# ON THE SOLUTION OF THE FUNCTIONAL <br> EQUATION $f \circ g(z)=\boldsymbol{F}(z), \mathrm{V}$ 

By Mitsuru Ozawa

In our previous paper we discussed the transcendental unsolvability of the functional equation $f \circ g(z)=F(z)$. In this note we shall extend some results in [4] to a more general class of functions and make use of the same terminology "transcendental solvability ". Our basic tool is an elegant theorem of Edrei-Fuchs [2].

Theorem 1. Let $f(z)$ be an entire function of the form $P(z) e^{M(z)}$ with a polynomial $P(z)$. Assume that there exist two constants $a, b$ such that $|a| \neq|b|, a b \neq 0$ and that $f(z)=a$ and $f(z)=b$ have their solutions on $p$ straight lines $l_{1}, \cdots, l_{p}$, almost all, any two of which are not parallel with each other. Then $f(z)$ reduces to $a$ polynomial.

Proof. By Edrei-Fuchs' theorem in [2] $f(z)$ must be of finite order and hence $M(z)$ must be a polynomial. Denote it by

$$
\alpha_{n} z^{n}+\alpha_{n-1} z^{n-1}+\cdots+\alpha_{1} z+\alpha_{0}, \quad \alpha_{n} \neq 0
$$

By a suitable change of variable we have

$$
M(z)=z^{n}+\alpha_{n-2} z^{n-2}+\cdots+\alpha_{1} z+\alpha_{0}
$$

with new $\alpha_{j}$. Hence our problem reduces to solve the following equation

$$
\left(A_{m} z^{m}+\cdots+A_{0}\right) \exp \left(z^{n}+\alpha_{n-2} z^{n-2}+\cdots+\alpha_{0}\right)=a
$$

We have asymptotically

$$
z^{n}\left(1+O\left(\frac{1}{z^{2}}\right)\right)=\log \frac{a}{A_{m} e^{\alpha_{0}}}+2 q \pi i
$$

Hence the given $p$ straight lines $l_{1}, \cdots, l_{p}$ must be parallel to one of

$$
\arg z= \pm \frac{\pi}{2 n}+\frac{2 s}{n} \pi, \quad s=0, \cdots, n-1
$$

respectively. Assume that $l_{1}$ is parallel to a radius given by

$$
R e^{\pi i / 2 n}
$$

Then $l_{1}$ can be represented as $x_{0}+R \exp (i \pi / 2 n)$ with a real $x_{0}$. Let
Received November 20, 1967.

$$
X_{0}+i Y=\log \frac{a}{A_{m} e^{\alpha_{0}}}+2 q \pi i
$$

with real numbers $X_{0}, Y$. Then

$$
\left(x_{0}+R e^{\pi \nu / 2 n}\right)^{n}\left(1+O\left(\frac{1}{R^{2}}\right)\right)=X_{0}+i Y
$$

Taking the real part, we have

$$
n R^{n-1} x_{0} \mathscr{R} e^{(n-1) \pi i / 2 n}\left(1+O\left(\frac{1}{R}\right)\right)=X_{0}
$$

This implies that $x_{0}=0$ and hence $X_{0}=0$. Therefore

$$
\log \left|\frac{a}{A_{m} e^{\alpha_{0}}}\right|=X_{0}=0
$$

which shows that

$$
|a|=\left|A_{m} e^{\alpha}{ }^{\alpha}\right| .
$$

The same holds for each $l_{\rho}$. By the same procedure we have

$$
|b|=\left|A_{m} e^{\alpha}\right| .
$$

This is a contradiction. Therefore $M(z)$ must be a constant.
This theorem suggests the following conjecture: Let $f(z)$ be an entire function. Assume that there is a sequence $\left\{a_{n}\right\}$ such that $a_{n} \rightarrow \infty$ as $n \rightarrow \infty$ and that almost all the roots of $f(z)=a_{n}$ lie on $p$ straight lines $l_{1}, \cdots, l_{p}$, any two of which are not paralled with each other. Then $f(z)$ reduces to a polynomial of degree at most $2 p$.

Edrei [1] proved this conjecture, when $p=1$. By Edrei-Fuchs' theorem in [2] we can say that $f(z)$ is of finite order.

