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HOMOGENEQOUS CONTACT MANIFOLDS AND
ALMOST FINSLER MANIFOLDS

By KEnTARO YANO AND Yosio Muto

§1. Introduction.

The study of geometrical properties of spaces admitting homogeneous contact
transformations was started by Doyle [6], Eisenhart [7, 8], Hosokawa [11], Knebelman
[8], Muto [13, 14] and Yano [14, 22]. Eisenhart and Knebelman [8] introduced the
notion of contact frames which are now called the first contact frames, and Doyle
[6] and Muto [13] introduced independently the notion of the second contact frames.
The theory of contact frames was developed in a more systematic way by Yano
and Davies [20] on the basis of the theory of distributions [17], [18].

On the other hand Boothby and Wang [1] and Gray [9] threw light upon
geometrical properties of spaces admitting contact transformations by introducing
the notion of contact structures. Guided by this notion and the paper of Yano
and Davies [20] the present authors studied a manifold which admits a structure
called the homogeneous contact structure and at the same time an almost product
structure and showed that these structures induce contact frames [22].

There are some close relations between spaces with contact frames and Finsler
spaces as shown by Muto and Yano [14] and Yano and Davies [20]. The main
purpose of the present paper is to study these relations in a more systematic way
using the notions of homogeneous contact structure and of almost product structure.

An analytical definition of homogeneous contact transformations is the follow-
ing [7].

Let z* and p; (&, 4, 4, ---=1, ---, #) be 2n independent variables and %", p; another
set of 2n variables. A change of variables from (x, p) to (%, p), where

jh:f"h(xly Tty xn;ph “‘,pn),

§i=ﬁi(x1’ “tty xn;pla "‘,Pn)
are 2n differentiable functions, is called a homogeneous contact transformation if
we have pdii=pdr* and the Jacobian does not vanish. In this definition we

assume that the point (x%, -+, 2% p1, =+, Pn) is in some suitable domain of the 2#x-
dimensional number space.

Geometrically, one can interprete homogeneous contact transformations in two
ways.

One of these is the following [16].

A homogeneous contact transformation is a transformation on the cotangent
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HOMOGENEOUS CONTACT MANIFOLDS AND ALMOST FINSLER MANIFOLDS 17

bundle T*(M) over an n-dimensional differentiable manifold M which is not bundle
preserving. Let P be a point of M. If we take a coordinate neighborhood of P, P
is denoted by local coordinates &* (4, 4,7, ---=1, -+, #). An element of TF is denoted
by & (h*, i*, 7%, ---=n-+1, ---, 2u) in the natural frame. Let H be a transformation
which takes an element A of T*(M) into an element A of T*(M). Let = be the
projection of the cotangent bundle: 7T*(M)—M. If we take coordinate neigh-
borhoods U and V respectively of #A and nHA, A and HA are denoted by
(&, -+, &™ &, .- £™) and (&, .-, EM &7, ..., E™) respectively. H is called a homogeneous
contact transformation if H is a diffeomorphic transformation of 7*(M) and the
functions &MY, .-, ™ £V, -oo) E™), EWY(EY, or, E™; £V, v ™) satisty Ei'dEi=€idgi. H does
not in general preserve the bundle structure of T*(M).

The other way of interpreting homogeneous contact transformations is the
following. We consider a 2x-dimensional differentiable manifold which is covered
by a set of coordinate neighborhoods in such a way that for any two coordinate
neighborhoods U, U’ satisfying the condition UNU’x¢ the transformation of
coordinates (£, -, 6% &Y, +r, E")—(EY, +-, £V €7, oo, €77) satisfies §i'dEi=&MdgY.  In
this interpretation a homogeneous contact transformation appears as a coordinate
transformation.

Homogeneous contact transformations are intimately related to a set of trans-
formations called contact transformations. A geometrical interpretation of contact
transformations was done by Boothby and Wang [1] and Gray [9] and the notion
of contact structure was introduced. Hence it is natural to take homogeneous
contact transformations as coordinate transformations and introduce an object
which might be called a homogeneous contact structure. This was done in [20].
A homogeneous contact structure is a global 1-form  such that w20 and
(do)**0 throughout the given 2xu-dimensional manifold M. In [20] the notion of
contact frames is also discussed. Some of the results obtained in [20] which we
use in the present paper are summarized in §2.

A Finsler space [4, 15] is a differentiable manifold M of dimension # in which
the length of a smooth curve is given by

s:St P, o™ oty oyt =02

bo dt

where F(x,y) is a homogeneous function of degree one with respect to ¥, ---, ¥"
F must satisfy some additional conditions.

Fruitful studies of Finsler spaces from a point of view of geometry of connec-
tions have been made since the notion of elements of support was introduced by
Cartan [4]. An element of support is a set (P, Y) where P is a point of M and
Y an element of Tp(M). Thus a (p, q)-tensor field of a Finsler space is a dif-
ferentiable map ¢ of T(M) into the (p, g)-tensor bundle T%M) over M such that
(p(P, Y))=P and ¢P, 1Y)=2%(P, Y) where = is the projection T(M)—M and k
is an integer. This implies that a Finsler space whose base manifold is M is the
bundle space 7'(M) in which some special structure is assumed.

A necessary and sufficient condition for the tangent bundle 7'(}/) endowed
with a structure F to he a Finsler space in the sense of Cartan [4, 15] was
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obtained by Yano and Davies [21].

Let T#(M) be the dual space of Tp(M). T*(M)=UpT¥M) is the cotangent
bundle. The structure in 7*(M) which is induced from F is denoted by F*.
Assuming the structure F* in T*(M) we get a space which is almost the same
as a Cartan space [3]. Since we can always return to the original tangent bundle
with the structure F and the correspondence between 7'(M) with F and T*(M)
with F* is such that the structure of the one determines that of the other, we
can call the space T*(M) with F* a Finsler space in the extended sense.

Now let us turn our attention to homogeneous contact manifolds, namely,
manifolds with homogeneous contact structure. We consider a homogeneous
contact manifold with two complementary distributions and introduce a metric
tensor and an affine connection. Since this affine connection is not the Riemannian
connection induced by the metric tensor, we rather call the tensor an almost
metric tensor. If such structures satisfy a set of conditions we say that the
manifold is an almost Finsler manifold. This manifold is characterized by the
fact that it becomes a Finsler manifold if one distribution ppideB=0——is
completely integrable.

