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THE RANDOM NET WHICH HAS BASIC ORGANS
REALIZING PARITY BOOLEAN FUNCTIONS

BY YASUICHI HORIBE

This paper is a revised and modified version of the foregoing paper [1] in the
sense that the ability of pattern discrimination is much more increased than [1].

1. Brief review of the general concept.

We briefly review the fundamental concept of pattern recognition by random
net proposed in [1] (See [1] for detail).

/ is the set of n "input points". Denoting by π(Λ) the number of elements
belonging to a finite set A, we have π(I)=n. Any subset fa I will be called (input)
pattern which may be interpreted as a binary 0, 1 sequence of length n. The 2n

possible patterns constitute the (input) pattern space F. To say that there are given
K categories on F is to say that K probability distributions

φ _ rpu) p(2) ... porn
zL n — \ Ln ι -LU > > * n i

are defined on F, considering them to depend on n.
A random net transforms F randomly into another pattern space (output pattern

space) G comprising of patterns which are subsets of the set of N output points.
Then the random net defines a mapping (assumed deterministic in the present
study) ψ\ F^G. We have thus π(G)^2n.

Given a category &eC={l, 2, •• ίK}r denote by QfJ the probability that the /-th
output point emits signal 0. If the random net has the property that the N output
component signals are mutually independent, the probability that the corresponding
output pattern φ(f)εG is observed, given category k, is given by

(1) <$>/>= Π (1-Q8>) Π

If we assume a learning mechanism which can estimate the matrix 3tt=(Qu?)
and the probabilities ^cl),^(2), --^p^ on the category space C, then the a posteriori
probability method to recognize patterns may be as follows:

(A) An unknown input pattern feF is given and the φ(f)eG is observed at
the output level.

(B) By (1) pM-qfff), &=1,2, »,/ζ are calculated.
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(C) Determine the maximal subset C(^(/))cC each of whose categories gives
the same maximum value among these K values.

(D) Decide that / belongs to one of categories in C(φ(f)).

Denoting by £)[φ(f)] the decision C(φ(f)), then we can show that <D[f]= <D[φ(f}}
if φ is one-to-one mapping, where <D[f] is the decision performed directly on the
basis of cpn without using random net.

What was mentioned above suggests that if we could construct the random net
such that the output component signals are mutually independent and φ is one-to-
one, then we could have an optimal pattern recognition mechanism.

The main object of the present work is to prove that this is effectively possible
if the size of the random net which has basic organs realizing parity Boolean
functions is properly enlarged.

2. Assumptions on the pattern space structure.

We put the following three basic assumptions on the input patten space F.
These assumptions, however, never put any restriction on the generality of pattern
space structure. Rather they are not only for convenience in modelling a pattern
recognition mechanism, but also they seem to reflect (or at least simplify) some of
the intrinsic natures of pattern space for recognition.

Since we always take n=π(I) sufficiently large, the pattern variety may be
considered to be astronomically enormous.

We call the ratio p(f)=π(f)/n stimulation area (or simply s-areά) of pattern

ASSUMPTION 1. For any pattern /eF, p(f) = l/2.

This is realized, for example, by considering a regulating or normalizing
mechanism which regulates any "external pattern" fe by adding to it an "internal
pattern" f^ so as to make p(fe\Jfi)=l/2 (see also [1]).

ASSUMPTION 2. For any pair of distinct patterns /,/'€F, there exist uniform
bounds b and b such that 1^6^π(

The b and n/2—b may usually be much greater than 1, since n is large.

ASSUMPTION 3. For any category kzC, ζ^ = ΣfeF{Pn\f)}z-*Q as n-^oo, i.e.
l-ζ™ = Σf*r P(n\f)P(n\f')-^l, n-*π> (this convergence is considered to be very
rapid perhaps of order a~n,

It is natural that the patterns /* to be recognized are "imbedded" in various
random (or noisy) patterns fr, both of them constitute our patterns /, i.e. /=/*U/r,
and furthermore /* itself has tremendously various forms. Thus once a pattern
has occurred, then exactly the same pattern will almost never occur in future, when
n becomes large. This consideration, though intuitive, leads to the assumption 3.
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3. A class of basic organs usable in the random net.

