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HOMOGENEOUS CONTACT MANIFOLDS AND
ALMOST FINSLER MANIFOLDS

BY KENTARO YANO AND Yosio Muτό

§ 1. Introduction.

The study of geometrical properties of spaces admitting homogeneous contact
transformations was started by Doyle [6], Eisenhart [7, 8], Hosokawa [11], Knebelman
[8], Muto [13,14] and Yano [14, 22]. Eisenhart and Knebelman [8] introduced the
notion of contact frames which are now called the first contact frames, and Doyle
[6] and Muto [13] introduced independently the notion of the second contact frames.
The theory of contact frames was developed in a more systematic way by Yano
and Davies [20] on the basis of the theory of distributions [17], [18].

On the other hand Boothby and Wang [1] and Gray [9] threw light upon
geometrical properties of spaces admitting contact transformations by introducing
the notion of contact structures. Guided by this notion and the paper of Yano
and Davies [20] the present authors studied a manifold which admits a structure
called the homogeneous contact structure and at the same time an almost product
structure and showed that these structures induce contact frames [22].

There are some close relations between spaces with contact frames and Finsler
spaces as shown by Muto and Yano [14] and Yano and Davies [20]. The main
purpose of the present paper is to study these relations in a more systematic way
using the notions of homogeneous contact structure and of almost product structure.

An analytical definition of homogeneous contact transformations is the follow-
ing [7].

Let xh and pi (h, i, j, •••=!,•••, ri) be 2n independent variables and xh, pi another
set of 2n variables. A change of variables from (x, p) to (x, p), where

xh

(1.1)
Pί=Pi(χ\ •••, xn'9pι, --,Pn)

are 2n differentiate functions, is called a homogeneous contact transformation if
we have pidxi=pidx'>' and the Jacobian does not vanish. In this definition we
assume that the point (x1, •••,#*;/>!, ~,Pn) is in some suitable domain of the 2n-
dimensional number space.

Geometrically, one can interprete homogeneous contact transformations in two
ways.

One of these is the following [16].
A homogeneous contact transformation is a transformation on the cotangent
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bundle 7Ί*(M) over an ^-dimensional differentiable manifold M which is not bundle
preserving. Let P be a point of M. If we take a coordinate neighborhood of P, P
is denoted by local coordinates ξh (h,i,j, •••=!,•••,#). An element of T$ is denoted
by ξh*(h*> i*,j*, •••=«+!, •••, 2ri) in the natural frame. Let H be a transformation
which takes an element A of T*(M) into an element A of T*(M). Let π be the
projection of the cotangent bundle: Γ*(M)—>M If we take coordinate neigh-
borhoods U and V respectively of πA and πHA, A and HA are denoted by
(ξ\ ••-, £n; f1*, •••, £**) and (I1, •••, ξn] I1*, —, Γ*) respectively. H is called a homogeneous
contact transformation if H is a diffeomorphic transformation of T*(M) and the

functions £Λ(fS •••, Γ; f1*, •••, Γ*), £**(£*, -, Γ; f1+, -, Γ*) satisfy £*W£*=£*Wf*. F does
not in general preserve the bundle structure of 71*(M).

The other way of interpreting homogeneous contact transformations is the
following. We consider a 2^-dimensional differentiable manifold which is covered
by a set of coordinate neighborhoods in such a way that for any two coordinate
neighborhoods £7, Uf satisfying the condition UnU'^φ the transformation of
coordinates (f1, -,£n; ί1*, -,£**)-»(f1', -,£n/; f1*', -,£"") satisfies f<*<£*=f**Wf*'. In
this interpretation a homogeneous contact transformation appears as a coordinate
transformation.

Homogeneous contact transformations are intimately related to a set of trans-
formations called contact transformations. A geometrical interpretation of contact
transformations was done by Boothby and Wang [1] and Gray [9] and the notion
of contact structure was introduced. Hence it is natural to take homogeneous
contact transformations as coordinate transformations and introduce an object
which might be called a homogeneous contact structure. This was done in [20].
A homogeneous contact structure is a global 1-form ω such that ω^O and
(dω)n^Q throughout the given 2w-dimensional manifold M. In [20] the notion of
contact frames is also discussed. Some of the results obtained in [20] which we
use in the present paper are summarized in §2.

A Finsler space [4, 15] is a differentiable manifold M of dimension n in which
the length of a smooth curve is given by

5= ( F(x\ •••, xn\ y\ •••, yn)dt, yh=^j~ >
Jί0 at

where F(x, y) is a homogeneous function of degree one with respect to y1,--,yn.
F must satisfy some additional conditions.

Fruitful studies of Finsler spaces from a point of view of geometry of connec-
tions have been made since the notion of elements of support was introduced by
Cartan [4]. An element of support is a set (P, Y) where P is a point of M and
Y an element of 7V(M). Thus a (p, #)-tensor field of a Finsler space is a dif-
ferentiable map ψ of T(M) into the (p, #)-tensor bundle T\(M) over M such that
π(φ(P, Y))=P and φ(P, λT)=λ*φ(P, Y) where π is the projection Γ(M)-*Λf and k
is an integer. This implies that a Finsler space whose base manifold is M is the
bundle space T(M) in which some special structure is assumed.

