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ON ANALYTIC MAPPINGS OF A CERTAIN RIEMANN
SURFACE INTO ITSELF

By Yosuiuisa Kusora

1. We shall be concerned with the study of analytic mappings of a Riemann
surface into itself. Heins [5] showed that every non-constant analytic mapping of
a Riemann surface of parabolic type with non-abelian fundamental group into itself
is univalent. In the present paper we shall establish a similar result in a case of
certain Riemann surfaces of hyperbolic type.

Let W be a Riemann surface of hyperbolic type, let Gw(p, 90 be the Green
function with a pole at ge W and let = be a projection mapping of the universal
covering surface W= onto W. We take, as we may, W= as {|z|<1}. Then Gw(z(2), q)
has the angular limit 0 a.e. on {|z|=1}. We denote by & the set of all points of
such kind on {[z|=1}. We say that two points z; and z; of ¥ are equivalent pro-
vided that there exists an element 7(z) of & such that z,=T'(z;), where & denotes
the group of linear fractional transformations of {|z]<1} onto itself which leave =
invariant. This requirement defines an equivalence relation in . We call an
equivalence class of this relation an ideal boundary point of W and call the set of
all points of § belonging to an ideal boundary point its image. Each ideal boundary
point belongs to a single ideal boundary component in the sense of Kerékjarts-
Stoilow. Namely, let ¢ be a point of the image of an ideal boundary point and
let 2 z=2(#) (0=t<1) be a curve in {|z|<1} such that lim;.;z(#)=e* and there exists
a positive number ¢ satisfying

0 __ I3
arge—-éTzQ ’ < —g——-s.

Then =#(z(#)) tends to a single ideal boundary component « as /—1. This « is
independent of a choice of ¢ and . We denote by F the set of all ideal boundary
points of W. If the image M of a subset M of F is measurable on {|z|=1}, we
say that M is measurable and call wy(p)=wn(z"*(p)) the harmonic measure of M
with respect to W, where wg(z) is the harmonic measure of M with respect to
{lz] <1}.

Let M be a subset of F of positive measure. According to Constantinescu-
Cornea [1], we say that M is HB-indivisible if, for any bounded harmonic function
u(p) on W, u(x(z)) has the same angular limit a.e. on the image I of M.

Let {2,}2, be an exhaustion of W satisfying: for each v, £, is relatively com-
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pact, 2,-,C®,, the relative boundary 92, of 2, consists of a finite number of regular
analytic closed Jordan curves 7,1, -, 7.,5,, and each component of W—2, is not
relatively compact. We assume that each curve 7,,, divides W into two parts and
denote by G,,. the part which does not contain 2,. Denote by f,,: the part of the
ideal boundary of W which belongs to G,,,, and denote by B,,; the set of all ideal
boundary points which belong to one of the ideal boundary components on B, ,.

We shall consider a Riemann surface W having the following three properties:
(1) W contains # (1=#n<oo0) HB-indivisible sets on its ideal boundary, (2) for suf-
ficiently large v, each B,,, either consists of HB-indivisible sets or else contains no
HB-indivisible sets, (3) for sufficiently large v, there exist at least two B,,,, B,,; of
positive measure.

We shall call such a Riemann surface an admitted surface. For instance, a
Riemann surface obtained by deleting a parametric disk from a Riemann surface,
belonging to the class Oxp—Og, and a Riemann surface belonging to the class
Ounp,—Onp with at least two ideal boundary components which contain HB-indi-
visible sets are admitted surfaces.

The purpose of this paper is to show that there exist only a finite number of
non-constant analytic mappings of an admitted surface into itself and they are
conformal automorphisms having finite periods.

2. Throughout this paper, we shall denote by W an admitted surface. Each
HB-indivisible set is contained in a single ideal boundary component save for a set
of measure zero [1]. Let ay, -+, an 1=m=n) be ideal boundary components of W
containing at least one HB-indivisible set. By the property (2), each A, 1=i=m),
the set of all ideal boundary points belonging to «;, consists of z; HB-indivisible
sets M%, -, M, Sm,n=n. Let {2}, be an exhaustion of W satisfying the
requirements stated in §1. In the sequel, we may assume that B ; 1=i=m)
consists of A, and a set of measure zero, and B;,, m+1=i=N;) contains no HB-
indivisible sets. Further we may assume that there exist at least two Bi,,, Bi,; of
positive measure. For simplicity, we denote Bi,,, Bi,., Gi,, and 71,, by i, Bi, G; and
i, Tespectively.

