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ON SOME CONFORMAL EQUIVALENCE CONDITIONS
OF COMPACT RIEMANN SURFACES

BY YASUSHI MIYAHARA

The purpose of this paper is to obtain some conditions for two compact
Riemann surfaces to be conformally equivalent. We shall mention our results by
use of the Douglas-Dirichlet functional and harmonic mappings.

Let R and S be compact Riemann surfaces of genus g, and let η=p(w)\dw 2 be
a conformal metric on S, where p(w) is positive and continuous with respect to
each local parameter w on S. We call η a normalized conformal metric on S, if it
satisfies

Let / be an orientation-preserving homeomorphism of R onto S. We assume that
/ is L2-derivable, that is, w=f(z) has generalized partial derivatives which are
square integrable, where w=f(z) is a local representation of / for local parameters
z and w on R and S, respectively. Since / is orientation-preserving, we have

3L
dz

almost everywhere in each parametric disk on R. Furthermore, it is known that
/ is a measurable mapping, and

for any measurable set E on R (cf. [3]). The integral

is called the Douglas-Dinchlet integral. If η=p(w)\dw\* is a normalized conformal
metric on S, we have

smoe

dxdy,
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Consequently, when η is normalized, 77[/]^l for any mapping/, and equality holds
if and only if / is a conformal mapping. So, the following question arises.

PROBLEM 1. Let Ω be a certain family of normalized conformal metrics on S,
and let § be a certain family of homeomorphisms of R onto S. We suppose that
inf /,[/]=! for all ηzΩ and for all /eg. Then, are R and S conformally equivalent?

For a normalized conformal metric η=p(w)\dw\2' on S, an orientation-preserving
and L2-derivable homeomorphism f of R onto S is called a harmonic mapping relative
to η, if the quadratic differential

%-%=r dz

on R is analytic (cf. [4], [6]). When a normalized conformal metric on S and a
homotopy class a of orientation-preserving homeomorphisms of R onto S are arbi-
trarily given, there always exists a harmonic mapping relative to η which belongs
to a. (cf. [6]). We denote it by /„ and we set

The quadratic differential φη(z)dz2 on R is said to be attached to the harmonic
mapping /,. Clearly, fη is conformal if and only if φη(z)=Q. In the paper [6], it
is proved that a harmonic mapping fη is obtained as a homeomorphism which
minimizes the Douglas-Dirichlet functional Iη[f] in a family τ$γlM of all orientation-
preserving homeomorphisms f of R onto S satisfying the following conditions:

( i ) / belongs to the homotopy class α,

(i i) / and f'1 are L2-derivable,

(ίίί)

for the maximal dilatation K of a fixed quasiconformal mapping belonging to a,

(iv)
dw

for a positive constant M and a conformal metric γ=λ(z)\dz\2 on R. In this paper,
by a harmonic mapping /? we shall mean the harmonic mapping which minimizes
/,[/] in a certain family §?,,,#. Evidently,

(1) l^Iη[fη}^K+K-\

and /ϊ[Λ]=l if and only if /? is conformal. Hence, we can consider the another
problem:

PROBLEM 2. Let Ω be a certain family of normalized conformal metrics on S,
and suppose that inf /?[/?] = 1 for all ηeΩ. Then, are R and S conformally
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equivalent ?

It is our aim to obtain some results about these problems.

When g^2, the universal covering surfaces of R and S are conformally equi-
valent to unit disks U=[\z\<l} and F={|w;|<l}, respectively. From now on, we
consider U and V the universal covering surfaces of R and S, respectively, and
denote by G and H the groups of cover transformations of U ana V over R and
S, respectively. G and Hare properly discontinuous groups of linear transformations,
and each element of them has no fixed point in U or V if it is not an identity.
When a normalized conformal metric y=p(w)\dw\z is given, we can define a con-
tinuous function p(w) on V such that

p(B(w))\B'(w)\*=p(w) for all BsH.

If we set

mη— inf p(w\
w£V

then mη is positive obviously. For a positive constant δ, we denote by Ωδ the family
of all normalized conformal metrics η on S satisfying mη^δ, and for a positive
constant M, we denote by Ω& the family of all normalized conformal metrics η on
S satisfying \\ψη\\lmη^M, where ψη is the attached quadratic differential to /„ and

ΓΓ
l l ^ l l = \\ \φη(z)\dxdy.