§ 2. Even-dimensional contact manifold.

Let M be a 2n-dimensional connected manifold of class C*. It is called an
even-dimensional contact manifold if there exists a global differentiable one-form
o satisfying

2.1 0x0, (dw)"x0

throughout the manifold M, where the expression (dw)” means the exterior product
doAN---ANdw with n factors. The one-form o is called a homogeneous contact
structure.

Let M be an even-dimensional contact manifold. Taking an open covering
{Uy; 2€4} of M where U, is a coordinate neighborhood with local coordinates &4
(A=1, --+, 2n), we can write

2. 2) w=1y4d&A.
Then we get det (fz4)x0, where
2. 3) SfBa=08Y4—04Yn (0p=0/0£B).

According to Cartan [2, 5] there exists a covering by local coordinate systems
such that o can be written in the form

249 o=§"dg"+ - +§"dE",

hence?

1) Indices run as follows: A, B,C,D=L1,---,2n; h, i, j, k=1, ---, n; h*, i*, j*, E¥=1% ..., n*
=n+1,---,22. We use summation convention in the usual way and moreover 1n the
following way :

Z iEnhidér= Si‘dé'z'
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w=E§"d¢gi.
This admits us to put
(2.5) =",  yu=0.

Such local coordinates &, -.--,&% &Y, ..., &"™ will be called contact coordinates.
We use only such coordinates in the sequel. Thus we have

(2. 6) f1i=0,  fm=0}  fin=—0%  fpus=0.

Let U and U’ be coordinate neighborhoods and &4 and &4’ be the corresponding
contact coordinates respectively. If UNU’ is non-empty, we have a coordinate
transformation between &4 and &4, which must satisfy

Eidei=£""dgi’,
Thus the coordinate transformations are homogeneous contact transformations.
An even-dimensional contact manifold M is said to have a contact almost
product structure if there exist in M globally two differentiable simple #-forms &

and @* which are defined only up to non-vanishing scalar multiples and have the
following properties. @& and &* satisfy

d*NGx0, G* Nox0
and, when &* is expressed locally in the form
0G*F =0 A+ ANo™,
where i are »n differentiable one-forms, then there exist locally #» differentiable
one-forms ¢ satisfying
ad=w'N- No"

and

do=wo"" Nor.

The main result of our previous paper [22] can be stated in the following
form.

THEOREM A. Let M be an even-dimensional contact manifold with a contact
almost product structure (&, @*). Then M has an open covering {U;; 2€4} such
that in each coordinate neighborhood U, there exist some local bases @, wi* of
@, @* having the form

wi:d@;_{_”ihwh‘ ]]ih_:]]ht’
2.7
(Di"—:dfi‘—['ihdfh Fz‘h=FM-

I';n is the first contact frame and II** is the second contact frame.

In the sequel we use only local bases w?, wt* and contact coordinates &4 satisfy-
ing (2.7). Such local coordinates are called canonical contact coordinates.

The structure (&, &*) is equivalent to a pair of distributions &, Q, where @
is determined by =0 and (Q is determined by w*=0.
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Let P be a (1, 1)-tensor field defined by
pr=0t—Iyll*™,  pM*=(F—Iall")I 'k,
ot =T, Dot =1y,

2. 8)

and let @ be the tensor field Q=FE—P where E is the unit (1, 1)-tensor field.
Then P and @ are projection operators satisfying

P+Q=1, P?*=P, @Q°=Q, PQ=QP=0,
HP=PH=P, HQ=QH=-Q, H*=I,

where [ is the identity operator and H is defined by H=P—Q. H is an almost
product structure. The components ¢gz4 of @ are given by

g"=1ull*,  q""=—Tn+all* 'k,
2.9 ) '
Qi*hz—“nlhy @i =0y — "% gy,
Any vector field of M is projected into ¢ by P and into Q by Q.

§3. Holonomic components and non-holonomic components.

Hitherto we used only natural frames attached to coordinate systems to
represent a tensor by its components. Since we have projection operators, we can
derive from a natural frame {04} a frame {D,} which fits to the distributions ¢
and Q. This frame is composed of the vectors

Di=0;+1"in0ns,
Dp=0s—I""D,,

hence we have

3. 1) D =Y 4503, 04=2Z48Dp,

if we put
Y,h=0%, i =1sn,

3.2) ) )
EJ":-——H”", Y“h*zaiil_]]zk[vkh,

Zr=05y—I'wll*, ZM=—TI"i,
=11, =5,

3.3

If a contravariant vector has components #4 and U4 with respect to the
frames {04} and {D,4} respectively, then we have

U4=Zg"u>, ud=YgAUZ.

ut and U4 will be called respectively the holonomic components and the non-
holonomic components of the vector under consideration. Similarly, we say that
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a tensor, for example, a (1, 1)-tensor has holonomic components #z4 and non-
holonomic components T34 if

Tp4=YsPZc4t1°, tpd=2Z" YA Tr.

In the sequel the kernel letters of holonomic components will be small letters
and the kernel letters of non-holonomic components will be capital letters.

The non-holonomic components P4, @z* of the projection tensors P, @ are of
the form

g 0 0 0
B9 PBA:[ ] QBAz[ }
0 0 0 ax

Hence a vector field / whose components L** satisfy L*=0 belongs to the distribu-
tion ¢ and a vector field m whose components M?" satisfy M"»=0 belongs to the
distribution Q.

The non-holonomic components Fz4 of the fundamental 2-form dw satisfy

(3' 5) FihZFi‘h*ZO; Fi‘hz“Fih*:(;ih,y

hence we have fps=Fga4.

§4. Almost metric tensor and almost complex structure in an even-dimen-
sional contact manifold.

Let us quote here the following proposition proved by Hatakeyama [10] and
Lichnerowicz [12] independently.

ProrosiTiON 4.1. Let M be a 2un-dimensional differentiable manifold which
admits globally a skew symmetric tensor field ¢pa whose rank is 2n at every point
of M. Then M admits globally a pair of symmetric tensor fields ggpa, g4 satisfy-
ing gpcg®i=0% and such that ¢pcg® is an almost complex structure.