First we shall summarize certain properties of wp, and wxi. Let o}’ be the har-
monic function on £, whose boundary values are 1 on 82,NG; and 0 on 22, N(W—Gy),
and put w;=lim,,.0®. Let & be the harmonic function on £2,NG; whose boundary
values are 1 on 92,NG; and 0 on 7, and put & =lim,..@?. Then & converges to
1 on every sequence of points on which w; converges to 1 and vice versa. This
follows by the inequality

a”)igwig(l—nr;ax wi)ci‘)i—l—mgx w; on Gy
1 1

Let &' be the harmonic function on 2,N(W—G;) whose boundary values are 1
on 32,N(W—G;) and 0 on 7;, and put @&} =lim,..a’?. Similarly, &; converges to 1
on every sequence of points on which w; converges to 0 and vice versa. Hence
by the inequalities
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min Bw(r, pl— () =Cw(p, g)=max Gw(r, )(1—ai(p))  on Gy, qéG;,
m7i1’1 @W(r; Q)wi(P)é@W(Py Q)_ﬁ_mTaX@W(T’ Q(1—a&;(P)) on W— G_i, q¢ W—G_i,

it follows that the image B; of B; is the set of all points on {|z|=1} at which
o(n(2)) has the angular limit 1 and F—B; is the set of all points on {|z]=1} at
which w;(n(2)) has the angular limit 0. Consequently, we have

wp;=lim of.

y—r00

Let # be a projection mapping of the universal covering surface G2 onto Gi.
Take G? as {|z]<1}. Denote by $F the set of all points on {[z] =1} at which G¢,(7(2), )
has the angular limit 0 and denote by B, the set of all points ¢#eF such that
#(re) tends to B; as r—1. Then in the same way as above we have that B; is
the set of all points on {|z|=1} at which @(#(z)) has the angular limit 1 and F—B;
is the set of all points on {|z|=1} at which &;(Z(z)) has the angular limit 0, and
hence that @;(p)=w5,(p)=ws (T '($)), where og,(2) is the harmonic measure of B,
with respect to {|z|<1}.

It is essential in our study that every sequence of points on which Gw(p, q)
(B¢, (P, q)) converges to 0 contains a subsequence on which wp; (w5,;) converges to
either 1 or 0.

Let ¢ be the union of a finite number of regular analytic closed Jordan curves
in G; which constitutes the relative boundary of a subregion G. of G; which has
a; as its ideal boundary component. In the sequel we shall call such a union an
admitted union of curves associated with a;. Denote by B, the part of the ideal
boundary of W belonging to G, and by B. the set of all ideal boundary points
belonging to one of the ideal boundary components on .. Then we have

LEMMA 1. Let o be the harmonic function on 2, whose boundary values are 1
on 32,NG, and 0 on 32,N(W—G.), then

op=limo®  (1=i=m).

y—0o

Proof. Since B;2B.2A. and wp;=w4; w0z, =ws,. On the other hand, wsg,
=1im,_. ©%’. Hence we obtain

ws;=lim o?.

y—00

As a corollary of this lemma, we have the following

LEMMA 2. Every sequence of points on which e (wp;) converges to 1 tends
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to a; l=i=m).

Proof. Let {p,Ji1 be a sequence of points such that lim,—e oxi(p)=1. Since
oxi=wp =1, lim, o wp(p,)=1. For an arbitrary positive integer v, by Lemma 1
wp;=lim, e ;) ;, and further

o (H=maxa () for pe@n(W—Cy),
vort

where «; lies on §,,.. Hence

wp(p)=max wp(r) for pe W—G,,..

7voui
This implies that p,€G,,,. for sufficiently large p.

In the following sections we shall make free use of the notations introduced
in this section.

3. Next we shall investigate some properties of ¢g;, Which is the restriction
of an analytic mapping ¢ of W into itself to G; (1 =i=m).

Constantinescu-Cornea [2] showed: Let W; and W, be two Riemann surfaces,
and let ¢ be a non-constant analytic mapping of W, into W,. For a given non-
negative superharmonic function # on W;, we denote by E,« the lower envelope
of the set of non-negative superharmonic functions #’ on W, satisfying w/cp=u.
If # is a bounded minimal harmonic function on W, then E,x is a bounded
minimal harmonic function on W,.