A necessary and sufficient condition for the tangent bundle T(M) endowed
with a structure F to be a Finsler space in the sense of Cartan [4,15] was
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obtained by Yano and Davies [21].
Let TΪ(M) be the dual space of 7V(M). Γ*(M)= UpΓJ(M) is the cotangent

bundle. The structure in Γ*(M) which is induced from F is denoted by F*.
Assuming the structure F* in T*(M) we get a space which is almost the same
as a Cartan space [3]. Since we can always return to the original tangent bundle
with the structure F and the correspondence between T(M) with F and Γ*(M)
with F* is such that the structure of the one determines that of the other, we
can call the space jΓ*(M) with F* a Finsler space in the extended sense.

Now let us turn our attention to homogeneous contact manifolds, namely,
manifolds with homogeneous contact structure. We consider a homogeneous
contact manifold with two complementary distributions and introduce a metric
tensor and an affine connection. Since this affine connection is not the Riemannian
connection induced by the metric tensor, we rather call the tensor an almost
metric tensor. If such structures satisfy a set of conditions we say that the
manifold is an almost Finsler manifold. This manifold is characterized by the
fact that it becomes a Finsler manifold if one distribution - pB

AdξB=0 - is
completely integrable.

§ 2. Even-dimensional contact manifold.

Let M be a 2^-dimensional connected manifold of class C°°. It is called an
even-dimensional contact manifold if there exists a global differentiate one-form
ω satisfying

(2. 1) ω^O, (dω)n*Q

throughout the manifold M, where the expression (dώ)n means the exterior product
dω/\"-/\dω with n factors. The one-form ω is called a homogeneous contact
structure.

Let M" be an even-dimensional contact manifold. Taking an open covering
{ί/i; λzΛ] of M where U* is a coordinate neighborhood with local coordinates ξA

(A=l, - ,2ri), we can write

(2. 2) ω=yAdξA.

Then we get det(/W)^0, where

(2. 3) fBA

According to Cartan [2, 5] there exists a covering by local coordinate systems
such that ω can be written in the form

(2.4) ω^W+ +ΓW,

hence1)

1) Indices run as follows: At B,C,D=l, •••, 2n] h, ij, k=l, ••-, n; h*, ί*, j*f #*=!*, •••, n*
—tt-j-1,..., 2n. We use summation convention in the usual way and moreover in the
following way:
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This admits us to put

(2. 5) yi=ξf, yί*=Q.

Such local coordinates f1, ••-,£"; ί1*, •••,£"* will be called contact coordinates.
We use only such coordinates in the sequel. Thus we have

(2.6) />,=<), Λn=#, fji*=-δj, fj*=0.

Let £7 and Ur be coordinate neighborhoods and ζA and f^4' be the corresponding
contact coordinates respectively. If UΓ\U' is non-empty, we have a coordinate
transformation between ξA and ξA>, which must satisfy

Thus the coordinate transformations are homogeneous contact transformations.
An even-dimensional contact manifold M is said to have a contact almost

product structure if there exist in M globally two differentiate simple ^-forms ώ
and <3* which are defined only up to non-vanishing scalar multiples and have the
following properties, ώ and α>* satisfy

and, when ώ* is expressed locally in the form

where ω^ are n differentiate one-forms, then there exist locally n differentiate
one-forms ω% satisfying

and

The main result of our previous paper [22] can be stated in the following
form.

THEOREM A. Let M be an even-dimensional contact manifold with a contact
almost product structure (ώ, ώ*). Then M has an open covering [Uϊ, λeΛ} such
that in each coordinate neighborhood Uλ there exist some local bases α>s ω1* of
ώ, <w* having the form

ωi = dζi + Πihωh* Πίh = ΠM,
(2.7)

ωf=dξί*-Γihdξh Γίh=Γhϊ.

Γih is the first contact frame and Πίh is the second contact frame.
In the sequel we use only local bases ω*, ω^ and contact coordinates ξA satisfy-

ing (2. 7). Such local coordinates are called canonical contact coordinates.
The structure (ώ, ώ*) is equivalent to a pair of distributions <P, £2, where 3?

is determined by α>**=0 and Q is determined by ω*=0.
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Let P be a (1, l)-tensor field defined by

Pih=Si-ΓikΠ*\ AΛ*=(«-/V/l*)Γfcft,
(2.8)

PJ=W\ Pi*h*=Π^Γkh,

and let Q be the tensor field Q=E—P where E is the unit (1, l)-tensor field.
Then P and Q are projection operators satisfying

HP=PH=P, HQ=QH=-Q, H*=I,

where / is the identity operator and H is defined by H=P—Q. H is an almost
product structure. The components qβA of Q are given by

(2.9)
q.h=_Πihι q^^δί-Π^Γ^.

