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ON A SYSTEM OF LINEAR ORDINARY DIFFERENTIAL
EQUATIONS WITH A TURNING POINT

BY MINORU NAKANO

§ 1. Introduction.

1° The system of differential equations to be discussed here is

(1.1) ε°^f-=A(x,έ)Y,
ax

in which σ is a positive integer, ε is a small complex parameter and A(x, ε) is an
n-by-n matrix function holomorphic in both variables in the domain SD defined by
the inequalities

(1.2) ©: \X\^XQ, 0<|ε|^ε0, |argε ^Θ0.

We assume that the matrix A(x,ε) is expressed by the asymptotic expansion
such that

(1. 3) A(x, ε) ~ Σ Ar(xy, ε— 0

is uniformly valid in |#|^i#o and |argε ^Θ0. The coefficients Ar(x) are then
necessarily holomorphic in M^#o (Wasow [12]).

Sibuya [8] has proved that the local asymptotic analysis, as ε— »0, of such
differential equations can be reduced to the study of the special case that A(x,ε)
satisfies the following hypothesis :

A0φ) is nilpotent and of a Jordan canonical form.
It will therefore be assumed, from now on, that A(0) has this special property.
In this paper we investigate the case that A0(Q) has n Jordan blocks. As ^40(0)

is nilpotent, which means that «A0(0)=0, the leading matrix AQ(X) in (1. 3) must be
of the form

(1.4) AQ(x)

with p a positive integer, G(x) holomorphic at #=0, and

ASSUMPTION 1.

A*(x)=xpG(x),
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where p is a positive integer, G(x) is holomorphic in \x\^x^ and all eigenvalues of
G(x) are distinct. That is to say, the origin is a turning point of order p.

In this case, without loss of generality (Sibuya [7], Wasow [12]) it can be
assumed that G(x) has the diagonal form:

(1-5)

with

(1.6)

(1.7)

02(3?) 0
0

n

= Σ
ϊι=Q

|^ja?oι for j

n x ^

Furthermore, we can assume that A(x, έ) is of a triangular form (Iwano [4],
Sibuya [8]):

0

0

Qn

(1.8)

+ Σ

0
β',

that is to say, ajk(x, ε)~0, ε-^0 in © for j<k, and

CO

(1. 9) ajk(x, ε)— Σ <z$(#)£r» Q~^ m ® for J^k,
r=0

where

(1.10)

in particular for y=l,2, ••-, w

(1.11) ajj(χ,ε)^xpgj(x)+ΣaΏ(χ)&τ> ε~^^ in©.

a$(x)= Σ #S?ft#Λ m kl^^o, ύrj

Λ=m^
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2° For the simplicity we construct a characteristic polygon for the differential
equation (1. 1) and we investigate the restricted case that it consists of one segment
(Iwano [4]).

The characteristic polygon, convex downward, can be constructed by joining
the following points in the plane with a rectangular coordinate system (X, Y):

In particular Pft = (Q,p), and P$ = (0, oo) for j>k because m<% is, by definition, infinte
for tf$(a?)=0.

For our requirement the coefficient of (1. 1) has to fulfill the following

ASSUMPTION 2.

j+l-k

O=l,2,..-,«),

P+l r
σ j+I-k ^k; r=l,2, ).

3° Under these hypotheses, we can obtain two types of asymptotic represen-
tations of a fundamental solution of the differential equation (1.1) whose domains
of validity overlap each other in neighborhoods of the turning point for ε arbitrary
small.

j+ι-k

P-* a j+l-k

\ P<2

FIG. 1. Characteristic polygon
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In 1966 Wasow [13] analyzed the simpler case of p—\ and n=2, in which the
restriction p=l seems to be essential.

§2. A formal outer solution.

In this section a formal solution for

4° The linear transformation

(2.1) Y=K(x)V,

where

"1

will be obtained.

(2.2)
0

0
together with q some positive integer less than npy changes the equation (1.1) into

/(\ Q\ o "£%%•( \ T/"

where

(2. 4) B*(x9 ε)=K'1(x)A(x9 ε)K(x)-eσK-1(x) dK^ .

In view of ASSUMPTION 2, the equation (2. 3) can be rewritten in

(9 Rϊ Γ^-i^VΓ{a. Ό) [X εj

where a=σ/(p+ΐ)9 and

B(x,e) =

(2.6)

(Λ?, ε)

xl-q/n-σ/aa2l(x, ε) xl-σ/aa22(x, ε) 0

(x, ε) 9 ε)

1 0
2

o Vi
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The coefficients Br(x) are holomorphic in x1/an, and in particular

(2. 7) Bo(x)=G(x)=diag [g^x), g^x), -, flr»(ar)].