By this result we have the following

LemMA 3. If ¢ is a non-constant analytic mapping of W into itself, then for
each wp, (L=i=m) there exists a non-constant harmonic function w on W satisfying
uop=wp, 0<u<l and u= Y%= wy;, where M, -, M, are HB-indivisible sets.

Proof. Since wyj is a bounded minimal harmonic function on W [1], E,on; is
also a bounded minimal harmonic function on W. Obviously, e =(E,0ui) =1
It follows that E,way is not a constant and sup E,wyi=1. Hence there exists an
HB-indivisible set M, such that E,ewi=wu,. Put #=LMH.maXigisa; {E0ni}.
Then u=w i, = Xj=1 0ij where M, -, M, are HB-indivisible sets and Ui, M,,
=U%1 M, r=n; Since wp_ug=1MJ>0, u is not a constant and 0<#<1. Moreover

ng ==
U M
k=1 k

WB;=® L.HM. max {wM,ic}§L.H.M. max {E,ouilep=u-p.
1gksng 1=k=n;

This is the desired result.
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By using the Lindel6f principle [4] and Lemma 3, we obtain the following
lemma.

LemMmA 4. Let ¢ be a non-constant analytic mapping of W into itself and let
va; denote the restriction of ¢ to G; 1=i=m). Then every point of W is covered
at most finitely often by g,

Proof. If a point ge W were covered infinitely often, we could find an infinite
sequence of points p,eG; with ¢(p,)=g. This sequence must tend to p; since ¢ is
analytic on 7,.

Suppose that lim inf,.. @¢,(p,, =0. For simplicity, we denote by {p.}: a
subsequence such that lim,.e ®g,(p,H=0. Then liMumwws(p,)=1. Hence by
Lemma 3

u(@)=lim ueg(p)=1im ws(p)=1.
,‘_)m ~—300

This contradicts that # is not a constant and 0<#<1.
Suppose that lim inf,—. &¢,(p,, )>0. By the Lindeldf principle

Cw(pa, M, = % n(p)8q(r, p)=co,
2G;(P)=q

where #(p) denotes the multiplicity of ¢g, at p. This is a contradiction. Thus we
complete the proof of the lemma.

We shall now prove the following

LeMMA 5. If ¢ is a non-constant analytic mapping of W into itself, then for
each iy (1=i,=m) there exists an admitted union c,, of curves associated with a;,
such that o(c.)=k-c,, where c,, is an admitted union of curves associated with a;,
(A=j,=m), and k is a positive integer.

Proof. Let {p.}21 be a sequence of points such that lim, e ouip)=1. Then
1im war, o¢(p,)=1m (Byougo)op(p) Zlim oxio(p) =1,

where M,, is an HB-indivisible set. Denote by «;, the ideal boundary component
of W containing M,,. We take a sufficiently large » such that £, contains ¢(r.,),
and let B.,,, contain a,, Since, by Lemma 2, {p,}2: and {p(p)}i=: tend to a;, and
a,, respectively, ¢74(G,,;)) NGy *¥¢. Moreover ¢ (G, ;) N7, =¢. Hence there exists
a component 4 of ¢7%(G,,;,) whose closure is contained in G;. The restriction ¢,
of ¢ to 4 is an analytic mapping of 4 into G, ,. We shall see that ¢, is of type
Bi. Let K be an arbitrary relatively compact subregion on G,,;, and let K’ be a
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component of ¢;!(K). Assume that K’ does not belong to the class SOmp. There
exists a positive harmonic function » on K’ vanishing continuously on 0K’ and
supg v=1. Here we note that the closure of K’ with respect to W is contained in
4. Let {g,}7: be a sequence of points in K’ such that lim, . v(g,)=1 and {¢(g,)}i:
converges to a point ¢€K. Since wp; Zv, by Lemma 3 u(go)=1im psco %4°(q,.)
=lim,,. (g,)=1. This is a contradition. Thus we conclude that ¢, is of type B/
[9]. Consequently, by Lemma 4, it follows that v,,(p)=v, save for a closed set of
capacity zero, where v, denotes the valence of ¢, and v, is a positive integer [4].
Then we can take a regular analytic closed Jordan curve ¢,, in G,,,, separating
a;, from p,, satisfying: v, (p)=w on ¢, Each component of ¢;%(G,) does not
belong to the class SOxp and its relative boundary is compact. Hence go;‘(GcJo)
must be connected and «;, lies on the part of the ideal boundary of W belonging
to gp;‘(G%). Now we put ¢,,=¢5'(c;,), then ¢, is a desired union of curves as-
sociated with ay,.

