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ON HYPERSURFACES IN SASAKIAN MANIFOLDS

BY SEIICHI YAMAGUCHI

§ 1. Introduction.

Recently, Okumura [3] has studied hypersurfaces of an odd dimensional sphere
Sn+1 and obtained a sufficient condition for a hypersurface M in Sn+1 to be totally
umbilical. Also, Watanabe [6] has studied totally umbilical hypersurfaces in a
Sasakian manifold and proved

THEOREM (Watanabe). Let M be a complete orient able connected totally um-
bilical hypersurface in a Sasakian manifold. If M is of constant mean curvature
H, then M is isometric with a sphere of radius 1/Λ/1+/P in the Euclidean space.

It might be interesting to obtain other sufficient conditions that a hypersurface
in a Sasakian manifold is isometric to a sphere. In § 2, we recall first of all the
definition of a Sasakian manifold and those parts of the theory of hypersurfaces
in a Sasakian manifold which are necessary for what follows. Some general pro-
perties of a hypersurface in a Sasakian manifold are derived in § 2. In § 3, taking
account of the theorem above, we prove Theorem 3. 3.

This theorem plays an important role in § 5. In § 4 we shall consider a totally
umbilical hypersurface in certain Sasakian manifolds. In the last section we prove
the main

THEOREM. Let M (n>2) be a complete orient able connected hypersurface in a
Sasakian manifold M. If the contact form η over M is not tangent to M almost
everywhere and if f commutes with h, then M is isometric with a sphere of radius
l/\/l+//2 in a Euclidean space.

§ 2. Preliminaries.

An (τ2-f-l)-dimensional contact metric manifold is by definition a Riemannian
manifold admitting a structure ( φ , ζ , η , g ) , η=(i)λ) being a 1-form, ξ=(ζλ) a con-
travariant vector field, φ=(φλ

μ) a (1, l)-type tensor field and g=(gλμ) the Rieman-
nian metric tensor, which is positive definite, such that

(2.1) ^=0, pΛ.=0, f^e=i,

(2.2) «=-«+ ,̂
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/O O\ ~ F O \\V> 3) ηλ = Qλaξ ,

/n Λ \ ~ a Ω ~

/Γ) r\ = / γ α (?) Ά \
2

where (̂ ), (ξ*)t (φλ

μ) and (g^) denote respectively the components of 77, £, 9 and g
with respect to local coordinates {^Λ}.2) A contact metric manifold M is said to
be Sasakian, if the structure (φ, ζ, η, g) satisfies the conditions

where V denotes the operator of the covariant differentiation with respect to g.
Let M be a Sasakian manifold and M3) an orientable hypersurface represented

locally by the equations

where {x1} are local coordinates of M. If we put

~, dX*

Bi"(i=l,2,'~,ri) are linearly independent local vector fields tangent to M The
induced Riemannian metric g of the hypersurface M is given by

(2.7) Qji=gβaBjβBi

a.
/v

Since the Sasakian manifold M and the hypersurface M are both orientable, we
can choose a unit normal vector field Cκ along the hypersurface M in such a way
that (Cκ, Biκ) form a frame having the positive sense of M and (J5/) form a frame
having the positive sense of M. Then we have

(2.8) flWBi'Cβ=0, fcβC'Cβ=l.

The transforms ^αΆ
β of £/ by ^>/ and φa

κCa of C" by y>β* are expressed as linear
combinations of B" and Ca as follows:

1) In the following we use a notation ^ in stead of ξλ.
2) The indices run over the following ranges respectively:

α, j9, —,;, /£, — = 1,2, —, *,»+!;

A, f, ••-, r, 5, ••• = !, 2, ••-,«.