Every basic organ contained in the random net is to realize a certain Boolean
function. The basic organ has, therefore, finite input lines receiving binary stimuli
01,02, '-yβs (=0 or 1) and one output line emitting a binary signal σQ (=0 or 1),
realizing a map: Φ: {0,1}S—>{0,1}.

FIG. 1. Basic organ

A Boolean function Φ(0ι,02, ~,σs) is called symmetric if the function value
remains invariant under any permutation of variables <7ι, σ2, ~',σs. A class of basic
organs which will be used to construct the random net in the present study is a
subclass of basic organs realizing symmetric Boolean functions. That is a class of
organs which realize parity functions for s odd with s^3.

The parity Boolean function is defined as:

Φ(σl9 <72, •••, <7s)=σι0σ20 ••- ®σs,

where the operation 0 means "exclusive or", i.e. 000=0, 001=1, 100=1,
101=0. Let us denote this function (also the basic organ realizing it) of s=2r+l
variables by Φ2r+ι, r^l.

If the basic organ Φ2r+ι is constructed in canonic form only with (3-input)
majority elements, the number of elements needed is shown to be 2(r-f-l)2— 1, but
if with various threshold elements, the minimum number of elements needed in
canonic form construction is shown to be l+[logz(2r+l)], where [a] is the integer
part of the real number a. See for deiail [2].

The most significant role of the organ Φ2r+ι in the pattern recognizing random
net is in its probabilistic logic property. That is, when 2r+l input lines are
stimulated mutually independently each with probability p, the probability u2r+ι(ρ')
that the output line is stimulated is given by

1 1 ί 2r+1 /2r4-1
y«.r+.0>)+y ««r+l<0- Σ ( fr
Δ Δ \ 4=0 \ K

= — ί T1 ( l/)2*+ 1f— <Ί — Λll2<r-*>4- Y 1 ! i{ ( P)} έΌV 2k )
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FIG. 2.

4. The net construction by random connections.

We now state how the random net is constructed with the basic organs Φ2r+1.
Although a plan to use organs of various r in the net construction would be
possible, r is fixed arbitrarily in the present study.

Take JVi basic organs. Each input line of each organ is connected completely
randomly to one of n input points. Then we obtain a random net 37(0,1) between
the layer J70 consisting of n input points and the layer _£Ί consisting of Nλ basic
organs. Take next N2 basic organs. Each input lines of each of these organs is
randomly connected to one of M output lines of layer j:l9 obtaining a random net
32(0,2) between J:Q and the layer j?2 consisting of N2 basic organs. Continue this
construction until we reach the layer £L to obtain the net 37(0,L), which may be
considered as the net comprising of L subrandom bets 22(0,1), 22(1,2), —, 3l(L—I, L)
in series. The random net 3?(0,L) thus constructed has n input points and NL

output lines on the whole.

5. Maintainability of stimulating area.

The random net 22(0,;), l^λ^L, transforms the input pattern space F into
the pattern space Gλ which consists of all possible binary patterns of length Nλ

that can be observed at the layer jcλ. Consider especially the net 22(0, 1) and the
corresponding pattern space d. When an input pattern / (/o(/) = l/2) in F is
presented to the input layer .£*<>, its corresponding transformed pattern g^Gi has
π(flrι) which is a realization of a random variable obeying normal distribution
N((l/2)Nl9 (1/2X1-1/2)7^) with mean (1/2)M and. the variance (1/2)(1-1/2)M, if n,
hence Nί9 is taken large (note that we must take n^N^Nz^- .), since «2r+ι(l/2)
=1/2 and the random connection operation may be regarded as a Bernoulli trial of
coin tossing. Hence the s-area ρ(gύ=π(g1)/N1 of gι is a realization of a random
variable obeying JV(l/2, 1/4M). Let us write this last statement as
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Generally, if the random net 32(0, λ) transforms feF into g^G*, 1^2^L, then

p(Qλ + l)3lN\U2r+ι(p(gi)), «2r+l(/θ(flri))(l — «2r+ι(/θ(^))) ^ - j

Varying f in F we see that the s-area ^+1 of patterns cG^i observable at the
layer J^^+i is a variable having (approximate) density