Any vector field of M is projected into £P by P and into Q by Q.

§ 3. Holonomic components and non-holonomic components.

Hitherto we used only natural frames attached to coordinate systems to
represent a tensor by its components. Since we have projection operators, we can
derive from a natural frame {3A} a frame {DA} which fits to the distributions &
and Q. This frame is composed of the vectors

hence we have

(3. 1) DA = YABdB, 3 A = ZA

BDB,

if we put

Y^h = ̂ h

i, Yih* = Γih,

(3.2)
γ^ = -W\ F^ =δί

Zi*=SΪ-ΓikΠ*\ ZF= -Γih,
(3.3)

y h—ΓTih y. h* — Si
Z^i* — LI , Z^* — Oft.

If a contravariant vector has components UA and UA with respect to the
frames {dA} and {DA} respectively, then we have

UA=ZBAUB, uA=YB

AUB.

UA and UA will be called respectively the holonomic components and the non-
holonomic components of the vector under consideration. Similarly, we say that



HOMOGENEOUS CONTACT MANIFOLDS AND ALMOST FINSLER MANIFOLDS 21

a tensor, for example, a (1, l)-tensor has holonomic components tB

A and non-
holonomic components TB

A if

7V= YB

DZaAtD°9 tB

A=ZB

DYcATD

c.

In the sequel the kernel letters of holonomic components will be small letters
and the kernel letters of non-holonomic components will be capital letters.

The non-holonomic components PB

A, QB

A of the projection tensors P, Q are of
the form

Γ $ o 1 r o o
(3.4) PB*=\ , QBA=\

L o o J L o #:

Hence a vector field / whose components Lh* satisfy LΛ*=0 belongs to the distribu-
tion <P and a vector field m whose components MΛ satisfy Mh=0 belongs to the
distribution Q.

The non-holonomic components FBA of the fundamental 2-form dω satisfy

(3.5) /r<A=Fi^=0, F*,Λ= -Fίh*=δίh,

hence we have fBA=FBA.

§ 4. Almost metric tensor and almost complex structure in an even-dimen-
sional contact manifold.

Let us quote here the following proposition proved by Hatakeyama [10] and
Lichnerowicz [12] independently.

PROPOSITION 4. 1. Let M be a 2n-dimensional differentiate manifold which
admits globally a skew symmetric tensor field φBA whose rank is 2n at every point
of M. Then M admits globally a pair of symmetric tensor fields gBA, gBA satisfy-
ing gBcQGA=δA3 and such that φBCg

GA is an almost complex structure.

In our case the even-dimensional contact manifold M admits the skew-sym-
metric tensor field fBA whose components are given by (2. 6). Thus M admits a
symmetric tensor field gBA such that άet(gBA)^0 and

(4.1)

(4. 1) is equivalent to

On the other hand the system of equations gBcgCA=δB is equivalent to
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From the two sets of equations written above we get

giΛ=0**Λ', Qih ^-g*"',
(4.2)

Vi*h=—glh*, gί*h*=gτh

Let us call a differentiate symmetric tensor field QBA such that det^^^O an
almost metric tensor field. Then we have

PROPOSITION 4. 2. L££ M be an even-dimensional contact manifold with homo-
geneous contact structure ω and let fBA be defined by

Then a necessary and sufficient condition for fBcg°A=fBA to be an almost complex
structure is that the almost metric tensor QBA satisfy

(4. 3)

in a contact coordinate system and QEA is defined by QBcgCA=dA$. Then gBA satisfies
(4. 1) and the structure (fB

A, QBA) is an almost Hermitian structure if QBA defines a
Riemannian metric.

It is well known that a homogeneous contact transformation ξA— >ζA> satisfies
the equations [7, 8, 20]

This shows that ξh> and ξh*' are homogeneous functions in ξ*9 namely, in
ί1*, ~',ζn*, of degree 0 and 1 respectively. This also proves that a contravariant
vector whose components are (0, •••,(); ί1*, -~,ζn*) in the coordinates {ξA} has
components (0, « ,0; ί1*', •• ,ίrι*') in the coordinates {ζA>}.

DEFINITION. We call the vector field pA defined by

the natural vector field of M

Let us assume that the Lie derivative of the projection tensor pB

A with respect
to the natural vector field pA vanishes, that is,
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From (2. 8) we immediately find that /7*Λ, ΓίkΠ
kh and (%—ΓuΠlκ)Γkh are

homogeneous functions of degree — 1, 0 and 1 respectively of f*. If we use the
symbol

we immediately get

from which we can easily deduce that Γih are homogeneous of degree 1 in f*.
We further assume that any tensor field which appears in our manifold bear-

ing some geometrical meaning must be such that its Lie derivative with respect
to the natural vector field pA is equal to some multiple of the tensor field itself.
For example, if tcsA is a tensor field, it must satisfy

Bp
D = r tCB

A.

Thus we get

i.h = (r-

and this shows that the components tjih are homogeneous of degree r, the com-
ponents tnh* are homogeneous of degree r+1, and so on respectively in £*.