Lemma 1. Let $f(z)$ be an entire function of the form $P(z) e^{M(z)}$ with a polynomial $P(z)$ and a non-constant entire function $M(z)$. If there are $p$ straight lines $l_{1}, \cdots, l_{p}$, any two of which are not parallel with each other, such that almost all roots of $f(z)=a, a \neq 0$, lie on $l_{1}, \cdots, l_{p}$, then $P(z)$ reduces to $a$ constant and $M(z)$ $=\alpha\left(z-z_{0}\right)^{n}+\beta$ for some $z_{0}$ and some positive integer $n$.

Proof. By the proof of theorem 1 we have

$$
z^{n}+\alpha_{n-2} z^{n-2}+\cdots+\alpha_{1} z+m \log z\left(1+O\left(\frac{1}{z}\right)\right)=\left(2 q \pi+y_{0}\right) i
$$

assuming $A_{m} \neq 0$. Here put

$$
z=R e^{\pi i / 2 n}
$$

Assuming $\alpha_{n-2} \neq 0$ and taking the real part of both sides,

$$
R^{n-2} \mathscr{R} \alpha_{n-2} e^{(n-2) \pi i / 2 n}\left(1+O\left(\frac{1}{R}\right)\right)=0
$$

which implies that

$$
\mathcal{R} \alpha_{n-2} e^{(n-2) \pi z / 2 n}=0 .
$$

Similarly we have

$$
\mathscr{R} \alpha_{n-2} e^{-(n-2) \pi z / 2 n}=0 .
$$

Hence

$$
\cos (\beta+(n-2) \pi / 2 n)=\cos (\beta-(n-2) \pi / 2 n)=0,
$$

which is clearly untenable, unless $n=2$. Here $\beta$ is an argument of $\alpha_{n-2}$. Hence $\alpha_{n-2}=0$. The same holds for each $\alpha_{3}, 1 \leqq j \leqq n-2$. Now we have

$$
z^{n}+m \log z\left(1+O\left(\frac{1}{z}\right)\right)=\left(2 q \pi+y_{0}\right) i
$$

Taking the real part, we have

$$
m \log R\left(1+O\left(\frac{1}{R}\right)\right)=0
$$

which shows a contradiction. Hence $A_{m}=0$. The same holds for each $A_{\jmath}, 1 \leqq j \leqq m$. Thus we have the desired result.

Theorem 2. Let $F(z)$ be a meromorphic function whose image covers the Riemann sphre. Assume that $\infty$ is a Picard exceptional value of $F$ and almost all the roots of $F(z)=A$ lie on $p$ straight lines $\left\{l_{j}\right\}$, any two of which are not parallel with each other. Then the functional equation $f_{\circ} g(z)=F(z)$ is not transcendentally solvable.

Proof. Evidently we have

$$
f(w)=\left(w-w_{1}\right)^{n} f^{*}(w), \quad g(z)=w_{1}+P(z) e^{M(z)}
$$

with a polynomial $P$, entire functions $f^{*}(w)$ and $M(z)$ and a negative integer $n$. By the assumption there is at least one solution $w_{2}$ of $f(w)=A$. Further $g(z)=w_{2}$ has solutions lying on $\left\{l_{j}\right\}$ almost all. Since $g(z)$ is transcendental, $P(z)$ must be a constant by Lemma 1. Then $F(z)$ has the form

$$
F(z)=f \circ g(z)=C^{n} e^{n M(z)} f^{*}{ }_{\circ}\left(w_{1}+C e^{M(z)}\right)
$$

with a constant $C$. This shows that $F(z)$ is an entire function. This contradicts the assumption.

Lemma 2. Let $f(z)$ be an entire function of the form $P(z) e^{M(z)}$ with polynomials $P(z)$ and $M(z)$. If there are $p$ straight lines $l_{1}, \cdots, l_{p}$ such that almost all roots of $f(z)=a, a \neq 0$, lie on $l_{1}, \cdots, l_{p}$, then $P(z)$ reduces to $a$ constant unless $M(z)$ is a constant.