ReEMARK. In Lemma 3 we saw that for each 7, (1=i,=m) there exist HB-
indivisible sets M, -+, M, such that (}}5-: (qu)ogongio. Now we can infer that all
M;, ---, M, are contained in the same B,,, and hence ws 2P 0B In fact, for each
M, there exists an HB-indivisible set Mje contained in B, such that wux,co=wu.
Let {p2: be a sequence of points such that lim, .. oui(p)=1. Then
lim e ox co(p)=1. By Lemma 2 {p,i. and {p(p)}i-: tend to a;, and e; re-
spectively, where «a; is the ideal boundary component of W containing M,. On the
other hand as we saw in the proof of Lemma 5 ¢ maps a subregion of G;, having
a;, as its ideal boundary component into G,,. Hence {o(p,)};: tends to a,, and
hence a;=ay,.

4. The harmonic length, the quantity assigned to cycles which was introduced
by Landau-Osserman [8], is useful in our study.

Let W* be a Riemann surface which does not belong to the class Ogz, and
let ¢ be a cycle on W*, We define a quantity

hw(c)=sup S *du,
ueU Je

where U denotes the set of all harmonic functions # on W* satisfying 0<#<1,
and call Aw(c) the harmonic length of c.

In this section we shall be concerned with the harmonic length of 7, and an
admitted union ¢, of curves associated with a; (1=i=m), and

ou on
ST:,% ds’ Scz% ds

for bounded harmonic functions # on W. Here 7, and ¢, are oriented positively with
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respect to W—G; and W—G,; respectively, and d/dn denotes the outer normal

derivative. We shall prove two lemmas.

LEMMA 6. Let ¢, be an admitted union of curves associated with «; (1=i=m).
Then

ou
S,ﬁ ds—Sc;azds

Jor all bounded harmonic functions u on W, and

0wp;

ds.
7, on

(o =Tn(ro=
Proof. Since the region G;—G.; belongs to the class SOxsz,

ou ( ou
Sri% ds= Sci% ds

tor all bounded harmonic functions # on W.
Let # be an arbitrary harmonic function on W satisfying 0<#<1. Since

ow’

on

hg,(m:S ds

Ty

[8], we have

ou ou v
SCi%ds_ Sr,,% ds= Srl P ds for all v.

Hence it follows that

on ou . 0 0wp; 0w3p;
——ds= =1 L = T ds=\ —=L ds.
Sc,. on ds Sr on ds_virg Srl on ds Srz on ds Sci on ds

This implies that

a(t) B;

on

/zw(c»:hW(n):S ds.

Ta

LeMMA 7. [f u is a positive harmonic function on W which converges to 0 on
every sequence of poinils on which wp, converges to 1, then
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0
S 9% gs<0.
r; on
Proof. Let u, be the harmonic function on 2,NG; whose boundary values are
u on 7, and 0 on 02,NG;. Then we can verify that #=lim, .. %, On the other
hand, since #,—mins, #(1—&’) is positive on 2,NG; and vanishes on 02,NG;,

Y . a . .
e ds= vami n {u, rrgn u(1—a{)}ds<0

S ou, ds-+min ug
4 an Ty c

for all v, where ¢ is a regular analytic closed Jordan curve in G; being homologous
to 7.. Hence we have

S a—ua,’s=8ﬁ{—ds=lims ou
cOn ¢ an

v . . (Bg’)
ds=—min u-hmg ds
7, on 0 y—00 Je on 7, y—00

003, ) w3,
=—min u-S B4 ds=—m1nuS 9% is<0.
Ty c On T, 7, on

This is the desired result.
5. Now we turn to the study of global properties of analytic mappings of W
into itself.