3) In this paper we assume that M is connected.
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from which

(2. 9) ft=&4>fBf,

(2.10) f,= -k,=B, φJC,t

(2. 11) Pι=B,"η.,

(2. 12) q=η«C", q'=0,

where we have denoted by (Bl

a, Ca) the coframe dual to the frame (Bf, C"). By
virtue of (2. 1)~(2. 5) and (2. 9)~(2. 10), we have

(2.13)

(2.14)

(2.15) f1

rfr=qp}, f3

rPr=-qf3,

(2. 16)

Now, denoting by F the symbol of the covariant differentiation along the
hypersurface M, we have respectively the equations of Gauss and Weingarten

-Br' =
p a\ [j ι\

where {fa} (resp. {/J) are the Christaffels symbols with respect to g (resp. g)
and hji are components of the second fundamental tensor of M. Differentiating
covariantly (2. 9)~(2. 12) along the hypersurface M, we obtain

(2. 17) P*fji=Pjg*i-Pig*j+fjhki-fthkJ,

(2. 18) F,Λ= -qgji-fΐhrj,

(2. 19) PjPi=fji+qkjt,

(2. 20) Pjq=fj-Prhr,.

We here prove an identity for the later use. Operating Ffc to (2. 20) and tak-
ing account of (2. 18) and (2. 19), we have

(2. 21) FtF#= ~qgkj-fjrhrk-(fjcr+qhk

r)hrj-prPkhjr.

If we subtract (2. 21) from the equation obtained by interchanging the indices k
and j in (2. 21), we obtain

(2. 22) ίr(F*A;r-^*tr)=0.
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§ 3. Totally umbilical hypersurf aces.

When, at each point of the hypersurface M, the second fundamental tensor
hji is proportional to the induced Riemannian tensor g^ of M, i.e., when the
condition

(3. 1) hji=Hgjt

is satisfied, the hypersurface M is called a totally umbilical hypersurface. The
proportional factor H is the mean curvature of the hypersurface. A totally um-
bilical hypersurface with vanishing mean curvature is said to be totally geodesic.
We shall prove now that, for an orientable totally umbilical hypersurface M of a
Sasakian manifold M the mean curvature H is constant.

If we put Mo={(xi)eM\qz(xί)*rl}, then MQ is an open set in M. We assume
now that M0 is not empty. Then, substituting (3. 1) into (2. 22), we obtain

Contracting this wτith p3 and making use of (2. 16), we get

from which

(3. 2) FkH=apk

in Mo, where a is a certain scalar function defined over M0. Differentiating this
covariantly, we have

If we take the skew-symmetric part of this tensor equation and take account of
(2. 19), we have

Transvecting the last equation with fkj and fjpk respectively, we have

In Mo, from the two equations above we have (n— 2)α=0. Thus we get α=0 if
n>2. Therefore from (3. 2) we see that the mean curvature H is locally constant
in Mo, that is, it satisfies PiH=Q. Consequently we have

LEMMA 3. 1. If M0 is not empty, the mean curvature H of a totally umbilical
hypersurface M (n>2) is locally constant in M0.

Next, if we put M1={(xί)^M\PjcH(xi)=Q)J then we see that M— M} is ail
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open set in M and we have M—MiCM—M0 by virtue of Lemma 3. 1. Hence, by
virtue of definition of Mi, we get q2=l in M—Mi. Therefore, we have Λ=/>ί=0
in M—MI by virtue of (2. 16). We assume now that M"—Mi is not empty. Then
M—MI being an open set in M, we find

(3.3) 4ffji+fffji=0,

if we differentiate Λ=0 covariantly and take account of (2. 18) and (3. 1). If we
add (3. 3) to the equation obtained by interchanging the indices j and ϊ in (3. 3)
and take account of (2. 13), we have #0^=0. Thus we get #=0 in M—MI, which
contradicts the condition #2=1. Since M is connected, the mean curvature H is
constant over M. Consequently we have

THEOREM 3. 2. Let M(n>2) be an orientable connected totally umbilical hyper-
surface of a Sasakian manifold M. Then the mean curvature H is constant over M.