Proof. By the proof of theorem 1 there are $2 n$ directions along which almost all $a$-points of $f(z)$ lie and they must start from a suitable point $z_{0}$. Then by Lemma $1 P(z)$ must be a constant.

In the sequel $\rho_{G}$ means the order of $G$.
ThEOREM 3. Let $F(z)$ be a meromorphic function of finite order, whose image covers the Riemann sphere. Assume that $\infty$ is a Picard exceptional value of $F$ and almost all the zeros of $F(z)$ lie on $p$ straight lines $l_{1}, \cdots, l_{p}$. Then the functional equation $f \circ g(z)=F(z)$ is not transcendentally solvable.

Proof. Firstly we have

$$
f(w)=\left(w-w_{1}\right)^{-n} f^{*}(w) \quad \text { and } \quad g(z)=w_{1}+P(z) e^{M(z)}
$$

with a polynomial $P$ and two entire functions $f^{*}$ and $M$ and a positive integer $n$. Hence

$$
F(z)=P(z)^{-n} e^{-n M(z)} f^{*}{ }_{\circ}\left(w_{1}+P(z) e^{M(z)}\right) .
$$

By the order finiteness of $F(z)$ we have that the order of

$$
G(z)=e^{-n M(z)} f^{*_{\circ}}\left(w_{1}+P(z) e^{M(z)}\right)
$$

is finite and further $f^{*}(w)$ is transcendental. It is easy to prove that

$$
\rho_{G}=\rho_{f^{*} g} .
$$

Hence

$$
\rho_{G}=\rho_{F}<\infty
$$

implies that $g(z)$ is an entire function of finite order and $f^{*}(w)$ is an entire function of order zero. Hence $M(z)$ must be a polynomial. By Lemma 2 we have the constancy of $P(z)$, which again implies that $F(z)$ must be an entire function. This is clearly a contradiction.

Theorem 4. Let $F(z)$ be a meromorphic function whose image covers the Riemann sphere. Assume that $\infty$ is a Picard exceptional value of $F$ and almost all the zeros of $F(z)$ lie on $p$ straight lines and further the order of $N(r ; 0, F)$ is finite. Then the functional equation $f \circ g(z)=F(z)$ is not transcendentally solvable.

Proof. By a similar consideration as in theorem 3 we have

$$
F(z)=P(z)^{-n} e^{-n M(z)} f^{*}{ }_{\circ}\left(w_{1}+P(z) e^{M(z)}\right) .
$$

If $f^{*}(w)=0$ has at least two roots $w_{2}, w_{3}$, we have

$$
N(r ; 0, f * \circ g) \geqq m\left(r, P e^{M}\right)-O\left(\log r m\left(r, P e^{M}\right)\right)
$$

by the second fundamental theorem. If $f^{*}(w)=0$ has only one root $w_{2}$, we have

$$
\text { FUNCTIONAL EQUATION } f \circ g(z)=F(z), \mathrm{V}
$$

$$
f^{*}(w)=\left(w-w_{2}\right)^{s} e^{L(w)}
$$

and hence

$$
N\left(r ; 0, f^{*} \circ g\right) \sim s m\left(r, P e^{M}\right) .
$$

In both cases we have

$$
\rho_{N(r ; 0, F)} \geqq \rho_{e^{M}},
$$

which implies the order finiteness of $g(z)=w_{1}+P(z) e^{M(z)}$. As in theorem 3 we have the desired result.

In the sequel we make use of the notation $\hat{\rho}_{f}$ as the hyper-order of $f$.
Theorem 5. Let $F(z)$ be a meromorphic function satisfying $\hat{\rho}_{F^{\prime}}<p$. Assume that 0 is a Picard exceptional value of $F^{\prime}$ and almost all the poles of $F^{\prime}$ lie on $p$ straight lines $l_{1}, \cdots, l_{p}$, any two of which are not parallel with each other and each of which carries an infinite number of poles of $F^{\prime}$. Further assume that the image of $F^{\prime}$ covers the Riemann sphere. Then the functional equation $f \circ g(z)=F(z)$ is not transcendentally solvable.