Thus Qi*h and g^h* must be homogeneous of degree #— 1 and q—2 respectively
in ξ* if Qih are homogeneous of degree q. But, since we have (4. 3), g^h must be
homogeneous of degree 0. Thus we have

PROPOSITION 4. 3. The components of the almost metric tensor field stated in
Proposition 4. 2 are homogeneous in ζ * of degree

Qih. +1, Qi*h. 0, gw: —1,
(4.4)

gih. __lf gn. 0> gt k . +L

§ 5. Fundamental function and fundamental hypersurf aces.

DEFINITION. Let c be an arbitrary positive constant. A hypersurface determined
by the equation
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namely,

gihξi ξh =c

is called a fundamental hypersurface.

DEFINITION. The function

F=g<Λ£**ίΛ*

is called the fundamental function.

The fundamental function is homogeneous of degree 1 in <?*.

ASSUMPTION A. We assume that the even-dimensional contact manifold M
satisfies the condition that the vector field pA is orthogonal to the fundamental
hypersurfaces.

Let UA be an arbitrary vector field which is tangent to the fundamental
hypersurfaces. Then UA satisfies

On the other hand, as the vector fields PA and UA are mutually orthogonal, we
have

Hence we get, by eliminating UA,

where we have used (4. 2).
From the last equation we get Λ=l as we have ξj*dj*gί}ί=—gίh.
Thus we have proved

PROPOSITION 5. 1. A necessary and sufficient condition in order that the natural
vector field pA be parallel to the normal vector field of the fundamental hypersurfaces
is that the following equations be satisfied,

(5.1) W

(5.2) djgtoξrξ

This condition is also equivalent to

(5. 3) 3jF= gjAp
A,

or

(5. 4) 3AF=gBAp
B.

§6. Orthogonality of distributions £P and Q.

In the sequel we consider an even-dimensional contact manifold M which
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admits a contact almost product structure H=P—Q and assume A. We put
further assumptions one by one.

ASSUMPTION B. We assume that the even-dimensional contact manifold M
with the contact almost product structure H=P—Q introduced in § 2 admits a
pair of symmetric tensor fields tBA and tBA such that

(6. 1) tBCt
GA=δi

and

(6.2) fBGt
CA=pB

A-qB

A.

If we write the condition (6. 2) in non-holonomic components, we have

[E 0
FBGT

GA=\
I 0 -E

where FBA satisfies (3. 5). Hence we have

(6.3)

and

(6.4) *Λ~ ^*~J

ASSUMPTION C. The tensor fields tBA, t
BA and gBA satisfy

(6. 5) tBA=gBDgACtDC.

In non-holonomic components we can write (6. 5) in the form

TBA=GBDGAGTDC,

where TBA and TEA are given by (6. 3) and (6. 4) respectively. Hence we have

* —Gik*Ghk=Q,

On the other hand, as the non-holonomic components FBA and the holonomic
components fBA satisfy the same equations (2. 6) and (3. 5), the non-holonomic
components GBA satisfy

G<**G**Λ-G****G*Λ= -δ<Λ,

G**G**Λ—G***G*Λ=0.

Hence we get

G**G**Λ=0, G***G**Λ=0

and consequently
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(β. 6) G**A=0.

This implies that the distributions £P and Q are mutually orthogonal.
Conversely, if we have (6. 6), we get (6. 5).
Thus we have proved

PROPOSITION 6. 1. Let M be an even-dimensional contact manifold with a
contact almost product structure and an almost metric tensor field QBA such that
fBcQGA is an almost complex structure. Let us assume that there exists in M
globally a pair of symmetric tensor fields tBA and tBA such that fBctCA is the
tensor field of the contact almost product structure pB

A—qB

A and that tBct°A=δA

i.
Then ISA and tBA satisfy tBA=QBDQAcίDC if and only if the distributions Q and Q
are orthogonal

It will be immediately seen that

(6. 7) G,Λ=G*'Λ*, Gw=G*\

§7. Affine connection.

In the sequel we assume A, B and C. Hence M satisfies all conditions stated
in Proposition 6. 1.

Let us assume that M admits an affine connection γ. We denote its com-
ponents by γG

AB or ΓG

AB, ΓC

AB being non-holonomic components.

ASSUMPTION D. The affine connection γ is such that the distributions & and
Q are parallel with respect to γ.

This means that, if 1A is a vector field satisfying qB

AlB=Q, then 1A satisfies

and also that, if mA is a vector field satisfying pB

AmB=Q, then mA satisfies

PBA (dcmB + γcBκmκ) = 0.