Combining Theorem (Watanabe) stated in § 1 and Theorem 3. 2, we have
immediately

THEOREM 3. 3. Let M (n>2) be a complete orientable connected totally um-
bilical hypersurface in a Sasakian manifold M. Then M is isometric with a sphere
of radius l/*/l+H2 in a Euclidean space.

§ 4. Totally umbilical hypersurf aces of a certain Sasakian manifold.

Watanabe [6] has proved

LEMMA 4. 1. If M is an orientable totally umbilical hypersurface with con-
stant mean curvature in a Sasakian manifold M, then the scalar function q is not
constant in M.

This lemma plays an important role in this section.
When the Ricci tensor of a Sasakian manifold M has components of the form

(4. 1)

then M is called a C-Einstein (^-Einstein) manifold. In such a manifold M, a
and b are necessarily constants (Cf. Okumura [1]). A C-Einstein manifold is

^
Einstein if 6=0. When the curvature tensor of a Sasakian manifold M has com-
ponents of the form

Rλμvκ

(4.2)

then M is called a locally C-Fubinian manifold (Tashiro and Tachibana [5]). In
such a manifold M, k is necessarily constant. A locally C-Fubinian manifold is
necessarily C-Einstein,
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In the first place, we consider a totally umbilical hypersurface M of a C-
Einstein manifold M. From the Codazzi equation of the hypersurface

(4. 3) Fkhji-Fjhkl=B^BJ

μBi

vCκRλμvKί

we have

Making use of (4. 1), this reduces to

(4.4) rrhir-rihrr=

As the hypersurface M is totally umbilical, by virtue of Theorem 3. 2, the mean
curvature H is constant in M if n>2. Thus we obtain bqpi=Q. Hence if we
assume that a C-Einstein manifold M is not Einstein, i.e., &^0, then we have
qpi=0. Differentiating this covariantly and making use of (2. 19) and hn=Hgji,
we obtain

Transvecting this with f3 and making use of qpi=0, (2. 15) and (2. 16), it follows
that

Transvecting this with pl and taking account of (2. 16), we get 1— q2=0. This
contradicts Lemma 4. 1. Thus we have &=0. Consequently, we have

THEOREM 4. 2. If an orientable hypersurface M (n>2) in a C-Einstein mani-Λ/ Λ/
fold M is a totally umbilical hypersurface, then a C-Einstein manifold M is neces-
sarily Einstein (Watanabe [6]).

COROLLARY 4. 3. Let M be a C-Einstein manifold. If M is not Einstein, then
there is no orientable totally umbilical hypersurface M (n>2).

In the next place, we shall consider a totally umbilical hypersurface in a
locally C-Fubinian manifold M. If we substitute (4. 2) into (4. 3), it follows that

Since, by Theorem 3. 2 the mean curvature H is constant, the equation above
reduces to

Transvecting this with gji and making use of (2. 15) and of Lemma 4. 1, we get
k=Q. Therefore we have

THEOREM 4. 4. If an orientable hypersurface M (n>2) in a locally C-Fubinian
manifold M is a totally umbilical hypersurface, then a locally C-Fubinian manifold
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M is necessarily of constant curvature.

COROLLARY 4. 5. Let M be a locally C-Fubinian manifold. If M is not of con-
stant curvature, then there is no orient able totally umbilical hyper surf ace M (n>2).

§ 5. Determination of the hypersurf aces.

In this section we assume that the 1-form η over a Sasakian manifold M is
not tangent to a hypersurface M almost everywhere. Moreover, we assume that
/ commutes with h, i.e.,

ft "h f rh ϊ— h rf i
\*J. λ.) J j fίr — rij J r .

The following Lemma is known [3].

LEMMA 5. 1. If f commutes with h and if the \-form η over M is not tangent
to M almost everywhere, then we have

(5. 2) hjifφ=0,

(5. 3) hjif'fi=hjiP>P*.

Now, transvecting (5. 1) with fk

j and making use of (2. 14), we get

(5. 4) -hjci+P^hri+fjcΓhr^-hrsf^8.