In our case the even-dimensional contact manifold M admits the skew-sym-
metric tensor field fzs whose components are given by (2. 6). Thus M admits a
symmetric tensor field g84 such that det(¢4)>0 and

4.1 FBL0 f oxg®4=—05.
(4. 1) is equivalent to
gi‘kgk‘h_ gi*lc*gkh — _5111’
giRghHh — gtk gk =),

gi‘kgk‘h‘_ gi*k‘gkh‘_: O.

On the other hand the system of equations gpeg®4=04 is equivalent to
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Gixg**+gireg® " =08,
Gk g+ Giareg® " =0,
Girg® - girsg®™* =0,
g™+ groreg® ™ =0},
From the two sets of equations written above we get

o 1%
gin=g"", Gine=—g"",

4. 2)

. )
Gin=—g"", Gisne=g"".

Let us call a differentiable symmetric tensor field gs4 such that det(gz4)x0 an
almost metric tensor field. Then we have

PROPOSITION 4. 2. Let M be an even-dimensional contact manifold with homo-
geneous contact structure o and let fpa be defined by

do= %fBAdSB/\dSA.
Then a necessary and sufficient condition for fpeg®4=fs4 to be an almost complex
structure is that the almost metric tensor gpa satisfy
Jirgvne—GirsGins=0%,
4. 3) GinGins—JirsGins=0,
9irGirn—Jidin=0

in a contact coordinate system and gB4 is defined by 9pcg®4=04. Then gP4 satisfies
(4.1) and the structure (fz4, gsa) is an almost Hermitian structure if gpa defines a
Riemannian metric.

It is well known that a homogeneous contact transformation &4—&4’ satisfies
the equations [7, 8, 20]

B e
o0& o&v
This shows that & and &* are homogeneous functions in &% namely, in
gr .., ™, of degree 0 and 1 respectively. This also proves that a contravariant
vector whose components are (0,---,0; &¥,---,£™) in the coordinates {&4} has
components (0, ---, 0; £, .-+, &™) in the coordinates {£4'}.

& 0, ¢

=gn,

DerFiNITION. We call the vector field p4 defined by
pr=0, pM=&
the natural vector field of M.

Let us assume that the Lie derivative of the projection tensor pp4 with respect
to the natural vector field p4 vanishes, that is,



HOMOGENEOUS CONTACT MANIFOLDS AND ALMOST FINSLER MANIFOLDS 23

$°00ppt—PrC0cp*+potdsp°=0.
From (2.8) we immediately find that [7%, I';zII** and (%—Iyl1")[ "y, are
homogeneous functions of degree —1,0 and 1 respectively of &*. If we use the
symbol
def
a¥f = 90,1,
we immediately get
d*[Tin 4 [T =(),
(@* g~ i) 1 =0,
@ — I udI"*)(@* [ "n~1I"x1) =0,
from which we can easily deduce that I';, are homogeneous of degree 1 in &*.
We further assume that any tensor field which appears in our manifold bear-
ing some geometrical meaning must be such that its Lie derivative with respect

to the natural vector field p4 is equal to some multiple of the tensor field itself.
For example, if f¢34 is a tensor field, it must satisfy

PPOptopt—1tesPoppA-+tppi0c pP+tepd0ppP =71 tcp .

Thus we get
Aty =rt;t, ¥ty =(r+1)t ",
d*t it = —1t" A¥tj =7t
d*t = —1t ;" d*tj =7t

d*t jupt = (r— 2)t juis", d¥tjup =(r—1)t ;0"

and this shows that the components #;" are homogeneous of degree 7, the com-
ponents #;"" are homogeneous of degree r+1, and so on respectively in &*.

Thus g and gsz» must be homogeneous of degree ¢g—1 and g—2 respectively
in &* if g;, are homogeneous of degree g. But, since we have (4. 3), g:» must be
homogeneous of degree 0. Thus we have

PRrROPOSITION 4. 3. The components of the almost metric tensor field stated in
Proposition 4.2 are homogeneous in £* of degree

gins +1, gomnt 0, Girnre —1,

4. 4) . ‘ _
g* —1, gt 0, gt +1.

§5. Fundamental function and fundamental hypersurfaces.

DErFINITION. Let ¢ be an arbitrary positive constant. A hypersurface determined
by the equation

gpapBpi=c,
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namely,
g =c
is called a fundamental hypersurface.
DeriniTION. The function
F=gingient
is called the fundamental function.
The fundamental function is homogeneous of degree 1 in &*.

AssumpTION A. We assume that the even-dimensional contact manifold M
satisfies the condition that the vector field p4 is orthogonal to the fundamental
hypersurfaces.

Let #4 be an arbitrary vector field which is tangent to the fundamental
hypersurfaces. Then #4 satisfies

Qi U+ (0,6 ™E EN 42070 " =0,
On the other hand, as the vector fields p4 and #4 are mutually orthogonal, we
have
GinE™ U+ g ensE™ " =0.

Hence we get, by eliminating #4,

(0;9"M)EV"EM = 2gne™",

(gMETEH 2970 =g,
where we have used (4. 2).

From the last equation we get 2=1 as we have £79,.g"*=—¢%",
Thus we have proved

ProposiTION 5. 1. A necessary and sufficient condition in order that the natural
vector field p4 be parallel to the normal vector field of the fundamental hypersurfaces
is that the following equations be satisfied,

6.1 (009" )06 = — gInEM",
6.2 010187 = —qI e,
This condition is also equivalent to

(5.3) 0;F=g,4p4,  0pF=gjap?
or

5. 4) 04F=gpap®.

§6. Orthogonality of distributions ¢ and Q.

In the sequel we consider an even-dimensional contact manifold M which
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admits a contact almost product structure H=P— and assume A. We put
further assumptions one by one.

AssumpTIiON B. We assume that the even-dimensional contact manifold M
with the contact almost product structure H=P—Q introduced in §2 admits a
pair of symmetric tensor fields ¢p4 and #24 such that

6.1) tpetC4=0%
and
(6 2) fB(;'tOA :PBA—QBA.