Proof. Consider the derived functional equation $f \circ g(z) \cdot g^{\prime}(z)=F^{\prime}(z)$. Evidently $f(w)=\left(w-w_{1}\right)^{n} \mid f^{*}(w)$ and $g(z)=w_{1}+P(z) e^{M(z)}$ with two entire functions $f^{*}, M$, a polynomial $P$ and a positive integer $n$. If $f^{*}(w)$ has an infinite number of zeros $\left\{w_{k}{ }^{*}\right\}$, almost all the solutions of all the equations $g(z)=w_{k}{ }^{*}, k=1,2, \cdots$, lie on the given $p$ straight lines. Then theorem 1 implies that $g(z)$ must be a polynomial. Therefore $f^{*}(w)$ has only a finite number of zeros. Hence $f^{*}(w)=Q(w) e^{L(w)}$ with a polynomial $Q$ and an entire function $L$. This implies that the lower order $\lambda_{f}$, of $f^{*}$ is not less than 1. By Lemma 1 we further have that $M(z)=\alpha\left(z-z_{0}\right)^{n}+\beta$ and $P(z)$ is a constant. Here $n$ must be $p$ by the assumption and by the proof of theorem 1 and Lemma 1. Hence $\rho_{g}=p$. Now by our earlier result in [3] we have

$$
\hat{\rho}_{F^{\prime}} \geqq \rho_{g}=p,
$$

which contradicts $\hat{\rho}_{F^{\prime}}<p$.
Theorem 6. Let $F(z)$ be a meromorphic function satisfying $\hat{\rho}_{F^{\prime}}<0$. Assume that 0 is a Picard exceptional value of $F^{\prime}$ and almost all the poles of $F^{\prime}$ lie on $p$ straight lines. Further assume that the image of $F^{\prime}$ covers the Riemann sphere. Then the functional equation $f \circ g(z)=F(z)$ is not transcendentally solvable.

Proof. Evidently we have $f^{\prime}(w)=\left(w-w_{1}\right)^{n} / f^{*}(w)$ and $g(z)=w_{1}+P(z) e^{M(z)}$ $=Q(z) e^{N(z)}$ with entire functions $f^{*}, M, N$, polynomials $P, Q$ and a positive integer $n$.

We assume, firstly, that $f^{*}(w)=0$ has an infinite number of roots. By its representations

$$
\left(P^{\prime}+P M^{\prime}\right) e^{M}=Q e^{N},
$$

which implies that

$$
P^{\prime}+P M^{\prime}=Q e^{H}
$$

for an entire function $H$. Firstly we shall consider the case that $H$ is not a constant. In this case

$$
M=\int^{z} \frac{Q e^{H}-P^{\prime}}{P} d z+C, \quad M+H+D=N
$$

with constants $C$ and $D$. Hence

$$
F^{\prime}=\frac{P^{n} e^{(n+1) M+H+D} Q}{f^{*}\left(w_{1}+P e^{M}\right)}
$$

By Pólya's method

$$
M_{f * \circ g}(r) \geqq M_{f *}\left(d M_{g}\left(\frac{r}{1}\right)\right) \geqq d^{K} M_{g}\left(\frac{r}{2}\right)^{K}
$$

for a constant $d, 0<d<1$, and for every positive constant $K$, and hence

$$
\hat{\lambda}_{f * o g} \geqq \hat{\lambda}_{g}
$$

where $\hat{\lambda}_{g}$ indicates the lower hyper-order of $g$. By its form and by Pólya's method we can easily prove that

$$
\hat{\lambda}_{g} \geqq 1
$$

Further

$$
\begin{aligned}
T\left(r, F^{\prime}\right) & =m\left(r, 1 / F^{\prime}\right)+N\left(r ; 0, F^{\prime}\right)+O(\log r) \\
& =m\left(r, 1 / F^{\prime}\right)+O(\log r)
\end{aligned}
$$

and

$$
\begin{aligned}
m\left(r, f^{*} \circ g\right) & \leqq m\left(r, 1 / F^{\prime}\right)+(n+1) m(r, g)+m\left(r, e^{H}\right)+O(\log r) \\
& \leqq m\left(r, 1 / F^{\prime}\right)+(n+2) m(r, g)+O(\log r)
\end{aligned}
$$

Hence

$$
m\left(r, f^{*} \circ g\right)-(n+2) m(r, g) \leqq T\left(r, F^{\prime}\right)+O(\log r)
$$

