1+-¢)) _ log M(|bp|r"(1—e))
log |aplr?(1+e) = log [bplrP(l—e) ~’

and for any fixed N and r>r;>7,
My(|bplr*(L—e)=(|bplrP(L—e)?.
Therefore we deduce for all »>max (7, 73),

Moy () _ M(|aplr”(1+¢))
M) — My(|bplr*(1—e))

__<:Mq(|bplr?(1_e))—(loglbpl(1—‘)-loglapl(1+4))/log|bp|7‘p(1-—c)

é(lbplrﬁ(l__5))—N(loglbpl(1") —loglapl(1+6))/logldplrP (1-¢)

=9 _(IE0=0) "
|@pl(1+e) |ap|(1+4-¢) )

=exp(—Nlog

This implies

T Mon®) _ (10l

) = \la,l0Fo)

Since N can be chosen as large as we please, we obtain
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lim M{bhl(r) _

- =0.
700 Mgehz(r)

The last assertion of the lemma is clearly deduced from the above argument.
q.ed.

§4. Proof of Theorem 1. Our assumption implies that with a suitable entire
function f,(2), the equation

@1 Fo(2)’G(2)=g°hp(z)

is valid. And for 4(z) belonging to (R, S), there exists a suitable entire function
f(2) satisfying the equation

4. 2) F(2)*GR)=g-h(z).

In the first place we shall prove that every element 4(z) of $(R,S) is a poly-
nomial of degree p. To this end, we shall consider two cases according as p,>0
or py=0.

Case 0<p,<+oo. If p, is finite, S0 is pgn,, for 7Ay(z) is a polynomial. From
the equation (4.1) we deduce that

(4. 3) N(T, 0: G)éN(r) 07 g°h1’)'

Hence pwer.0.0, that is, pe is finite. Therefore it follows from Theorem A that
every element 4(z) of H(R,S) is a polynomial of degree p.

Case p,=0. If p, is zero, so iS pgn,. Then (4.3) yields that py¢,0,e=0, that
is, p¢=0. Hence by (4.1) we have p;,=0. Since f5(2) has only at most p—1 zero
points where %j(z) vanishes, f(z) is a polynomial of degree at most p—1.

We contrarily assume that %(z) is a transcendental entire function. Then
using the reasoning of Hiromi-Muto [2, pp. 239-240], we deduce that 4(z) is of
finite order and

. Twh) . N@,0,9°h)
@9 lim 0,0 0 MG 0, gon)

where N,(r,0,f) is the counting function of simple zeros of the referred function
f. Using (4. 4) together with N(r, 0, G)=Nx(r, 0, g°%) and pe=0, we have p,=0. It
follows from (4.1), 4.2) and (4. 4) that

N(r,0,g°h,)=N(r, 0, G)=Ny(r, 0, golip)=N(r, 0, gohp)+O(log 7)
and

N(r,0,g°h)ZN(r, 0, G)ZNy(r,0,g°h)=N(r, 0, go ) +-0(Nu(r, 0, g £)).

Hence we have
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(4. 5) TEALGALY M)

row N1, 0,9h) =L

Using Lemma 1 and (4. 5) we have

i N(r,0,9°h) =Tm T(r,9°hp) — N, 0,9°hy) Tim N(,0,g0h)

i =gy = ST, go) S T goly) RN, 0, gl

that is, 6(0, goA)=1.

On the other hand (4. 5) together with pg.., =0 yields px,o,g.0=0. Combining
one0,gm=0 and p,=pr=0, we obtain p,,=0. In fact, let {w,} be the set of zeros
of g(w) and {z,.,} be the set of w,-points of %(z). If g(0)=A=0 and ¢(%(0))=0, then,
taking py=pr=0 into account, we have

4. 6) o) = A’E[l<l— %) 1,50,
and
@7 1—5‘% < #0O) )ﬂ( z) 2 0.