S
£»oo J oo

n(/0j+ι; /oJ^/oΛ n(^; p^dp^i ••• \
— 00 J —00 J —

where n(/0ι) is the normal density of pi obeying N(l/2, 1/4/Vι) and n(ρi+ι, ρλ) is the
normal density function of pί+ι(pd obeying N(uzr+ι(pλ), «2r+ι(jθO(l— u2r+ι(pd)INί+ι),
l5gΛ5ΞL— 1. The mean ίpλD(pλ)dpλ of ^^ is obviously 1/2 from the symmetricity of
u2r+ι(p) with respect to the point (1/2, 1/2). But the variance of pχ is not readily
obtained because of the difficulty for exactly calculating D(p^). An approximate
upper bound of the variance is, however, obtained by the following argument.
Since the concentration of s-areas around 1/2 mainly concerns us, it is sufficient
to consider the problem only in the neighbourhood of 1/2. In

- )
\λ+ι /

we estimate the variance larger, denoting ([!])

since 0^u2r+ι(pλ)(l— w2r+ι(^))^l/4. And furthermore estimate larger the deviation
of the mean from 1/2, denoting p^1(p2)&**N(a(r)(pi--ll2)+ll2,ll4Nλ+ί), since in
the neighbourhood of 1/2, \u2r+i(p*)— l/2\^=\a(r)(pΛ— 1/2) | for suitable a(r) depending
on r such that 0<α(r)<^l. Then we easily see that, if we put pι<R*N(μλ, dΐ) and

then

—(l-a(r))= —

since the lemma 1 of [1] (i.e., if the variable x obeys N(m, σ2) and the variable y(x)
for fixed x obeys N(ax+b, δ2), a, b constants, then y(x) averaged by x obeys
Nfam+b^aaY+d2) is applicable to the two distributions N(μλ,d

2^) and N(a(r)(pλ—ll2)
+1/2, l/4Λ^+ι). The initial conditions ^ι=l/2, dJ=l/4/Vι give us
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72 IΛ"V J\ [ IΛ"V /J [ I 1/^V/J i
u, r— 7T7 ~rτ^. ~Γ *" "I 7T7 Γ

4M 4JV2 4ΛΓz_ι

Remark that a(r+ΐ)<a(r), and that 0(r)->0 when r becomes large. And also
note that Nι=Nι(ri)-*oo as n-*oo (Nι(ri) will be remarked in section 9.). Thus we
have

LEMMA 1. The random net 37(0,L) maintains the s-area of any
pattern to be 1/2 with the standard deviation dL from 1/2 having the following
bound:

where 0<<z(H-l)<<z(r)<l #7zd #(r)— »0, r— »oo #«<# Nι=Nι(n)— >oo, -̂̂ oo.

By the above result we may assume in the sections to follow that the s-area
of any input pattern is maintained to be precisely 1/2 in order not to make the
argument inessentially complicated.

6. Changes of intersecting stimulating area.

We shall consider another important factor of the random net, namely the
intersecting stimulating area defined below.

We again focus our attention on the subrandom net 37(0,1) and two fixed
distinct input patterns / and /' in F. Define by σ ( f Γ \ f ' ) = π ( f n f ' ) / n the intersecting
stimulating area, simply i. s-area, of these two patterns. Suppose σ ( f Γ \ f ' ) = σ . Then
0<0 <l/2=(o(/)=io(//). The problem is how this i. s-area changes as these two
patterns are transformed by the net ^72(0, 1). For this it is sufficient to investigate
the probability that a basic organ in JC\ is stimulated (output 1) by both / and /'
when its 2r+l input lines are randomly connected to input points.