In fact, for the diagonal elements of (2. 6) hold the equalities

oo oo

for y=l, 2, •••,», because the value h+l—σ/a+rla vanishes for r=0, and it is not
less than positive values m(fl—p-\-r/a for r^l by ASSUMPTION 2.

For the non-diagonal elements we have

,e)= Σ Σ [χ-1/ae]r

where h-\-l—(j—k)q/n—σ/a+r/a is not less than (j+l.—k){m$l(j + 'L—k)—p
+r/a(j+l—k)}+(j—k)(p—q/ri), which is positive by ASSUMPTION 2 and the definition
of q.

The relation (2. 6) means that

m

B(x, e)- Σ #.(«)[»-"««]'=£;,(», β)!*-1 ]̂"*1,
r=0

where Em(x,ε) is bounded in the domain SX

5° The transformation ^1/αrι=^ takes the equation (2. 5) into

(2.8)

where

and in particular

C*(t, s)=[anB(x, ε)]x=tan= Σ C*(f)[ΓnεY,

Cf(f)=an

0
Then we can diagonalize the coefficient C*(£, ε) by the method introduced by
Turrittin [10] as follows.

Let Tjf(tJε)=I+[t~nε]kQjc(f)f where / i s the ^-dimentional identity matrix and
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Qk(t) are holomorphic matrix functions which are appropriately determined sue
cessively as follows.

The transformation V= TkZ* changes (2. 8) into

where

= (C0*+ [t~ nε]C * + - - - + [r "β

Since the eigenvalues angι(tan),~',angn(tan) of Cf(f) are distinct, C%+CfQk-QkCf
can be diagonalized by determining elements of Qk.

Let P*(t, ε) =!!£=! Tk=I+Σr=ι Pf(t)[Γnε]r be a formal series obtained by products
of Tk (&=1, 2, •••). Then, by virtue of the theorem of Borel-Ritt (Friedrichs [1] or
Wasow [12]), there exists a holomorphic function P(t,έ) having P*(ί, e) as its
asymptotic expansion in the domain $£)' defined by inequalities

(2.9) ®': \t\^t0, largfl^!, 0<|ε|^ε0, |argε|^#0, 0<|Γne|^ί2,

where ί0, which may be equal to χl/αn, and ^2 are sufficiently small constants, but
tι is arbitrary.

By the transformation

V=PZ,

we get

(2.10) [t-nεYt~jj:-=C(t,e)Z,

where C(t, ε) is holomorphic in ®' and expanded asymptotically, as t~nε tends to
zero, in Σ£=oCr(OP~we]r» and Cr(ί) is diagonal and holomorpnic in ί in SD', in
particular

o ' ,̂
The result obtained above is summarized in

LEMMA 2.1. Assume that the condition (1. 6) is satisfied in the matrix (2. 7)
and put xl/an= t. Then the differential equation (2. 5) with a matrix coefficient, in
general, not diagonal or not even asymptotically diagonal, can be reduced to the
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differential equation of the form (2. 10) with a coefficient holomorphic in ©' and
asymptotically diagonal.

Thus we can calculate a formal series solution of the differential equation
(2.10) and get the following theorem.

THEOREM 2.1 [Formal outer solution]. Assume that the differential equation
(1.1) satisfies ASSUMPTIONS 1 and 2, then for #^0 it can be reduced to (2.10),
which possesses a formal sereis solution

(2. 11) Z(t, e)~ί~Σ Zr(t)i\ exp [~Σ Fr(f)e?
Lr=0 J [_r=0

with properties:
a) the relation

holds, where Z*(t) is a polynomial of degree r, at most, in log t with coefficients
holomorphic in \t\^t0, and bounded in the damain ©';

b) Fr(t) is diagonal and of the form

(F.(f)=f.Iogt+F*(f),
(2. 12)

where Ff(t) (r=0, 1, 2, ~ ,σ) are holomorphic in \t\^t0 and fσ is a constant matrix.