As we have pB

GqcA=Q, qBGPcA=Q and pB

A-\-qB

A=δA

}, the above condition is
equivalent to

(7. 1) ?oPBA=0, PcqBA=Q,

where VG is the symbol of covariant differentiation with respect to γ.
The relation between the holonomic components γG

AB and the non-holonomic
components ΓC

AB being

(7. 2) γcAB=(dcZ

=Q can be written in the form

PB

A is given by (3. 4) and we have rc

h\=Q- From VaqB

A=Q we get similarly
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Thus we have

PROPOSITION 7. 1. Let M be an even-dimensional contact manifold with a
contact almost product structure pB

A—qBA and let there be given an affine con-
nection in M. A necessary and sufficient condition for the distributions £P and Q
to be parallel is that the non-holonomic components of the affine connection satisfy

(7. 3) /V>\=0, ΓΛ =0.

We have assumed that this condition is satisfied. We put further assumptions.
Let us denote the torsion tensor of the connection by SCB

A or SCB
A.

ASSUMPTION E. The components of the torsion tensor in each of the distribu-
tions <P and Q vanish, namely,

(7. 4) sLK

HPcLpBKpHA=0, sLK

HqcLqBKqH

A=Q.

This assumption bears quite natural meaning.
As we have

(7. 5) SLK

H=~[-(DLYκB-DκYLB)ZB

H+rL

Hκ-rκHL}

from (7. 2), we can write (7. 4) in the form

or

(7. 6)

(7. 7) τvv-/y **= -ΠJlDk*rlh+π*lDj*rlh.

ASSUMPTION F. The skew-symmetric tensor field fBA is covariantly constant
with respect to the connection γ.

We immediately find that this is equivalent to

(7. 8)

for we have already

ASSUMPTION G. The affine connection γ is conformal with respect to the
tensor field gBA in each of the distributions <P and Q.

This means that the following equations hold.

(7.9)

As PBA and qB

A are covariantly constant and Ga*=0, (7. 9) is equivalent to
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DcGih—ΓclcίGich—Γc^hGik—AcGih,

DcGi*h*—Γck*i*Gk*h*—Γck*h*Gi*ic*—BcGi*h*.

As we have G«G*.Λ.=δϊ and ΓΛ+Γσ*V=0, we get from (7.10)

(7.11) Bc=-Ac.

We write here the non-holonomic components of the torsion tensor for later use.

(7.12) S/4*=0,

(7.13) S,***= - y

(7.14) Sy,i
Λ= - -ί

(7.15) S^*'= - -ί (DrΓto+ΠfiDiΓώ + ~ TV Λ,

(7.16) Sy^.Λ= -ί [DjMih^DiJI^+Πil(D^lt)Π

(7. 17) S^*Λ*=0.

Here, (7.12) and (7.17) are equations (7. 4) themselves. Others are obtained from
(7. 5) by using (3. 2), (3. 3), (7. 3) and (7. 8).

§ 8. Almost Finsler manifold.

Let PA be the non-holonomic components of the natural vector field.

ASSUMPTION H. PA satisfy

(8.1) Ph=Q,

(8.2) SoBAPG=Q.

(8.1) is equivalent to

77^=0

and means that the natural vector field lies in the distribution Q. As (8. 2) is
equivalent to

S0B
AfP = 0,

its geometrical implication will be immediate.
Substituting (7.14), (7.15), (7.16) and pr=ξ** into (8. 2) we get

(8.3) /W=0,

(8.4) Γih=Γi'hςr,

for we have
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The relation Sj*i*hξJ*=Q is identically satisfied.
Now the non-holonomic components FB

A of the almost complex structure are

(8.5) Fth=Q, Ff*=~Gih, Fi*h=Gίh, F,,Λ*=0

because of (6. 6). Let UA be a contravariant vector and 0A the vector UA=FB

AUB,
then

The vectors t/^ and £7^ span a holomorphic plane. If ί/4 is a vector of <P (β),
then UA is a vector of β

ASSUMPTION I. The vector sCB

A(vcuB—ucvB) is a vector of Q when ^ and
VA are vectors of £P.

This is equivalent to

(8. 6) SjuW-SitSFj**^

or to

(8.7) Sy**ΛG*t-SM

ΛG^=0

by virtue of (8. 5).
Assumption I is also equivalent to

ASSUMPTION F. The vector sCB

A(vcuB—vcuB) is a vector of Q when one of
the vectors u, v is a vector of £P and the other is a vector of β.

ASSUMPTION J. The scalar field F satisfies

This is equivalent to

ac=dG log F

or to

Ao=F-lD0F

by virtue of (7. 9).
Let us write

PA=QBAPB, PA=GBAP
B.

Then, since we have Ph=Q and Ph*=ξh*, we get PA=Gk^
k\ and hence
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Using (5. 4) we also obtain

DAF=PA, D»F=d»F»

Thus we get

(8. 8) A,=0, Ay.KG'Wr'O'ί**.