Since pwr,0,g.0=0, the product

4.8 I v(1— z#,,>

converges uniformly in any bounded circle. Therefore by (4.6), (4.7) and (4.8)
we have

er=A [l (- )

2

127

—goh(0) p(l—-—zz—)

Thus we have pg,=0 when ¢(0)=0, ¢(2(0))>0. In the other cases we similarly

deduce pg.,=0.
Since an entire function of order zero has no deficient value, we have a desired

contradictory fact, pg.,=0 and 4(0,g-%)=1. Hence 4(z) must be a polynomial.

Next we assume that Z,(2)=apz?+-+a1z+a, (@p=0), A(2)=bgz%+---+bi1z-+by
(bg=0) and g>p. Then we have, for any ¢ with 0<e<1 and for any sufficiently
large 7,

N(r,0, gom)= N(|bglr*(1—e), 0, 9)+O(og 7)

and
N(r, 0, gohip) =N (laplr’(1+-¢), 0, 9)+O(log r)
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And we know that N(#,0,¢) is an increasing convex function of logr, so that
N(r, 0, 9)/log r is finally increasing and hence

N(T, 0) goh) = N(lbqqu(l—‘e), 07 g)+0(10g T)
N@,0,9°hy) — N(laplr®(1+e), 0, 9)+O0(log 7)

__ N(bg|r"(1—¢),0,9) _ gqlogr+log |bg|(1—e)
N(laplr*(1+e),0,9) — plogr+log |ap|(1+e)

q
——=>1 as y—oco,
4

This contradicts (4. 5). Similarly we have also a contradiction when g<p. There-
fore we have g=p, that is, A(z) is a polynomial of degree p.

§5. In order to complete our proof we shall prove that if py>0, or if p is
odd, then |a,|=|b,|.

We contrarily suppose that |@p|<|bp|. For ¢>0 satisfying [bp|(1—e)*>|ap|(L+¢)3,
there exists >0 such that |ap|rP(1—e)<|Ap(2)|<|apl#PA+2e) and |b,|rP(1—e)<|A(2)]
<|bplrP(L+-¢) are valid for all r=r,, r=|z|. It follows from (4. 1) and (4. 2) that

n(r, 0, G)=n(, 0, gohp) =pn(|a,|r®(L+-¢), 0, g)
and
n(r, 0, G)=n(r, 0, go 1) —2(p—1) Z pn(|bplr’(1—e), 0, ) —2(p—1),
for all r=r,. Hence we obtain, for all r=r,
pn(|aplr"(1+e), 0, 9)—n(|bp|r"(1—e), 0, 9)+2)=2,

that is, for all r>r,,

5.1 7(|bplr?(1—e), 0, 9)—n(|aplr’(1+-¢), 0, )=0 or 1.
Let {w;}5-. be the set of zeros of g(w) satisfying |w;|>|b,p|rT(1+e¢), and suppose
that |w;|=|w.|=---. From (5.1) we deduce, for all j=1,
w |ap|(1+-e)
5.2 0 Il 2 1.
©.2) < Wy | [bpl(1—e) <

Therefore the exponent of convergence of the sequence {w;} is zero. Hence
pN(r,o,g)=O, that is pg=0.

Next, if 0,=0, then pg.n,=pmr=ps=0. Hence f,(2) and f(z) must be poly-
nomials of degree at most p—1. We denote by p and v the degrees of fp(z) and
f(2), respectively. If p=v, then it follows from equations (4.1) and (4. 2) that
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Moy (r) =M ga(r)Z=m 2(r) Mo(r)
and

Maon(r)=Mp26(r) = Mp(r) Mg(r).

Hence we have

o Many,() _ L. e (1) Me(7)
> 0.
Mm@ = 58 3 o) —

However, using Lemma 2 and noting |a,|<|b,|, we have

o Mgy
m e~

which is a contradiction. Therefore, noting Lemma 2, we obtain v>p.
From the equations (4. 1) and (4. 2) we deduce that

2n(r, 0, fp)+n(r, 0, G)=n(r, 0, gohy)
and

2n(r, 0, f)+n(r, 0, G)=n(r, 0, g-h),
that is, for all ¥>r.>r,
(5.3 20— =2(n(r, 0, f)—n(r, 0, fp)=n(, 0, go ) —n(r, 0, go,) >0.