Denote by or, ά, β, βf, the number of input lines of the basic organ which are
connected to the points in sets /Π/' /-(/U/0, /-(/Π/0, /'-(/Π/'X re-
spectively. Note here that a+a+β+β'=2r+l and π(f Γ\f')/n=π(I-(f\Jf'))/n=σ,

We easily see that the basic organ is stimulated by both / and /' if and only
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if a+β=oάd and a+β'=odd. Therefore a+ά must be odd and β+β' must be even
(including 0), since α+ά+j9+j9/=2r+l=odd. The probability that a+ά=2k+l and
β+β'=2r+l-(2k+l)=2(r-k), Q^k^r, is

Fix &=0, 1, " ,r. The number of ways of choosing a input lines and a input
lines out of 2&+1 input lines such that a is odd a is even is

But in this case β and β' must be even. The number of ways of choosing β input
lines and β' input lines out of 2(r— k) input lines such that β and β' are both
even is

Hence

ways.
Similarly for the case α=even, ά=odd, /3=odd, /S'=odd, we have

<fcO\ 2β

ways. Therefore for fixed Λ, there are

* /2*+l\ ί±*
2

ways of connection patterns in all, since the expansions of

(l_l)2*+ι, (l-l)2c-w, (l+l)2ί+1, and

show that

/2ft+l\_ * /2ft+l\__l
~ 2 ^ '

r V 1 (^r ®\ — V ί "v n'\ = — O^V-ky
έJ ι\2β+lΛ άi " "
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The probability to be obtained is, therefore,

53

r-k)

where the last equality has been shown (put p=2σ) in section 5. Put

- - - .

By a similar argument to that of section 5, if /, /' correspond to glt cried, re-
spectively, then i. s-area of gt and g( satisfies

When the net 32(0, X) transforms / and f into gι,g'λ€Gλ, respectively, then i.s-
area σλ=σ(gλΓ\gί) of gλ and g'λ changes in the mean recursively as follows:

FIG. 3.
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The variance argument is quite analogous with section 5 and the function v2r+i(<?)
has the property to nicely "attract" i. s-areas to the point 1/4. We therefore omit
the detail and conclude:

LEMMA 2. The Ls-area σ=σ(fΓ\ff) of distinct input patterns f and f in F
changes in the mean through the random net 37(0, L) with arbitrarily small devia-
tions (if n taken large) as follows: σλ+1=l/4:{l— (1— 4^)2r+1}, O^Λ^Z,— 1, where σQ=σ,
and we have <7£— »l/4 as L-^oo, the limit not depending on the choice of f and f.

How the i. s-area will be changed for various r may be seen by Fig. 3 below.

7. A note on one-to-one correspondence between pattern spaces.

We remark here the obvious fact that there exists one-to-one correspondence
between the input space F and the output pattern space GL of the layer J7z, The
random net 37(0, L), as was noted in section 1, may be considered as a mapping
φ: F-^GL It is our requirement for the random net system that this φ should be
one-to-one in order to ascertain the optimal a posteriori probability method for
recognizing patterns.

Take arbitrary distinct patterns / and /' in F, then <τ(/n//)^l/2-l/w<l/2.
The corresponding patterns gL, g'L in GL cannot be identical, i.e. cannot be σ(gLngfL)
=1/2, by lemma 2. Hence φ is one-to-one with arbitrarily high probability in the
sense that, if n and L are taken large, the "variance problem" encountered in
sections 5 and 6 will be solved and σL will be sufficiently near 1/4 even if σ(fΓ\f)

LEMMA 3. The input pattern space F and the corresponding pattern space GL
can be made one-to-one with arbitrarily high probability if n and L are taken large.

8. Statistical independence evaluation.

We shall show in this section that, when a category is given, then the
components constituting patterns in GL become mutually independent if n and L
are taken large. Since the argument, however, is almost same as that given in [1],
we shall only outline the main points without a detailed proof.

Suppose that an arbitrary category is given, i.e. a probability distribution
PnG&n={P%\P%\ —,P?>} is given on the input pattern space F. The net symbol
32(0, L), in this section, will also be meant the set of all possible random nets con-
structible between £§ and £L. The set 32(0, L) is called the net space, which has
a natural probability measure induced by the random connection operation. Then
the product space F®32(0, L) has the product probability measure of two measures:
Pn on F and the above measure on 32(0, L). Thus the output value #(=0,1) of
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any basic organ in £L is a random variable defined on this product space.
Now take 5 (2^s^NL) basic organs from £L, and denote their output random

variables by #ι,#2, •••,#«• We denote, furthermore, by E the expectation over the
pattern space F for a fixed net, and by Q that over the net space 37(0, L) for a
fixed pattern in F. Then we can prove that

δ[\ Uis,l.,s

where

and

By the result of lemma 2 we have rapid convergences: σM,L— >l/4, σm,L— >l/4,
when L becomes large, and by the assumption on the pattern space F (see section
2), we have also a rapid convergence ζn-^0, when w becomes large. Thus
β[\U%,....(n,D\]->0, Λ-KX>, L-oo.