If we write the condition (6. 2) in non-holonomic components, we have
E 0
F BC TOA: ’
0 —F

where Fp4 satisfies (3.5). Hence we have

Tit= Ti*n*=(),
(6. 3) ] )
Tz"h= Tth”z "'5ih
and
Tin= Ti*h':Oy
(6. 4)

Ton=Tins=—0in.
AssuMpTION C. The tensor fields #z4, t34 and ¢B4 satisfy
(6. 5) $BA= gBDyACE
In non-holonomic components we can write (6. 5) in the form
TBA=GBDGAC T,
where 734 and T4 are given by (6. 3) and (6. 4) respectively. Hence we have
_Gikth‘__Gik‘th=0’
_Gi'kGhIc*_Gi*k"th: —'61277,-

On the other hand, as the non-holonomic components Fgs and the holonomic
components fps satisfy the same equations (2.6) and (3.5), the non-holonomic
components GB4 satisfy

Gi‘ka*h — Gi‘k'Gkh —_—— 5“”

Gichk*h —_ Gik*Gkh — 0.
Hence we get

GikGr*h=(), GG =()

and consequently
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(6. 6) G =0.

This implies that the distributions ¢ and Q are mutually orthogonal.
Conversely, if we have (6. 6), we get (6. 5).
Thus we have proved

ProposiTION 6.1. Let M be an even-dimensional contact manifold with «
contact almost product structure and an almost metric tensor field gpa Such that
fBcg%4 is an almost complex structure. Let us assume that there exists in M
globally a pair of symmetric tensor fields tga and 184 such that fpet®4 is the
tensor field of the contact almost product structure psi—qpt and that tpct4=04.
Then tpa and tB4 satisfy tpa=9sp9act® if and only if the distributions P and Q
are orthogonal.

It will be immediately seen that

6.7 Gin=G"", Gin=G™,

§7. Affine connection.

In the sequel we assume A, B and C. Hence M satisfies all conditions stated

in Proposition 6. 1.
Let us assume that M admits an affine connection 7. We denote its com-
ponents by 7¢4s or I'¢4p, I'¢4s being non-holonomic components.

AssumpTiON D. The affine connection 7 is such that the distributions ¢ and
Q are parallel with respect to 7.
This means that, if /4 is a vector field satisfying ¢z4/2=0, then /4 satisfies
qB4(0clB+7ycPxi®)=0
and also that, if m4 is a vector field satisfying pz4m®=0, then m4 satisfies
D84 0cmB+ycBrm®)=0.
As we have pzlqet=0, ¢s’be?=0 and ps*+gqsi=0d4, the above condition is
equivalent to
@1 Veppt=0,  Veqp*=0,

where F¢ is the symbol of covariant differentiation with respect to 7.
The relation between the holonomic components y¢4z and the non-holonomic
components I'¢4p being

(7.2) 1¢48=(00Z8") Yut+ I LB x Y g4 Zo"Z %,
Veppt=0 can be written in the form
VCPBA EDgPBA—’(—FgAKPBK'—*FcKBPKA =0.

Ps4 is given by (3.4) and we have I'¢*,=0. From F¢gs*=0 we get similarly
Fehit= .
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Thus we have

ProposiTION 7.1. Let M be an even-dimensional contact manifold with a
contact almost product structure ppi—qpt and let there be given an affine con-
nection in M. A mecessary and sufficient condition for the distributions P and Q
to be parallel is that the non-holonomic components of the affine connection satisfy

(7. 3) I'¢",=0, I'¢"=0.

We have assumed that this condition is satisfied. We put further assumptions.
Let us denote the torsion tensor of the connection by sgz4 or Sgz4.

AssumpTiON E. The components of the torsion tensor in each of the distribu-
tions @ and Q vanish, namely,

7. 4) SLePpctpsXput=0, ste"qetqe¥qut=0.

This assumption bears quite natural meaning.
As we have

@.5) Spx— % [— (D Vi — D ViB) 24 I'H g — 1]

from (7. 2), we can write (7. 4) in the form
Dy YA—=D, YY) Za"—1'x" i+ I =0,
(Dkt thA - Djx YkrA)ZAh.—‘ Fknh‘jr‘l‘ l’j‘h“k' = 0,

or
(7. 6) It j—T =Dl ji— D)™,
7.7 IV =T 3 o= — I Dyl 14 110D 3oy,

AssumpTIiON F. The skew-symmetric tensor field fp4 is covariantly constant
with respect to the connection 7.

We immediately find that this is equivalent to
(7.8 '+ T6"m=0
for we have already I'¢"",=I¢"»=0.

AssumpTIiON G. The affine connection 7 is conformal with respect to the
tensor field gp4 in each of the distributions ¢ and Q.

This means that the following equations hold.
Velgrrps™pa™)=acorx pa™p ¥,

Vo(91x g8 q4%)=bog Lrqs q¥.

(7.9

As ppt and g4 are covariantly constant and Gi.=0, (7. 9) is equivalent to
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D(]Gih_FOkinh'_FC’thik,=AOGih,
DoGiste—I' %" 5sGrons—I'¢* 14Gios =BG e

As we have GuGrenv=0% and I'g";+I'¢",.=0, we get from (7. 10)

(7.11) Be=—Ae.

We write here the non-holonomic components of the torsion tensor for later use.

(7.12) Sj*=0,

(7. 10)

(7.13) Sjil*=— %(Djl—'ih—Dinh)y
7. 14) Sp = 5 (DT T DI LG Ty,
* 1 j 1
(7.15) Speit'=— 5 Dpl i +11MD )+ ?Fz’jhy
(7. 16) Syt %[D]JY“‘—D,-JYJ"‘—|—HU(Djstk)H"’L—-IIf‘(Di*Pm)H’”‘],
7. 17) Sy =0.

Here, (7.12) and (7. 17) are equations (7.4) themselves. Others are obtained from
(7. 5) by using (3. 2), (3.3), (7. 3) and (7. 8).

§8. Almost Finsler manifold.
Let P4 be the non-holonomic components of the natural vector field.

AssumpTiON H. P4 satisfy
8.1) Pr=0,
8.2 Sep4P¢=0.
(8. 1) is equivalent to
173" =0

and means that the natural vector field lies in the distribution Q. As (8.2) is
equivalent to

SG'BAPC = 0)

its geometrical implication will be immediate.
Substituting (7. 14), (7. 15), (7. 16) and P7*'=¢&’* into (8. 2) we get

8.3) I'prig?*=0,
8.4 Iipn=T187,

for we have
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Sj‘Djt:Ej‘ajt,
(DdIMEs* = — [ Dy = — 19T,
{;j'a o JTih = — Hih’
Ef’aj‘l"'mzl}h.