We shall first prove the following

LEMMA 8. Let ¢ be a non-constant analytic mapping of W into itself and let
7w (rg) =Miligigm {Aw (). Then op 22 P(D)=ws,; (P) for an integer jo, (1=j,=m).

Proof. By Lemma 5 there exists an admitted union ¢, of curves associated
with a;, such that ¢(c.,)=Fkc,,, where c,, is an admitted union of curves associated
with a;, A=j,=m). Since hw(c.;)Zhw(e(c.y)) [8], we have

hw(cw)=hw(kes)) =khw(c;,)
and hence by Lemma 6
Tow (1) =how (Cog) ZRhw (¢10) = khw (75) Z khw (11,)-

On the other hand by Lemmas 6 and 7

Ows;,
hw(m)—sr g5,

‘0
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Then it follows that ¢(c,)=c,, and

S Jomy dS:S %0540 gs.
iy ON cj, Om

Hence we obtain

P 0
Srzo'a—n‘ (wBJ00¢—wBio)ds = S Ci‘)% (wBJoogo_wBiO)ds

=S 005,y ds”‘g B0sty_gs—0.

5o an (2% an

Moreover, since s, °¢=Zws, it follows that s, cp—ws, is not negative and
converges to 0 on every sequence of points on which ws,, converges to 1. Conse-
quently, by Lemma 7, we conclude that ws, c¢=ws,

This lemma allows us to infer the following

LeMmMA 9. If ¢ is a non-constant analytic mapping of W into itself, then ¢ is
univalent and W—o(W) is a closed set of capacity zero.

Proof. First we shall see that ¢ is of type Bl. Let K be an arbitrary relatively
compact subregion of W and let K’ be a component of ¢~!(K). Assume that K’
does not belong to the class SOxp. There exists a positive harmonic function » on
K’ vanishing continuously on 0K’ and satisfying supg.v=1. By the same argument
as in the proof of Lemma 5, we can find admitted unions ¢,, and c¢,, (1=io, jo=m)
of curves associated with a;, and a;,, respectively satisfying: (1) ¢ maps G, into
Ge,, (2) KNG, =¢, where hw(p,) =minsgizm {kw(r)}. Since K'NGy =6, 1—v
=lim,e 0, =wp,, on K'. Hence we have infg wp;,=0. Let {gJi be a sequence
of points in K’ such that lim,.. s;(¢,)=0 and the sequence {¢(g,)}: converges
to a point ¢,€ K. By Lemma 8

os,,(40) =1£qg ws, °¢(q,) =}‘iqrg @8,,(¢)=0.

This is a contradiction, whence follows that ¢ is of type BL.

Using the Lindelof principle and Lemma 8 we can prove, in the same way as
in the proof of Lemma 4, that every point of W is covered at most finitely often
by o.

Hence it follows that v,(p)=v, save for a closed set of capacity zero, where v,
denotes the valence of ¢ and v, is a positive integer.

Now we shall see that vy=1. Let ZAw(r,))=minisizm {Aw(r:)} and let ¢;, and cj,
be admitted unions of curves associated with a;, and a;, respectively obtained in
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Lemma 5, so that, the restriction of ¢ to G, is an analytic mapping of G, into
Ge 7o of type Bl. Let 4 be an arbitrary component of ¢~ (Ge,,), then the restriction
¢s of ¢ to 4 is an analytic mapping of 4 into G., of type B/ and v,,=w. Hence
it follows that 4 contains #;, (=#,,) HB-indivisible szts on its ideal boundary [3].
By the same reasoning each component of ¢ G;) (1=i=<m, i>j,) contains #n, (=n;)
HB-indivisible sets on its ideal boundary. Moreover the sets ¢ (G JO) and ¢ 4Gy)
(1=i=m, i>xj,) are mutually disjoint. This implies that W contains at least
Tl (= 27 ni=n) HB-indivisible sets on its ideal boundary, where /,, and /,
are the numbers of the components of go‘l(G%) and ¢ }(G;) respectively. Hence
each /, (1=i=m) must be equal to 1, whence ¢ (G, Jo)=Gci0- Consequently we
obtain ¢(c,))=wc;,. By the inequality

hW(?’zo)ZhW(Czo)ghW(SD(Czo))=hW(VoC;0)ZVOhW(CJO)ZVo}lW(TJO éuohw(ho)
we obtain yo=1. This completes the proof of the lemma.
Finally we shall prove two theorems which lead us to our main result.