Now the measure Pw defines a joint probability distribution pn,L(xι=ει, •••, #s=εs),
βi=0, 1 and s-th product distribution ^l,)i(a?i=ei)---/>?)

)

i(a?8=ee), et=0, 1. Denote by
φn,L(tι, ,t8), ψn,L(tι, " ,t8) the s-dίmensίonal characteristic functions for these two
distributions, respectively. Then we can show that

for arbitrary but fixed bounded domain \ti\-\ ----- \-\ts\^T, where

= max

Since αw,L— ̂ 0 as w, L-^oo, we have

which is valid for arbitrary 5 and arbitrary Pw in

LEMMA 4. F6>r βf ^^w category the output component signals constituting
output patterns in GL become mutually independent as n and L are taken large.

We may summarize all the preceding results in
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THEOREM. The random net with basic organs each realizing a parity function
Φzr+it if n the number of input points and L the number of layers are taken large,
becomes pattern recognizable in the sense of section 1.

9. On number of basic organs.

Since we in a first step like the present study are mainly concerned with an
approximate size of the random net, we shall calculate very rough number of basic
organs needed in the net.

From the results obtained so far, it is now easy to see an approximate relation
among three variables, n, r, and L, in the pattern recognizable random net. Suppose

^l/2—h2/n for any pairs f^f in F, and put h=mm{h1,h2}. Then
From the recursion formula for i.s-area in section 9, we have 1—4^+1

-(l-4(7,)2r+1. Hence τ,+1-τf+1, τλ = l-4σλ. Put r0 = 1 - 4<r0 = 1 - 4A/w, then

TL=Γ(2r+ι>£^-4ΛC2r+i)£/nβ Assume here that h is of order such that 0-4Λ«0, which
is quite plausible when n is large. For the random net to become pattern recognizable
in the sense of the Theorem given earlier, it is, therefore, sufficient (at least
practically) to take (2ι+ΐ)L/n=l. Hence

log n
L~ log(2r+l)

On the other hand it might be possible to take n=Nι= ~=NL if n is suf-
ficiently large. But in practical situations it seems, perhaps, to be reasonable to
take cn=Nι= ~=NL, where c is greater than 1 but not necessary large, since

in lemma 1.
If we admit the above estimation, then the number of basic organs may be

approximately cnLttcnlognllog(2r+Ί.)=cnlog(2r+ι )n. As was noted in sections,
the number of threshold elements (or formal neurons) needed to realize a basic
organ may be of order c'log(2r+l), Kc'<2. Then the total number of threshold
elements in the random net is approximately of order

c"n log n,

where c" is, for example, !<<;"< 10. It is interesting to note that this number does
not depend on r and L.

For instance take ^=2xl03, r=7 (see Fig. 3), and c"=5, then L=3, c'Ήlogn
«105. If n=W, L=4 and

10. Random net as a lossless channel.

We conclude the present study with one remark.
The random net 37(0, L) may be regarded as an information transmitting

channel with sending signal space F and the receiving signal space GL This
channel characterized by φ: F^GL has been assumed in the present work to be
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deterministic. But there certainly exists the possibility that the channel will be
noisy, due to, for example, malfunctioning of basic organs contained in the net.
In such a situation, errors in recognition might become not to be neglected.
There arises, therefore, the reliability problem in this sense. On one hand even in
the case that ψ is probabilistic, if the channel is lossless, then the recognition
ability is never weakened [1]. Thus the reliability guaranteeing the losslessness
might be one of the basic problems in the pattern recognition by random net.

The author is very much indebted to Prof. K. Kunisawa in preparing this
paper.
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