The relation S;.."&é7*=0 is identically satisfied.
Now the non-holonomic components Fz4 of the almost complex structure are

(8. 5) Fih:(), F@h”: *Gihy Fi‘h___Gih’ Fi,h':o

because of (6.6). Let U4 be a contravariant vector and [J4 the vector U4=Fz4U B,
then

Or=Grue,  v=—GuU

The vectors U4 and U/4 span a holomorphic plane. If U4 is a vector of @ (Q),
then U4 is a vector of Q ().

AssumpTiON I. The vector sep4(vCiB—u9®) is a vector of Q when #4 and
v4 are vectors of P.

This is equivalent to

(8. 6) Sjk*hFik*—Sikahij'=0
or to
8.7 Sj"G**— S G* =0

by virtue of (8.5).
Assumption I is also equivalent to

AssumpTION I’. The vector sgp4(vCuB—oC%B) is a vector of Q when one of
the vectors #, v is a vector of @ and the other is a vector of Q.

AssumpTiON J. The scalar field F satisfies
Ve(F'grxpptpa®)=0.
This is equivalent to
ac=0¢ log I
or to
Ae¢=F-'D¢F

by virtue of (7.9).
Let us write

Pa=09BaD?, P,=GpaP%.
Then, since we have P"=0 and P"=£&"", we get Ps=G4£*, and hence

P,=0, Pi=Gr*er,
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Using (5. 4) we also obtain
DsF=Py, DuF=0,F.»
Thus we get
8. 8) A,=0, Ajo=(GHevrer)1Giigs,

We collect here all that we have assumed.

M is an even-dimensional contact manifold with contact almost product struc-
ture and almost metric structure gps. These are such that M becomes an almost
complex manifold and that the distributions ¢ and @ induced by the almost
product structure are orthogonal with respect to the almost metric. Such struc-
tures are homogeneous in the sense that the contact frames I';; and II** are
homogeneous functions of degree 1 and —1 respectively in &%, ---,&" and that the
components ¢gz4 of the almost metric structure are such that g, gin, 9ine are
homogeneous of degree 1, 0, —1 respectively in &Y, ---,&*. The natural vector field
p4 is parallel to the normal vector field of the fundamental hypersurfaces which
are defined by F=constant where F=gp4pPp4. The affine connection 7 defined
over M is such that the distributions ¢ and Q are parallel with respect to 7 and
the skew symmetric tensor field of the homogeneous contact structure is covariantly
constant with respect to y. 7 is symmetric and conformal in each of the distribu-
tions ¢ and Q. The natural vector field belongs to the distribution Q. Let S
denote the torsion tensor of the connection y so that S(x, v)=-—S(v, ) for any
vectors # and ». Then S(p, v) vanishes identically when p is the natural vector
field. At any point P of M let # be a vector of ¢ and v a vector of Q. Let &
and 7 be the vectors obtained from # and v by the operation of the almost com-
plex structure of M respectively. Then S(, v)—S(#, ?) is a vector of Q. The
almost metric structure induced in @ becomes a metric structure when multiplied
by F-L.

A manifold which satisfies all conditions stated above will be called an almost
Finsler manifold.

§9. The connection in an almost Finsler manifold.

In an almost Finsler manifold I'j;, II** and Gj; are related in a complicated
way. If we put

9.1 Tat= %(Djl“ik——Diij)H kh,
9.2) T b = o (— Dy L IP*Del's),
then we can write some of the coefficients I'¢45 in the following form

1
9.3 I'jt= 5 G"(D;Gu+DiGj—DiG i)+ X " — X % — 2i,

1) Notice that this i1s obtained from the assumption that the distributions P and Q
are mutually orthogonal,



HOMOGENEOUS CONTACT MANIFOLDS AND ALMOST FINSLER MANIFOLDS 31

1 LA
Pﬁh*i' = —2— Gh' 4 { (Dj»-f- A]a)Gitlv_l— (Dit"‘Aiv)Gjalt— (Dp—l-Ap)Gj'i:}

9. 4)
4 20 e = 2 P = D,

where
2= 2 i* GG, =2 j'l»k'GPmthi'-

Hence, if we consider that I'j;, II** and Gj; are given, we can determine all co-
efficients I'¢45, using (7. 3) and (7. 8). Substituting the coefficients thus obtained
into (8.3), (8.4) and (8.7) we get conditions which must be satisfied by I'j;, IT?*
and Gﬂ,

Let us first consider the condition (8. 3).

From (9. 4) we get

* % ]- *7% % *
[’]*h pf] = “Z“Ghl {EJ Diji.Lr*-fj (DigG/:zr—DL»Gj.i')}

i * i%* * Al 1 i
+ Z]with*sj b thh itE] - q',th j‘SJ + ‘é‘ 5}'1.
But we have
gthithvla = Di#(Ej'GJ*lv) - Gj#ltD'L'tEj‘

=D (E° G —GIWds—IT"T "))

=D 0nF— G4 ITH] ;G

= (04— I1%0s— IT" I 1505) 01 F — G- ITH ", ,GT

== ital,tF— Hisal‘asF'— HitrtsastapF'— Gi[‘l’]]itFLjGjl.
As we have P;=0, that is, D;F=0, we can substitute

0:F=—T"y0uF
into the above formula and get
E7* DinG join =040 F+ IT500(I"5:00eF) — I Iy 00.05e ' — GO+ IT T ;G7*
=030+ IT%50;. 100 F'— G- ITH ;G
hence
E(DysGropv— DG join)
=150 sj— I10;.I"s)0 o+ [Ty GL — IT" TG,

On the other hand we have
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(IIDpls;— I8 DI s 5)05.F
={I1%(0p.— 110, — II" I 10pe) s j— IT**(03n— IT%0, — II*" I",01s) [ s )0 1o F°
=IT%0u1"sj— 11V, 1 55)0 jo ' — (LT ¥ I1Y0, I s j— 1B 1196, 5)0 ;o F°
—IISY T 0D s j— TSI T 1000 57)0 1 F
=150y 1 sj— 11%0;.05;)0 ju F°
— (TSI — TS TN 015500 F ) — 150140, F+ 11y 0rel 550 7}
=(I1%0p1"sj— 11%0;.15;)0 ju F°
— TN — TS T — 0,05 F+ 50 j(I 1707 F )+ 1150 50y F }
=101 s;—I1"0:.1"5;)0,.F.
Thus we get
ET (DG jun— DG i) = T3 GV—ITHT 1 G342 3 347" P
Using this identity and
e =— % I,

P = — % II'* [ G 1nG*,
we get
Fjvh‘icéj*=0.