Proof. Since the coefficient of (2. 10) is diagonal, we obtain

Define the matrix functions Cr(t) and Fr(t) by

Cr(0= Σ Crrf* and Fr(ί)
k=0

Then, for r^σ we have

(0= Σ Cr***-^-0-1

λ:=0 J

-Cr,w(r_σ) log ί+ -

*&-<,•) k—n(r—σ)

from which by changing notations we have

(2. 13) Fr(t) =fr log t+t-n«-*F*(t\

where /r and F^OO are holomorphic in \t\^t9. In particular,
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3 C-I Oσfc

can be written as (2. 12).
For Q^r^σ, we have

where F?(£) are holomorphic in \t\^t0.
As for Zr(t), it follows from

In fact, in view of (2. 13) we have

expΓ Σ Fr(ί)er-'l =
Lr=σ+l J

where Z?(ί) is a polynomial in log t of degree r at most. Q.E.D.

(3. 1)

§3. A formal inner solution.

This section is devoted to a formal solution in neighborhoods of x=0.

6° The transformations

x=εat (stretching transformation),

Y=K(εa)U,

where a=σ/(p+l) and K(εa) is defined by (2. 2) with εα instead of #, take the
original equation (1. 1) into

(3.2)

where

(3. 3) D*(x, ε) = εa-

u(x, ε)εa'

a2ι(x, ε)ε-aq/n+a-σ

~

, ε)K(εa)

^(x, ε)εa~ 0

Λnn(j?, e)eα-



SYSTEM OF DIFFERENTIAL EQUATIONS

Let ε1/n(p+1)=/o. Then the equation (3. 2) can be rewritten in the form

(3.4) ^j-

where

(3.5) D(t,p )

The coefficient D(t, p) of (3. 4) is clearly of the same triangular type as A(x, ε),

"*• 0
(3.6) D0(t)=tpG=tp g20 .

0 Quo J

and for r^l J9r(0 is a polynomial in t of degree, at most,

(3. 7) mr=r/nσ+(n-ϊ)qln+p-(p+ΐ)lσ,

hence Z>r(/) is of the form

D f — r/nσ+ an- l)q/n+p- (p+1

with £>?(/) bounded at £=oo.
Therefore (3. 5) is written in

(3. 8) D(t, p)- Σ Dr(f)pr=t<n-»q'n+p-<p+1>"Em+ι(t, p)[t1/nσp]

with Em+ι (t, p) bounded in the domain under consideration for ra=0, 1, 2, •••,

The relations (3. 5), (3. 6) can be proved as follows.
For the main diagonal elements of (3. 3), namely, for

Σ anf*r+a-+a

=TO(r)
'=l, 2, 3, -, n),

we can show by ASSUMPTION 2 that ah+ap+a—σ vanishes for A^O, and it takes
positive values for h^l, and r+a—σ+ah takes positive values for r^l and h^m$.
This means that ajj(x,e)εa-σ contains none of the terms of negative powers of ε,
and that the constant term with respect to ε of ajj(x,έ)εa~σ is only gjot

p, which
proves (3. 6).

Similarly for the off-diagonal elements
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we can see easily that the exponent of e takes positive values only by ASSUMPTION
2 and the definition of q (see (2. 2)).

Next, the validity of the equality (3. 7) will be shown.
Since |0=ε1/nCP+1), every element of (3. 3) is rewritten in

max/?,

Σ
ί=

r>0

The possibly highest degree of D8(t)jk is the maximum of h with respect to r^l.
Hence, the possibly highest degree of Ds(t) is the maximum of h with respect to
r, j and k:

= s/nσ—l/a-}-(n—ΐ)q/n+p,

which proves (3. 7).

7° In order to obtain a solution of the equation (3. 4) together with (3. 5), we
will construct the recursion formulas of integral equations.

Let

r=0

be a formal solution of (3. 4). The recursive conditions for this to be the case are

(3.9a)

rίΊΊ
(3. 9b) ~

at 6=1

Since the coefficient DQ(t)=tpG is diagonal, the solution of (3. 9a) is

[ fP+l -I

•^ΓGj=exp[G*(/)].

From the variation of constants formula, solutions of the equation (3. 9b) are

Ur(t) - Z
Jrr(ί) 6=1

(3. 10)
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where γr(t) denotes the n2 paths of integration terminating at t.

8° It will be shown that there exist solutions of the integral equations (3. 10)
of the form

(3. 11) Ur(f)=t™ U*(f) exp [G*(/)],

where m*=raι+l (see (3. 7)) and Uf(t) is bounded in some domain @(#) defined by
the inequalities:

In particular, since UQ(t)=Iexp [G*(OL

UY(f)=I.