We collect here all that we have assumed.
M is an even-dimensional contact manifold with contact almost product struc-

ture and almost metric structure QBA These are such that M becomes an almost
complex manifold and that the distributions £P and Q induced by the almost
product structure are orthogonal with respect to the almost metric. Such struc-
tures are homogeneous in the sense that the contact frames Γ^ and Πίh are
homogeneous functions of degree 1 and —1 respectively in ί1*, --,ξn* and that the
components QEA of the almost metric structure are such that gih, gt*h, Qί*h* are
homogeneous of degree 1,0, —1 respectively in f1*, •• ,ί71*. The natural vector field
PA is parallel to the normal vector field of the fundamental hypersurfaces which
are defined by F= constant where F=gSApBPA> The affine connection γ defined
over M is such that the distributions <£> and Q are parallel with respect to γ and
the skew symmetric tensor field of the homogeneous contact structure is covariantly
constant with respect to γ. γ is symmetric and conformal in each of the distribu-
tions <P and Q. The natural vector field belongs to the distribution Q. Let S
denote the torsion tensor of the connection γ so that S(u,v)=—S(v,u) for any
vectors u and v. Then S(p, v) vanishes identically when p is the natural vector
field. At any point P of M let u be a vector of <P and v a vector of Q. Let u
and v be the vectors obtained from u and v by the operation of the almost com-
plex structure of M respectively. Then S(u, v)—S(u, v) is a vector of Q. The
almost metric structure induced in £P becomes a metric structure when multiplied
by F-1.

A manifold which satisfies all conditions stated above will be called an almost
Finsler manifold.

§ 9. The connection in an almost Finsler manifold.

In an almost Finsler manifold Γji, Πίh and G# are related in a complicated
way. If we put

(9. 1) Σjih = \

(9. 2)

then we can write some of the coefficients ΓCΛB in the following form

(9. 3) ΓA=

1) Notice that this is obtained from the assumption that the distributions & and Q
are mutually orthogonal.
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(9.4)

where

ΣΛ=

Hence, if we consider that Γjiy Πίh and G# are given, we can determine all co-
efficients ΓC

AB, using (7. 3) and (7. 8). Substituting the coefficients thus obtained
into (8. 3), (8. 4) and (8. 7) we get conditions which must be satisfied by Γjiy Πίh

and Gji.
Let us first consider the condition (8. 3).
From (9. 4) we get

^
+ Σ ̂ 'f- Σ^V^*- ΣΛ S' + «•

But we have

As we have Pί=0, that is, DiF=Q, we can substitute

a*F=-Γίί9ί*F

into the above formula and get

^^^^

hence

On the other hand we have
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(Π
is
Dι*Γ

SJ
 -n

ls
Di*r

s
j)dj*F

77̂
r
Â ^

Thus we get

ξ^\Di^ι

Using this identity and

Σj*h\*ξr= - ΠtkΓksGthG
s\

we get

/VV£>*=0.

Thus (8. 3) is automatically satisfied and the only essential conditions are (8. 4)
and (8. 7).

Let us write (8. 7) in another form.
We get from (8. 7)

and, as we have

jJc\*—ΓiFj*}Gk*h*—Aj*Gi*h*+

we obtain

(9.5)
k,j,
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We write here the non-holonomic components of the covariant derivative of
the natural vector field. These are

>**= 0,

and

But we have

Hence Pj*Ph*=δi and we get

(9. 6)

% 10. The case in which the distribution Q is completely integrable.

Let us examine the case in which the distribution Q is completely integrable.
Q is represented by ωl=Q, and, since the system ω*=0 is equivalent to the

system pB

AdξB=Q, this case is characterized by

(10. 1) qG

LqB

κ(dLqκA-dκqLA)=Q,

which is equivalent to

because of qBA—ZB

τQτsYsA As we have QBA= $•£$&, we get

Yj,
LYί

and hence

After some straightforward calculation we find that the latter is equivalent to

(10.2) Dj,Π
ih-

Let us assume that άet(δi—ΠhlΓu) does not vanish. Then we can show
that there exists a homogeneous contact transformation (f % ξί*)^"(ζi

f ζ**) such that
the manifolds ζh=ch are the integral manifolds of Q in the local sense.

When Q is completely integrable, the system of partial differential equations

(10. 3)

is completely integrable. Since (10. 3) is equivalent to

(10. 4)
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where άet(δ^—ΠhlΓu)^0 by assumption, d^ζ are determined when d^ζ are given.
Hence there exists a set of n solutions ζh of (10. 3) such that

d/ri ... rn\<10 5)

Besides, since we have Πίhξh*=Q, we find that these solutions satisfy

f**^ft=0,

which proves that ζΛ are homogeneous functions of degree 0 in ξ*.
Let us determine ζΛ* from the equations

(10. 6)

Transvecting ζh* to the equations

(10. 7)

we get

hence

by virtue of
This proves that, if we take ζh satisfying (10. 5) and (10. 7) and determine

by (10. 6), then (£*, £**)—*(£*» ζ**) is a homogeneous contact transformation.
We can also prove that ζh satisfy

(10.8)

As we are dealing with local properties, we can restrict our consideration to
that at each point P of M.

Let the rank of Πίh be n— m at P and let us use indices as follows:
α, j6=l, " ,m', K, λ=mJr'L, ~,n. We choose ζα in such a way that

(10. 9) Πίkdkζ
a=Q

and ζΛ that (10. 5) holds.
Suppose τh satisfy

(10. 10) rΛ(3iCΛ+Γ«9^Λ)=0.