Thus (8. 3) is automatically satisfied and the only essential conditions are (8. 4)
and (8. 7).

Let us write (8. 7) in another form.

We get from (8.7)

[— (Dl )T — Dy IT 7 — [T [1701 I 1) G fonie
—[— (D i) [T — DI — [T 170, 1) Giojo = I 3o¥ 3G rsge— 0¥ 24G ooy
and, as we have
D Gins— DisG g1
=1 350G eI 35 10Grona— A 5 Giane— B 1o Grorge— [id®” oG oot AinG yons
=15 1. Grvie— L1 0 Grgage - (I 587 50— 3% 12) Gioone— A 3G+ AsG jans,y
we obtain
D,.Gisne— DG june
=[—(D L) [T — Dy I1 3% — [T [T, I ]G onis
—[—(Daul )T — Dy I — [ [T I 1] G e e
+(—I1%D Iy A I Diu 1) G ot — A G inns = ArsG g

9.5)
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We write here the non-holonomic components of the covariant derivative of
the natural vector field. These are

V;Ph=D;Ph+T PP =0,

V o Ph=D;Ph+ I P =0,

V;P# =D, PV 4T P¥ =T jy—I 3£ =0
and

V3o PW =D PR [0 P =3 — IT5T g4 T
But we have
[ 1= (I Ty ) E°
=23y =TT* .

Hence V;.P"=4] and we get
. 6) VsP4=Qz".

§10. The case in which the distribution Q is completely integrable.

Let us examine the case in which the distribution Q is completely integrable.
Q is represented by w*=0, and, since the system w*=0 is equivalent to the
system ppidéB=0, this case is characterized by

(10. 1) qctqe®(0rgx* —0xqr*)=0,
which is equivalent to
QT YrrQpS Ys*(0rgx?—0xq14) =0

because of gpi=Z5TQRr5Ys4. As we have Qp4=0%04, we get

Y2 Yu®(0rgxt —0xq14) =0,
and hence

Y;EDpgrA— Yl DjgrA=0.
After some straightforward calculation we find that the latter is equivalent to
(10. 2) DIt — DT A-(ITD jo I y— 11D i) [T =00,

Let us assume that det(é?—I7*I";) does not vanish. Then we can show
that there exists a homogeneous contact transformation (£, £%)—(¢% {*) such that
the manifolds {*=c" are the integral manifolds of Q in the local sense.

When Q is completely integrable, the system of partial differential equations

10. 3) q540.4=0
is completely integrable. Since (10. 3) is equivalent to
(10. 4) — [TMeQ4 % 4~ (0 — IT" T 1) 0 =0,
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where det(6?—I1*[";)>=0 by assumption, 9.{ are determined when d;{ are given.
Hence there exists a set of # solutions {* of (10. 3) such that

a(Cl» ) Cn)

10. 5 0.

{10.5) 3@, -, &

Besides, since we have IT¢"¢"*=(, we find that these solutions satisfy
£9,L"=0,

which proves that ¢* are homogeneous functions of degree 0 in £~
Let us determine ¢* from the equations

(10. 6) Lo Lh=£v
Transvecting {** to the equations

10.7) — [T+ (0 — TP 1) 0L =0,

we get

(Bi—ﬂilfzk)(éh‘aksch)=0,
hence
Ch*aktch=0
by virtue of det(d;—-I7%1")=0.
This proves that, if we take {* satisfying (10.5) and (10.7) and determine ¢*

by (10. 6), then (&, &")—(¢% &) is a homogeneous contact transformation.
We can also prove that {* satisfy

(10 8) det(azc"—l— ['makvch)ﬂFO

As we are dealing with local properties, we can restrict our consideration to
that at each point P of M.

Let the rank of IT** be n—m at P and let us use indices as follows:
a, p=1, -, m; k, A=m-+1,---,m. We choose {* in such a way that
(10. 9) 1%, =0

and ¢* that (10. 5) holds.
Suppose  satisfy

(10. 10) Th(0L" +1"x02:L") =0.
Transvecting such ; to (10. 7) we obtain
(10. 11) Tnai- h=0

and hence MT%7,0,{*=0 by (10.7). By virtue of (10.9) we get II**r.0,{*=0. But,
since ¢" satisfy (10.5), =, must vanish and we get

(10. 12) 70" =0

from (10.11). Thus (10. 10) takes the form 7,0,{"=0 from which we get z,=0
because of (10.5). Hence r, must vanish. This proves (10. 8).
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Thus (% ¢*) is a canonical contact coordinate system [8, 13, 14, 22].

The distribution Q is expressed by d¢*=0 in this coordinate system (£, ).
Hence the second contact frame must vanish.

As det(0?—I1™1I";;)=0 is equivalent to @ AdE” A--- AdE™ 0, we obtain the follow-
ing

ProprosiTiON 10. 1. Let M be an even-dimensional contact manifold admitting
a contact almost product structure such that & ANdEVA--- AdE™=x0. Let the distribu-
tion (Q be completely integrable. Then there exists a set of canonical contact
coordinate systems covering M such that the second contact frame vanishes
identically.

We shall use in the sequel only such contact coordinate systems and denote
them by (&, £%).

§11. Finsler metric.

Let M be a space in which we can use canonical contact coordinate systems
such that I7*»=0. Any transformation (&, £¥)—(&%, £') between such coordinate
systems takes the form

5"':5”'(51, R En); Eh“=5h“($1y ) gn; 51" ) Sm)’

for &* must satisfy° ai.éh'=Q.
Let us define Gy, and G** by

GaihZ(lesv Y 1Gin=F "G,
(11 1) o i
Git=(GrererGin=FGin,
These are homogeneous functions of degree 0 in &*. We then define #* by

(11. 2) P=Gingt,  E=Gipdn.

xn

We can consider F=G%&Ver as a function of &, ---,&" %!, .-, 2" In general,
when we regard a function ¢(§, &*) of the independent variables &, ---, &% &, .-, &™
as a function of the new independent variables &, .-, &% #!, ..., %", we shall use
the letters x* for &. Thus we can write

(11.3) P&, &)=F(x, &)=~ Guditr=Girgier,
We continue to use the symbols 9; and 9; for
0 0
I=g W=

with the understanding that the independent variables are £, ---, &% &%, ..., ™. When
we use zl,--,x" #.,--,%" as independent variables, we do not use abbreviated
notations but write
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0 0

oxv’ ozt ”

As the function F' plays an important role, it might be better to use the symbol
F;. for P;., and hence

11. 4) =FFp.
We also have
(11. 5) Bgn = F2=Gpdin,
(11. 4) is equivalent to
O F2=2%",
On the other hand, from (11.5) we get
* i ai’z
Ol 2=z - e
Thus we get
Xh i* a'%t
(11. 6) =g
As we can write (11.4) in the form
g OF 0%
T o ogn’
we obtain
oF
R
11.7 g =F PrTR
where we assume
oL

This assumption is equivalent to

det (8,«%.(%— F2>> =0
by virtue of (11.4).