THEOREM 1. The number of conformal automorphisms of W omnto itself is
finite.

Proof. Assume that there exist infinitely many distinct conformal auto-
morphisms of W onto itself, {o®}:. Let Aw(r,)=minigism {Aw(r:)}. By Lemma 8
we may assume that

ws, c¢®=wp, ~ for all k.
Put ¢®=¢pR.p®, where ¢% denotes the inverse mapping of ¢™®, then
(1)131;00 (k)=(1)3i0 for all k.

Since {¢®}z., are also infinitely many distinct conformal automorphisms of W onto
inself, there exists an integer % such that ¢®(r,)Nr,=¢ [6]. Let {p). be a
sequence of points such that lim,.. ws;(p,)=1, then lim,oe w5, °¢p®(p,)=1 and
hence {p, 2 and {¢®(p )1 tend to a;, by Lemma 2. This implies that either
B (G )FEGi, or G FP®(Gyy)- If Gi,F9®(Gip), 9R(Gi)EG;, Consequently there
exists a conformal automorphism ¢ of W onto itself having the following properties:
(i) wpycp=wn, (i) @(Gi)FGy, and (iii) if limumw p; (P)=1, then {pa(p )i tends
to a;, for all » (this is a consequence of (i)). Here ¢, denotes the n-th iterate of
¢. By the properties (i) and (iii), {¢a(Gsp}n-: is a defining sequence of «;. We
note that {¢a(y.,)}a-: tends to the ideal boundary of W. Since the region G;j—¢(Gs,)
belongs to the class SOgs,

wp, = Max wg on  Gi—@a(Gy) for all n,
0 TagUen(Tag) 0
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On the other hand by the property (i)

max wg; =—=MmMax wpg;..
Tiy 0 gpfg)  ©

Hence we have

wpy, =MAX wp; on Giy—ou(Gs,) for all =,
Tio

whence follows
wBiogm%ff wz;, on G,
This is a contradiction.

THEOREM 2. If ¢ is a non-constant analytic mapping of W into itself, then ¢
is a conformal automorphism of W ownto itself having a finite period.

Proof. Assume that the set W—go(W) is not empty. By Lemma 9 ¢ is
univalent and W—¢(WW) is a closed set of capacity zero. Hence there exists a
Riemann surface W, such that W,2W, and ¢ is extended to an analytic mapping
o of W, into itself which maps W,, W.— W topologically onto W, W—e(W) re-
spectively. Again, since ¢ is univalent and W,— W=W,—¢™®(W;) is a non-empty
closed set of capacity zero, there exists a Riemann surface W. such that W22 W;,
and ¢® is extended to an analytic mapping ¢® of W, into itself which maps
Ws, W,— W, topologically onto W,, W;— W respectively. Repeating this argument
we obtain a sequence {Wili.: of Riemann surfaces and a sequence {p®}g, of
analytic mappings satisfying: (1) Wi_.S W for all &, (ii) ¢ is an analytic mapping
of Wy into itself which maps Wi, Wi— Wi_, topologically onto Wi_1, Wi_1— Wi_s
respectively, where Wy=W. We put W*=Ug., Wi, and ¢*(p)=¢(p) for peW,
=p®(p) for pe Wy— Wi_1. Then ¢* is a conformal automorphism of W* onto itself
and {p}} are distinct, where ¢} denotes the #n-th iterate of ¢*. On the other hand,
since W*—W is a closed set of capacity zero, every bounded minimal harmonic
function on W is extended to a bounded minimal harmonic function on W*.
Conversely, the restriction of a bounded minimal harmonic function on W* to W
is a bounded minimal harmonic function on W. Further, let GF be the component
of W*—, containing G;, and let B} be the set of all ideal boundary points of W*
which belong to one ot the ideal boundary components on the part of the ideal
boundary of W* belonging to G¥. Then we can verify that B; is of positive
measure if and only if B¥ is of positive measure, and that the harmonic measure
of B¥ is equal to the extension of the harmonic measure of B;. Hence it follows
that W* is also an admitted surface. This contradicts Theorem 1. Consequently ¢
must be a conformal automorphism of W onto itself. Moreover, by Theorem 1 ¢
has a finite period.

Summing up these two theorems we have our main result.
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