Transvecting such τh to (10. 7) we obtain

(10. 11) r/A,ζΛ=0

and hence Πίkτhdkζ
h=Q by (10. 7). By virtue of (10. 9) we get Πίkτκdkζ

κ=Q. But,
since ζft satisfy (10. 5), τκ must vanish and we get

(10. 12) r.9<C=0

from (10. 11). Thus (10. 10) takes the form rβ9ίζ
βf=0 from which we get τα-0

because of (10. 5). Hence τh must vanish. This proves (10. 8).
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Thus (ζ% ζ**) is a canonical contact coordinate system [8, 13,14, 22].
The distribution Q is expressed by <tfζΛ=0 in this coordinate system (ζ% ζ**)

Hence the second contact frame must vanish.
As det(5J—ΠhlΓii)^Q is equivalent to ώΛ^Λ Λ^'^O, we obtain the follow-

ing

PROPOSITION 10.1. Let M be an even-dimensional contact manifold admitting
a contact almost product structure such that ώ/\dξl*Λ'-/\dξn*^Q. Let the distribu-
tion Q be completely integrable. Then there exists a set of canonical contact
coordinate systems covering M such that the second contact frame vanishes
identically.

We shall use in the sequel only such contact coordinate systems and denote
them by (ξ, £*).

§ 11. Finsler metric.

Let M" be a space in which we can use canonical contact coordinate systems
such that Πίh=Q. Any transformation (£*, £**)— »(£*', £**') between such coordinate
systems takes the form

for £Λ/ must satisfy 3ί*fΛ/=0.
Let us define Gίh and Gίh by

G<Λ=(Gl*fί f*0-1G4Λ

(11. 1)
Gih = (G»fz*f **)G<Λ =

These are homogeneous functions of degree 0 in f*. We then define χh by

(11. 2) 5Λ=G<Λf<φ, F-GίΛiΛ.

We can consider F=Glkξl*ξk as a function of f1,-,?"; ί1,-,^. In general,
when we regard a function φ(ξ, f*) of the independent variables f1, •• ,ίw; f1*, •• ,?n*
as a function of the new independent variables ί1,- ••,£"; 51, " ,ίw, we shall use
the letters x1 for f *. Thus we can write

(11. 3) F(ξ, ξ*)=

We continue to use the symbols d$ and 5^* for

with the understanding that the independent variables are f1, •••, ίw; ί1*, •••, ζn\ When
we use a?1, •••, j?w; ί1, " ,ίw as independent variables, we do not use abbreviated
notations but write
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d d

As the function F plays an important role, it might be better to use the symbol
Fi* for Pi*, and hence

(11.4) xh=FFh*.

We also have

(11. 5) xhξh*=F2

(11. 4) is equivalent to

dh*F2=2xh.

On the other hand, from (11. 5) we get

c

Thus we get

(11.6) ί^fi*!^..

As we can write (11. 4) in the form

*h_F 3F dfr

we obtain

where we assume

(11.8)

This assumption is equivalent to

by virtue of (11. 4).
We can prove that d^FG-7'*) is symmetric with respect to the indices i, j, k.
As we have Πίh=Q, we get from (9. 5)

and hence

(11. 9)

because of A^=
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Differentiating xh=FGihζ^ and taking account of (11. 9) we get

^_ W^dξr " dζi* * ̂

d(FGjfl)

since FGSh are homogeneous of degree 0 in £*. Thus we obtain

(HΊO) W'=&h>

d£h*
(11.11) i=G*

Differentiating (11. 7) with respect to & and using (11.11) we get

(11.12) — ~ *„.-*,, —Gih
2 oxzoxfl

which shows that G^fe x) determine a Finsler metric for the element of support
(a?, 5).

§ 12. Finsler space.

We have shown that, in the manifold M considered in § 11, the metric G^ is
a Finsler metric for the element of support (x, x) in the local sense. Now let us
assume that the set of the integral manifolds of the distribution Q determines a
fibering of the manifold M such that M becomes a bundle space of a fibre bundle
9ft ={M, X, 7r, F} with the following properties. The base space X is an ^-dimen-
sional manifold whose points are expressed locally by (f1, ••-,£*), the projection π
is given by π: (£V ,£n; f1*,-,fn*)-*(f1,-,fn) and the fibre F is Rn-{Q}. But
this does not mean that F is a Euclidean space with a point 0 excluded. We only
assume that ί1*, •••,?** can take any set of real numbers except f1*= =fn*=0.

Then there exists a Finsler space 9ft* ={M*, X, π*, F*, G} which is related to
9ft in the following way.