We can prove that 8x(FG’) is symmetric with respect to the indices i, j, &.
As we have I1?"=0, we get from (9. 5)

055G —0;,GI = — A .G+ AuGI®,
and hence
(11.9) 0i(FG7)—0(FG*)=0
because of Ajp=F"'Fj.
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Differentiating #*=FG*"&" and taking account of (11.9) we get
ox"  (FG™)

e = agr ¢ TO"
_AEGM)
— FGit

since FG'* are homogeneous of degree 0 in &% Thus we obtain

ox"

—in
(11. 10) aev G,
& o
(11.11) 'aéy =Gin.
Differentiating (11. 7) with respect to #' and using (11.11) we get
1 o2F? o
(11. 12) o odiggn o

which shows that Gom(x, #) determine a Finsler metric for the element of support
(z, Z).

§12. Finsler space.

We have shown that, in the manifold M considered in § 11, the metric Gin is
a Finsler metric for the element of support (z, ) in the local sense. Now let us
assume that the set of the integral manifolds of the distribution Q determines a
fibering of the manifold M such that M becomes a bundle space of a fibre bundle
M={M, X, n, F} with the following properties. The base space X is an #z-dimen-
sional manifold whose points are expressed locally by (&, ---, &™), the projection =
is given by = (&%, -, &% &Y, .-, E™)—(&, -, &™) and the fibre F is R"—{0}. But
this does not mean that F is a Euclidean space with a point 0 excluded. We only
assume that &%, ---,&™ can take any set of real numbers except &V'=-.-=£"=0.

Then there exists a Finsler space M*={M*, X, n*, F*, Coi} which is related to
I in the following way.

Let = be a point of X and let F, and F% be the fibres over x respectively of
M and M*. A point of F; is denoted by (&%, ---, &% &Y, .-+, &™) and a point of F%
by (€%, -+, &% &%, -, &%) or (xl, -, % &Y.+, 4" where z*=¢£w. =* is the projection
a* (&, e, &% &L e, B — (2t -+, 2™) and G means the Finsler metric. There exists
a diffeomorphic mapping ¢ of I onto M* such that ¢: (&, -, &% &Y, -, &™)
(gL, ee, £ £, .-, ™) is given by (11. 2).

Let us consider in IM* the Finsler connection due to E. Cartan and study its
relation to the connection y in M.

The coefficients of the Cartan connection will be denoted by I7;* and C;*, so
that if we use the symbol



38 KENTARO YANO AND YOSIO MUTO

B\ _ 1 a.(3Gu | 3Ga aéﬂ>
a2.D {ji}_ZG (31;’ + ox? oxt )’
we have

h oG oG*
12. 2) Hj’z={]. Z}—C; iy +Cuj 5 P FGr™,
thi= FthCjik
a(F—lqu;)
. Rl N\ LIV
=g ron
12.3)
%FG"’“&,.(F lGﬂ)
1
=5 0(F'Gy),
where
1( 2
h— Xt ks
12. 4) G 5 {t s}wx.

If ©* denotes the covariant differential in the sense of Cartan, we have
(12. 5) D*Uh=dU"+Cj"(z, #)Utdd+ 11 j*i(z, %) Utdz’.

Now let us consider the tangent bundle 7'(P) over M. For each point PelM,
To(P) is the vector space spanned by the tangent vectors of ¢ at P. Thus, if
le To(P), we have

=L  "=IyLF,
namely, L»=0, where L4 are the non-holonomic components. As @ is parallel

with respect to the affine connection y of M, we can construct from the dif-
ferentials dL4 and d&4 the classical absolute differential ®L4 by

DILA=dLA+T'¢4pw’L?,
where
DLr=dL "+ I ¢"aCL?, DL =0
by virtue of L*»*=0 and (7. 3). We further obtain
DLr=dLr+I" eI LT 3i(dET — T jrdE*) L
or
DLr=dLr (' — T jul )AL T i dET L

On the other hand we can extend the mapping ¢ to the vector fields in the
following sense.
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If 7 is a tangent vector of @ at PeM, then ¢/ is the vector U at pPeM*
whose components U" are given by U"*=L" where L4 are the non-holonomic
components of /.

Such a mapping induces a connection in M* which can be expressed in the
form of absolute differential

@Uh=dUh+thid$jU"“l"[’j:hi(dfj*—rjkdék)Ui

(12. 6)
=dU (" — 1 il ) deT U T 3 2dE7 U
If we get
12.7) DUI=D*U"

by substituting (11. 2) into (12.5), then we can say that we could obtain a Finsler
manifold with the Cartan connection from an almost Finsler manifold whose dis-
tribution @ is completely integrable.

The remaining part of the paper is devoted to the proof of (12. 7).

As we have
oxr . . 0%t
Xh_— 7 Jeit Ibadigp /)
d " d&v + o5 dg,
dxh= dt",
where
oLt . QS&_" _ O(FGMgv)
et =FG™, P
(12. 7) is equivalent to
12. 8 FCG¥=T",h,
Lk £k*
(12. 9) 11 JECED e,

08’

§13. Proof of (12. 7).

Proof of (12.8) is quite simple.
As we have II**=0, we get },.""=0 in (9. 4). Hence we have

Fjah'*i* - _;"‘ Gh[(&j#Gu + aithl e al*Gjt)

+ '%F—le(Fj*G“—I-Fi*Gﬂ—FL*Gﬁ)

= %F TGu{d(FGH) +0:(FGH ~0u(FG).