Let $w_{j}{ }^{*}, j=1,2, \cdots$, be an infinite number of zeros of $f^{*}(w)$. By the second fundamental theorem

$$
\begin{aligned}
m\left(r, f *_{\circ} g\right) & \geqq N\left(r ; 0, f^{*} \circ g\right) \geqq \sum_{1}^{K+1} N\left(r ; w_{\jmath}, g\right) \\
& \geqq K m(r, g)-O(\log r m(r, g))
\end{aligned}
$$

with a negligible exceptional set of $r$ and for an arbitrary large $K$. Hence

$$
m\left(r, f^{*} \circ g\right)-(n+2) m(r, g) \geqq K^{\prime} m(r, g)
$$

with a negligible exceptional set of $r$. Hence

$$
\hat{\rho}_{F^{\prime}} \geqq \hat{\lambda}_{g} \geqq 1 .
$$

This contradicts the assumption. Therefore $H$ reduces to a constant. Thus $M$ must be a polynomial. In this case theorem 1 does work without any assumption on the situation of $p$ straight lines. Then we can easily conclude that $g(z)$ is a polynomial. This is clearly untenable.

Now we shall consider the case that $f^{*}(w)=0$ has only a finite number of roots. In this case we have

$$
f^{*}(w)=R(w) e^{L(w)}
$$

with a polynomial $R$ and an entire function $L$ and hence

$$
F^{\prime}=\frac{P^{n} e^{n M} Q e^{N}}{R \circ\left(w_{1}+P e^{M}\right) \cdot e^{L^{\circ}\left(w_{1}+P^{e} e^{M}\right.}}
$$

Let $s$ be the degree of $R$. Then

$$
T\left(r, F^{\prime}\right) \geqq N\left(r ; \infty, F^{\prime}\right)=s m\left(r, P e^{M}\right)+O(\log r)=s m(r, g)+O(\log r) .
$$

This implies that

$$
1>\hat{\rho}_{F^{\prime}} \geqq \hat{\rho}_{g} .
$$

Next we want to prove that for an arbitrary positive $K$ there is a sequence $\left\{r_{n}\right\}\left(r_{n} \rightarrow \infty\right.$ as $\left.n \rightarrow \infty\right)$ of $r$ such

$$
A e^{m(r / 4, g)}>K m(r, g)
$$

through $\left\{r_{n}\right\}$. If not, for $r \geqq r_{0}$ there is a constant $K_{0}$ such that

$$
A e^{m(r / 4, g)} \leqq K_{0} m(r, g) .
$$

This implies that

$$
\infty=\lim _{r \rightarrow \infty} \frac{m(r / 4, g)+\log A}{\log r} \leqq \lim _{r \rightarrow \infty} \frac{\log m(r, g)+\log K_{0}}{\log r}
$$

and hence

$$
\begin{aligned}
\infty & =\lim _{r \rightarrow \infty} \frac{\log [m(r / 4, g)+\log A]}{\log r} \\
& \leqq \lim _{r \rightarrow \infty} \frac{\log \left[\log m(r, g)+\log K_{0}\right]}{\log r}=\hat{\lambda}_{g} \leqq \hat{\rho}_{g} .
\end{aligned}
$$

This contradicts $\hat{\rho}_{g}<1$.
By Pólya's method

$$
\begin{aligned}
m\left(r, f^{*} \circ g\right) & \geqq \frac{1}{3} \log M_{f * o g}\left(\frac{r}{2}\right) \geqq \frac{1}{3} \log M_{f *}\left(d M_{g}\left(\frac{r}{4}\right)\right) \quad(0<d<1) \\
& \geqq \frac{1}{3} d M_{g}\left(\frac{r}{4}\right) \geqq \frac{d}{3} e^{2 \pi m(r / 4, g)}
\end{aligned}
$$

Hence we have

$$
\begin{aligned}
T\left(r, F^{\prime}\right)+O(\log r) & \geqq m\left(r, f^{*} \circ g\right)-(n+2) m(r, g) \\
& \geqq B m\left(r, f^{*} g\right) \quad(0<B<1)
\end{aligned}
$$

through $\left\{r_{n}\right\}$. In this case it is not matter whether $H$ is a constant or not. This implies that $\hat{\rho}_{F^{\prime}} \geqq \hat{\lambda}_{f^{* o g}}$. Since $\lambda_{f^{*}} \geqq 1$, we, further, have $\hat{\lambda}_{f^{*}{ }^{\prime} \geqq \lambda_{g} \geqq 1 \text {. We now arrived }}$ at a contradiction.