If we subtract (5. 4) from the equation obtained by interchanging the indices k
and i in (5. 4), it follows that

Transvecting this with pk and with fk and taking account of (2. 16) and (5. 2), we
find respectively

(l-q2)pkhk
(5.5)

(l-Λ/*A*y

Now, if we put M0={(xi)€M\q2(xί)^l}, then MQ is an open set in M. We
suppose now that M0 is not empty. Then we have from (5. 5)

(5. 6) hrjp
r=apj, hrjfJ=afj

in Mo, where α is a differentiate function defined over M0. Differentiating (5. 6)
covariantly, we get in M0

because M0 is open and non-empty. If we take the skew-symmetric part of this
tensor equation and take account of (2. 22) and (5. 1), we obtain
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(5. 7) 2fk

rhr3 =pjPka-pkPja+2afJCj.

Transvecting (5. 7) with p3 and making use of (2. 16) and (5. 6), we get in M0

(5. 8) P*a=βp*,

where β is a certain function defined in M0. Differentiating (5. 8) covariantly, we
obtain

PjP*a=ρkPjβ+βPjpk.

If we subtract this from the equation obtained by interchanging the indices j and
k in this and take account of (2. 19), we have

P*Pjβ-pjP*β+2βfJk=0.

Transvecting this with fik and with fjpk, we get respectively

(5.9)

where we have used (2. 13)~(2. 16). As a consequence of (5. 9), if n>2, we have
/3=0, which implies together with (5. 8) that a satisfies F/α=0 in M0. Thus by
virtue of (5. 7), we have

//^rj = α/A;<7,

from which

(5. 10) kji=<χgji.

Therefore we proved

LEMMA 5. 2. If M0 is not empty, the hyper surf ace M (n>2) is umbilical at
each point of MQ.

In the next place, let Mi be the set of all umbilical point of M. Then, we see
that M—Mι is an open set in M and we have from Lemma 5. 2 M— MiCM— M0.
Hence, by definition of M0, we get q2=l in M— Mi. Thus we get fj=pj=Q in
M— Mi by virtue of (2. 16). We assume now that M— Mα is not empty. Then
M— Mi being open in M, if we differentiate Λ=0 covariantly and take account of
(2. 18), we obtain

If we take the symmetric part of this tensor equation and take account of (5. 1),
we get qgji=Q. Thus we have #=0 in M— Mi, which contradicts the condition
qz=l. Therefore the set M— Mi is necessarily empty.

Summing up the results obtained above, we get
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THEOREM 5. 3. Let M (n>2) be an orient able connected hypersurface of a
Sasakian manifold M. If the contact form η over M is not tangent to M almost
everywhere and if f commutes with h, then the hypersurface M is totally umbilical.

Combining Theorem 3. 3 and 5. 3, we have immediately the main theorem
stated in § 1.

BIBLIOGRAPHY

[ 1 ] OKUMURA, M., Some remarks on spaces with a certain contact structure. Tόhoku
Math. Journ. 14 (1962), 135-145.

[ 2 J OKUMURA, M., Certain almost contact hypersurface in Euclidean spaces. Kδdai
Math. Sem. Rep. 16 (1964), 44-54.

[3] OKUMURA, M., Certain hypersurfaces of an odd dimensional sphere. Tδhoku
Math. Journ. 19 (1967), 381-395.

[ 4 ] SASAKI, S., AND Y. HATAKEYAMA, On differentiate manifolds with contact metric
structure. Journ. Math. Soc. Japan 14 (1962), 249-271.

[ 5 ] TASHIRO, Y., AND S. TACHIBANA, On Fubmian and C-Fubiman manifolds. Kδdai
Math. Sem. Rep. 15 (1963), 176-183.

[ 6 ] WATANABE, Y., Totally umbilical surfaces in normal contact Riemannian mani-
fold. Kδdai Math. Sem. Rep. 19 (1967), 474-487.

SCIENCE UNIVERSITY OF TOKYO.