40 KENTARO YANO AND YOSIO MUTO

As 0,(FGY) is symmetric in i, j, [, we get

(13. 1) Iy = %F Grdi(FGTY),
(13. 2) ['ph,,= bl —é—F'lGizah*(FGﬂ).

On the other hand we get from (12. 3)

FC,,"iG"f= %am(F—lei)Fij

= %F—lGuam(FGﬂ),

which proves (12. 8).
(12.9) is equivalent to
Lt—TI il

[ R 0GE . AGE o
—{ e S + curggm PO S

13. 3)

Let us define []hl] by

13. 4) | j" | =5 60:GutaGa-aGs

and prove
h i h _l me&t*, . Sh
=] -5 emaemeacae
13.5) + Gim@:G™E"0,.G ;G
—GimdsG™E0,G ;;G),
9
P
Since we have

where d;=

agv o3t 3 dat
oF o " oxt o8

and x?=¢&% we get from (11. 2)

N
o7~ F T Cn ogt

=—F"19;F¢¥ — G, GYE™,
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hence
(13. 6) _aag‘cf — 0 (F10,FE 4 Gund G0,
and
oF 1 p MEELN (£
py =6jF—(F aJFS +GlmajG {: )G S
13.7)

=—3,F.

Substituting these identities into (12. 1) and calculating we get (13. 5).
In order to prove (13.3) we must first calculate G*.
From (13.5) we get

o= e

+ —;‘F B0,G™ G i e G

+ —i—F 2GMo,F.

Substituting (13. 4) into this formula and using the properties of G;; given by (11. 9),
we get

Gh=— .% F2(0,Gr)Gregres

— —;— GYE¥0 . FFyt- —12—F 2G5

and
h 1 2 hS(ItkEs* ]‘ 2 hk
3k~G =—“—2‘F agG G f '——Z—F a;G Fs*
+ FFunG"oF - %ank‘G’wasF
(13. 8) 1 1
+ 5 F2G"0sF e — 5 FG¥*9;FFy.
1 hk
- _Z—F F 3¢asF G .

In this calculation and also in the following calculation we often use the fact
that 0x(FG7%) is symmetric in i, 7, £ and also the identities

0;,Git=F-H(FuGit — F G -8,.Gin,
a]tGitSt*: _F_letFi,*.
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From (12. 3) and (13. 8) we obtain after straightforward calculation

0G* G
—cp, =3 + Cuj ax*_mFGhm
1 g " F "
= SFE Fh. [— 5 0,G¥E5 G+ 737Gj,;Fn+§’ 0;F
+ %G; G 0G0 F+ % G0 ijt{:t{I
1 F . F i
~3F oGy ['— 5 9;G1gs" — - G1:0,G¥Fput-EGY0sF

L Gudn G+ 5 GlSGikasG“e"]

1 1
+ =G (arFG”‘— 7F,L.Fs.asF>

+ % GipdpGii [— —g— 0,G1EG™ — *5— 0,G" Fy.

+ Fp.G¥0,F+- g GV F - —;; G“‘asG’”E‘*}

Another term in the right hand side of (13. 3) is obtained in the form

o B 1 AP Gr)

g e e

1 *
- 7}?— (FmGki—FamGki)aijlsl .
From these formulas we find that the right hand side of (13. 3) is equal to

[jh z] + %[8 iG™ESG G is0uG™
+0;,G™E GG 501G
+G¥0,G™E G rudnG i

Fpa [ F

. F
SFr | T 5 G Gt 5 8 Gl

+
" F
+ &99;F+ 'E—Gz G101 G Y0 F

4+ % GikajG“E"]
13.9
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F

L oG, [— %aiclses'— L i GoE

2F

+&7GH9,F+ —5- G G0, F

5 GHGun.e" |

L

T

Gji (&F Th _;;:‘Fh*FstasF>

1 F o F
+ 2 Gusdy G [— S 0,GHE G £, G,

+ FpGY0F+ -;iamG”asF
5 GG |

1 .
— 5 PG F nGr)d,GHE".

Let us calculate the left hand side of (13. 3).
As we have I17t=0, [';*, is symmetric with respect to 4,7 as we can see from
(7. 6). As we have A,=0 also, we get from (9. 3)

I'jt= -;—G"l(DjGu-l-DiGjr—Dszi),
hence
Pjhz: []h l] + ’;—Ghl(FJmam*Gil+Fzmam*Gjl_['lmam'Gji)-
As we have ['yFn=—0d;F, we get
I'y=1" """
_[~ h*___l " RLERA(Y,
- [] Z:IE 2 ] ]mam*G E (le

_ %r,mam,chlsh*(; it %ampam,G »

= h*__ L iy = Fed* _l_ .
[]."’Z. Is 57 OsFEFOFET) + 5 0nFonGys
hence

1
I'y= —2-(31Gu+3szc—3chi)F i
(13.10)
1 " w1
- W (ajF v +a;FEj )+ E'atFapGji,.
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Thus we get the complete expression of I';%;,

h
B, —
it [1‘ z']

- %am*GhlGu[% OG- ImGis— G yu) P

1 . 1
— g OsFE™ +0uFE") + Ea,Faqu]

(3. 11) —%awc;mc;ﬁ[%<aicmt+amGic—a,Gm)Fv

1 ) 1
- —2—}'7,— (athm +amF§i )‘I‘ "2— 35F6‘;*Gim]
1 1
—Lomag ﬁ[g OnGrt-HComi— .G Fin

1 * * 1
— 5 OFE™+0,,PE")+ gatpat.c;m,].
We get from (13. 2)
1
—['k*hz: '—27‘- Guakt(FGh'l),

and hence

— Il =

1 1
SF G0mr(FG™) [—2- 0/Gms+0mGi—0G ym) Fer

1 . " 1
— i O™ 10, FE) -+ a,Fa,*Gm].

Using these expressions we can prove (13. 3) by straightforward calculation.
Thus we have

TueoREM 13.1. Let M be an almost Finsler manifold such that the distvibu-
tion Q is completely integrable. Let the integral manifolds of (Q be such that
there exists a fibve bundle WM={M, X, r, F'}. Then there exists a Finsler space
M= {M*, X, n*, F*, é}, where the mapping ¢. M—I* is given by (11. 2) and the
connection induced from y by ¢ is the Cartan connection.
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