Let x be a point of X and let Fx and F$ be the fibres over x respectively of
9ft and 9ft*. A point of Fx is denoted by (ζ\ -,£n; f1*, -,£"*) and a point of F*
by (ί1, •••,£*; #S --,xn) or (α?1, ••-,#*; j?1, ••-,£*) where #*=£*. π* is the projection
π*: (a?1, ••-,#*; ί1, •• ,£n)-X#1, •••, α?Λ) and G means the Finsler metric. There exists
a diίfeomorphic mapping φ of 9ft onto 9ft* such that φ: (f1, — ,fn; f1*, —,£**)
-Kf1, " >Γ; ί1, •• ,ίw) is given by (11. 2).

Let us consider in 9ft* the Finsler connection due to E. Cartan and study its
relation to the connection γ in M.

The coefficients of the Cartan connection will be denoted by Πj\ and C/\ so
that if we use the symbol
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\J i] 2

we have

(12.2,

(12. 3)

where

(12.4) Gft=

If SD* denotes the covariant differential in the sense of Cartan, we have

(12. 5) ®* Uh=dUh+Cj\(x, x

Now let us consider the tangent bundle 7X<?) over M. For each point PeM,
TP(&) is the vector space spanned by the tangent vectors of £P at P. Thus, if
/€jΓP(£P), we have

lh=L\ lh*=ΓhkL\

namely, LΛ*=0, where LA are the non-holonomic components. As £P is parallel
with respect to the affine connection γ of M, we can construct from the dif-
ferentials dLA and dξA the classical absolute differential ^)LA by

where

by virtue of LΛ*=0 and (7. 3). We further obtain

or

On the other hand we can extend the mapping φ to the vector fields in the
following sense.
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If / is a tangent vector of <P at PeM, then φl is the vector U at
whose components Uh are given by Uh=Lh where LA are the non-holonomic
components of /.

Such a mapping induces a connection in 9JI* which can be expressed in the
form of absolute differential

(12. 6)
=d

If we get

(12.7)

by substituting (11. 2) into (12. 5), then we can say that we could obtain a Finsler
manifold with the Cartan connection from an almost Finsler manifold whose dis-
tribution Q is completely integrable.

The remaining part of the paper is devoted to the proof of (12. 7).
As we have

where

(12. 7) is equivalent to

(12. 8)

(12. 9)

§ 13. Proof of (12. 7).

Proof of (12. 8) is quite simple.
As we have 77ί7t=0, we get Σj*ί*h*=Q in (9. 4). Hence we have

Γ^^-G^

+ ~F



. . b y
b d

(13. 4)

Let us define

*

and prove

(13. 5)

where ^^-r—-.

Since we have

(?£** dx^
'—* ~f" '

and xί=ξ\ we get from (11. 2)

d£fc* π-ιr
"~Z — — " {*Ίc

40 KENTARO YANO AND YOSIO MUTO

As dj*(FGίl) is symmetric in /, j, /, we get

(13. 1) /VV= -F-^Gm

(13. 2) Γ,Λ= - ^F-

On the other hand we get from (12. 3)

ίϋΛG*>= WF-

which proves (12. 8).
(12. 9) is equivalent to

ΓΛ-/W,
(13. 3)
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hence

(13. 6) ~ =dj-(F

and

Substituting these identities into (12. 1) and calculating we get (13. 5).
In order to prove (13. 3) we must first calculate Gh.
From (13. 5) we get

Substituting (13. 4) into this formula and using the properties of Gji given by (11. 9),
we get

dsFFh*+ ~

and

(13. 8)

+ FFk,G
MdsF+ ~Fzdk,

In this calculation and also in the following calculation we often use the fact
that dk*(FGJi) is symmetric in f, j, k and also the identities
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From (12. 3) and (13. 8) we obtain after straightforward calculation

- - 9 , — - a " * — 9

-—• GkA.GlsdsF+ -y

-jp GrfyGn [--ξ- dr&^'G^ - -J- , r ,

+ Fh,G
lsdsF+ -9ft.G

ίs9sF+ -j-

Another term in the right hand side of (13. 3) is obtained in the form

From these formulas we find that the right hand side of (13. 3) is equal to

(13. 9)
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-^9ίG'sr- ~Gki

-jp GijfGfi [- -y 9rG'srGrft- -

2F v

Let us calculate the left hand side of (13. 3).
As we have 77-^=0, Γj\ is symmetric with respect to f, j as we can see from

(7. 6). As we have A=0 also, we get from (9. 3)

1

hence

' Ί+-
J i\ 2

As we have ΓuFι*=—dίF, we get

hence

(13.10)

-
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Thus we get the complete expression of Γj\

(13. 11) - -i dm,GhlGj^~ (

We get from (13. 2)

and hence

+~ dtFdt*G

Using these expressions we can prove (13. 3) by straightforward calculation.
Thus we have

THEOREM 13. 1. Let M be an almost Finsler manifold such that the distribu-
tion Q is completely integrable. Let the integral manifolds of Q be such that
there exists a fibre bundle 9Jl={M, X, π, F}. Then there exists a Finsler space
m*={M*, X, π*, F*, G}, where the mapping φ: 3ft->9ft* is given by (11. 2) and the
connection induced from γ by φ is the Cartan connection.
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