Let w, be an element of {w;} satisfying the inequality |w;|>|b,|72(1+¢). We
put 7j=w,l/(|bpl(L—N?, 7i’=(w;|/(apl1 —&))"? and 7, =max (r},r})) (>r).
Then, using (5.2), |ap|(L+¢e)* <|[bpl(1—e)® |ap|7’(L1—e) <|hp(2)| <laplrP(1+¢) and
[bp|r?(1—e) < |A(2)| < |bp|#P(1+4-¢), we obtain

10yl 52} < IR |(2)) S () < oy,
» =r

lz|=r} z

lwj] < min |Ay(2)|] = max |hy(2)] <|w;l,
lzl=rj lz] =7

|wj41] < min [A(z)| = max ()| < [w,.s]
lz]=7j |z]=7}

and

]
@yl

lw;| == < lnlnir,l, [A(z)| = max 12(2)| < |2l
2| =rj z|=rj
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Noting that if =7/, then |w;| ={w,.1| |apl/1bp] and if 7)=rY, then |w;..| =|w;| |byl/layl,
we find

lw;| < min |/5(2)] = max 72p(2)| < 20711

lz|=rj 2l=rj

and

[1]) < |n|]in [A(2)] = max |2(2)| <|w;.al.

=r, 2l=rj
Therefore we deduce
n(ry, 0, gohp) =pn(|w;l, 0, 9)
and
15,0, go k) =pn(|w;..1, 0, g ),
that is,
n(r;,0,9°8)—n(r;,0, gohy)=p.

From (5. 3), we have 2(v—p)=p. This implies that p is even. Similarly we have
the same result when |ay|>|b,).

Therefore we obtain the desired result that if p,=0 or if p is odd, then we
have |a,|=|b,|. This completes the proof of Theorem 1. q.e.d.

ReEMARK. It is worth while to be remarked that our argument in this section
remains valid when pg=-oco.

§6. The last assertion of our Theorem 1 is best possible. Let R be an
ultrahyperelliptic surface defined by ¥*=G(z2),

v

G =1T] ), a>1 and p is even.

ad ¥4
,,=1<1“ @—Dl@—D

Let S be an ultrahyperelliptic surface defined by #*=g(w),

bl w
g@)=w] (1“ <a"—1>/<a—1>)‘

Then it is clear that p,=0. k,(z)=(1/a)(z"?—1) and A(z)=2z? belong to H(R,S). For,
setting

. 1= a—1
== 11 (H" a(a"——l))
and f(z)=2"2, we have

[2GR)=g°hy(z) and  [f(R)°’G()=g°h(2).
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§7. Proof of Theorem 2. Let R and S be two ultrahyperelliptic surfaces with
P(R)=P(S)=4 defined by the equation y*=G(z) and #?*=g(w), respectively. Then
by a result in [4], we have

F@PGR)=("®—a)(e?®—p),  apla—p)x0,  H(0)=0,

where F(z) is a suitable entire function and H(z) is a non-constant entire function
and

Fw)ygw)=(e*—p)e*—d),  p(G—a*0, L0)=0

where f(w) is a suitable entire function and L(w) is a non-constant entire function.
Hiromi-Ozawa [3] implies that for Z,(2)e9(R,S) one of two equations

7.1 H(z)=Lohy(2)— Lohy0) and H(z)=—Lohy(2)+ Loky0),
and for A(z)eH(R,S) one of two equations
7.2 H(2)=Loh(z)— L-h(0) and H(2)=—Loh(z)+Loh(0)

are valid. Since /,(2) is a polynomial of degree p, using Lemma 1 and Lemma 2
together with their proof, the equations (7.1) and (7.2) imply that %(z) must be a
polynomial of degree p and further |a,|=|bpl. q.ed.
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