Insertion of £7r(*)=Fr(0 exp[G*(*)] into (3.10) implies

(3. 12)
rr(o

The λ ^-element Fr(/)y* of Fr(ί) is, if denoting Σϊ=ι A Fr_6=F^ = [/$], of the
form

exp [(0/0-

(3. 13) "Wjk

where asterisked letters are defined by

/P+l

(3. 14) **=

The arguments of the leading terms gjϋ of QJ(X) may be assumed to take their
values in

— 7r<arg0yo^π (y=l,2, •••,«).

The paths of integration γf(t*)jfc are defined to be straight lines from t* to
infinity parallel to the straight lines passing through the origin

(3. 15) Re [-(g, 0-g*o)s*]<0

in the domain

(3.16) ©*: -α^args*^-α+τr

where a should be chosen so th?ιt none of lines Re [— (gjo— ^*o)5*]=0 is on the
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boundaries of <δ*.
Therefore ff(f*)j* is of the form

The paths γΐ(t*)J3 are segments from ί* to arbitrary bounded points ζf in Θ*:

The original paths γr(t)jk are the inverse images of γf(t*)jk under the transformation
(3.14).

The domain (E> may be taken to be the inverse image of <δ* under (3.14):

(3.17) @: — α/(/>+l)^arg s^(—a+π)l(p+1ί),

and the domain &(t'0) is a subset of @ for |ί|>/ί.
Under the above conditions the next lemma is valid.

FIG. 2. Paths of integration

LEMMA 3. 1. // the matrix function F^(f)t~c (c>0) is bounded as t tends to
infinity in <s>, then Fr(0ί~cc+1) is bounded as t tends to infinity in @. /

(3. 18) F<"(t)=O(f) in @(tί) implies Yr(f)=O(tc+ί) in <&(%).

Proof. Let

F^(s)=O(sc) in ©(«)

=O(s*c/^+1>) in ©*(«*).

For off-diagonal elements, i.e., for />^?
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) in ©(«),

and for diagonal elements

Yr(t)jj =

in ©(«),

by which the validity of (3. 18) has been shown. Q.E.D.

Now, it will be shown that

(3. 19) Yr(t)=O(trm*} in ©(«),

namely,

where Uf(t) is bounded in @(#) ^^J m*=mι+l.

Indeed, (3.18) shows that Fcl)(s)=A(5)F0(5)-A(5)=O(5mι) in @(ί00 implies
Fι(0=O(ίm*) in <&(#)» and the rest of the statement can be proved by induction.

Suppose Yj(t)=O(tjm*), j^r—l, are known. Then

(3. 20)

Since, however, the value of the difference [mj+(r—j)m*]—[mJ+ι-}-(r—j—l)m*] is
(#— l)q/n+p+l— (p+l)/σ, which is positive, the maximum of mj-\-(r—j)m* (l^j^r)
can be attained for y=l, and its value is Wι+(r—l)w*. This fact is followed by
F<r>(s)=O(swι+cr-1)m*). By applying (3. 18) once more we have Yr(t)=O(trm\ which



14 MINORU NAKANO

shows the validity of (3. 19), and hence (3. 11) has been proved.
The above results are summarized in the following

LEMMA 3. 2. The integral equation (3. 10) possesses a formal solution

where Ur(f) is represented by (3.11).

Thus, finally, we can get the formal solution of the differential equation (3. 4),
which is stated in

THEOREM 3.1 [Formal inner solution]. Let k(t) be defined by

fO if \t\£tt,

(I if \t\>t'Q.

Then the differential equation (3. 4) possesses a formal matrix solution U of the
form

(3. 21) U(t, P)~(Σ [**cί)mVΓ Uf(f)\ exp [G*(0],
V=o /

where £7*00 are bounded in the domain © and \t\^t'Q together with k(t)=Q, and in
the domain © and \t\>t'Q together with k(f)=l, and m*=mι+l=l/nσJ

Γ(n—l)q/n-}-p

9° It can be shown that the analytic theory corresponding to the formal
theory obtained above is valid, i.e., there exist holomorphic solutions asymptotically
expansible in the outer and the inner solutions respectively and that there exists a
domain in which two different types of solutions are valid for ε arbitrarily small,
and so two solutions can be matched at any point in that domain.

The author wishes to express his thanks to Professors Y. Hirasawa and T.
Nishimoto for their valuable advice.
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