In the sequel we use the notation

$$
\hat{\rho}_{F}=\lim _{r \rightarrow \infty} \frac{\log \log \log T(r, F)}{\log r} .
$$

Theorem 7. Let $F^{\prime}(z)$ be the derived function of a meromorphic function $F(z)$. Assume that $\infty$ is a Picard exceptional value of $F^{\prime}$, which has at least one pole, and almost all the zeros of $F^{\prime}$ lie on $p$ straight lines, any two of which are not parallel with each other. Assume further that either $\hat{\rho}_{F^{\prime}}<\rho_{N\left(r ; 0, F^{\prime}\right)}$ or $0<\rho_{N\left(r ; 0, F^{\prime}\right)}$, $\hat{\rho}_{F^{\prime}}<\infty$. Then the functional equation $f \circ g(z)=F(z)$ is not transcendentally solvable.

Proof. Evidently we have $f^{\prime}(w)=\left(w-w_{1}\right)^{-n} f^{*}(w), g(z)=w_{1}+P(z) e^{M(z)}$ with a polynomial $P$, two entire functions $f^{*}, M$ and a positive integer $n$. If $f^{*}(w)$ has at least one zero $w_{2}, g(z)=w_{2}$ has its roots on the given $p$ straight lines almost all. Hence by Lemma $1 P(z)$ must be a constant and then $F^{\prime}$ is reduced to an entire function, which is clearly a contradiction. Hence $f^{*}(w)$ has no zero. This implies that

$$
f^{*}(w)=e^{L(w)}
$$

and

$$
F^{\prime}(z)=P(z)^{-n} e^{-n M(z)} e^{L^{\circ}\left(w_{1}+P(z) e^{M(z)}\right)}\left(P^{\prime}(z)+P(z) M^{\prime}(z)\right) e^{M(z)} .
$$

In both cases we assumed that

$$
0<\boldsymbol{\rho}_{N\left(r ; 0, F^{\prime}\right)}
$$

Hence

$$
\begin{aligned}
& 0<\rho_{N\left(r_{;} 0, F^{\prime}\right)}=\rho_{N\left(r_{;}, 0, P^{\prime}+P M^{\prime}\right)} \\
& \leqq \rho_{M^{\prime}}=\rho_{M} .
\end{aligned}
$$

This implies that

$$
\rho_{e^{M}}=\infty \quad \text { and } \quad \hat{\rho}_{e^{M}} \geqq \rho_{M} .
$$

Therefore we have

$$
\text { FUNCTIONAL EQUATION } f \circ g(z)=F(z), \mathrm{V}
$$

$$
\hat{\rho}_{F^{\prime}} \geqq \rho_{e} M=\infty
$$

and

$$
\hat{\rho}_{F^{\prime}} \geqq \hat{\rho}_{e^{\prime}} M \geqq \rho_{M} .
$$

The latter inequalities imply an absurdity relation

$$
\hat{\rho}_{F^{\prime}} \geqq \rho_{N\left(r ; 0, F^{\prime}\right)}
$$

Thus we have the desired result.

## References

[1] Edrei, A., Meromorphic functions with three radially distributed values. Trans. Amer. Math. Soc. 78 (1955), 276-293.
[2] Edrei, A. and W. H. J. Fuchs, On meromorphic functions with regions free of poles and zeros. Acta Math. 108 (1962), 113-145.
[3] Ozawa, M., On the solution of the functional equation $f \circ g(z)=F(z)$, III. Kōdai Math. Sem. Rep. 20 (1968), 257-263.
[4] Ozawa, M., On the solution of the functional equation $f \circ g(z)=F(z)$, IV. Kōdai Math. Sem. Rep. 20 (1968), 272-278.

Department of Mathematics, Tokyo Institute of Technology.