JJR

In view of ||^||^(l/2)/9[/9], (1) implies

for all normalized conformal metrics η on S. So, for an arbitrary δ>0, there exists
a constant M>0 such as

A homeomorphism / of R onto S can be extended to a homeomorphism w=f(z)
of U onto V. Since w=B(f(z)) is also an extension of / for every BzH, the ex-
tension of / is not unique. We know that there exists an isomorphism σ of G onto
H for any extended homeomorphism w=f(z) such that

f(A(z))=A'(f(z)) for all AeG,

where .Aσ denotes the image of A by σ. Let Λ and /2 be two homeomorphisms of
R onto S and let w=fi(z) be extensions of /t (f =1, 2). We denote by <;* the isomor-
phisms of G onto H such that /t(A(z))=Aσ*(/i(*)) for all ΛeG (z=l, 2). It is well
known that /i is homotopic to /2 if and only if there exists an element BsH such
that A°ι=B°Aσ*»B-1 for all AεG (cf. [1]).

We shall prove the following lemma about a family of harmonic mappings.
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LEMMA. Let M be a positive constant and let $ be a family of homeomorphisms
w=fη(z) of U onto V for all ηzΩ^, where each w=fη(z) is an arbitrary extension
of a harmonic mapping fη in a fixed homoίopy class. Then, § is a normal family
on U.

Proof. It is sufficient to show that ξ> is equicontinuous on \z\^r0 for any r0

with 0<r0<l. We fix an r such as r0<r<l. By extending an attached quadratic
differential φη(z)dz2 to Λ, we can define an analytic function φη(z) on U satisfying

ψη(A(z))A'(zγ=φη(z) for all AzG.

Since \\φη\\/mη^M for all ηsΩ^ we see

where P is a normal polygon of G. Consequently, functions φη(z)/mη are uniformly
bounded on \z\^r for all ηzΩ^ because each φη(z) is analytic on U, and \z\^r
intersects only a finite number of normal polygons of G. By the inequality

dfη

dz

we see that functions dfη/dz are uniformly bounded on \z\^r for all η£Ω$. By
means of generalized Green's formula, the following relation is derived;

(2)
|ζ |=r — Z π |ζ|<r —

for all z with \z\<r (cf. [3]). By this integral formula, and in view of the fact
that functions fη,ζ are uniformly bounded on |ζ|<r, we can easily obtain inequalities

IΛ(^)-Λfe)|^C(r0)|^-^|| log \z,-zz\\

for all η£Ω$, and for arbitrary two points Zι and z2 in \z\^r0, where C(r0) is a
constant dependent only on r0. Therefore, the family ξ) is equicontinuous on \z\^r0.

As a result concerning Problem 2, we shall prove the following theorem by use
of the above lemma.

THEOREM 1. Let R and S be two compact Riemann surfaces which are topo-
logically equivalent, and suppose that for a constant M

inf

where fη is a harmonic mapping relative to η in a fixed homotopy class. Then, R
and S are conformally equivalent.
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Proof. By assumption, there exist a sequence ηn^Ω^ and a sequence fηn of
harmonic mappings in the fixed homotopy class a, such that

We put ηn=pn(w)\dw\2, and denote by_P and Q fixed normal polygons of G and //,
respectively. Their closures P and Q are compact, for ^ and S are compact. By
w=fηn(z) we denote the extension of fηn such as /,n(0)€Q. From

;„(*» dxdy

it follows that

hence

55, dxdy ^ J_ Λ.IΛJ-1

limU
7l-»ooJ Jjf

Thus we may assume that

(3) lim- a. e. on £7

by taking a subsequence if necessary. By Lemma there exists a subsequence of
{fvn(z)} which converges uniformly in the wider sense on U. Let f ( z ) be the limit
function. We may assume that

fηn(z)-*f(z) uniformly in the wider sense on U.(4)

Now we fix an r with 0<r<l. Since ηn^^My the sequence {dfηjdz} is uniformly
bounded on \z\<r. Hence, by (3) and Lebesgue's dominated-convergence theorem,
we find

(5) limίί
w-»ooJJ|

for every z with \z\<r. By (2), (4) and (5) we obtain

ϊ=A_C

on \z\<r. This implies that f ( z ) is analytic on |^|<r. Since r is arbitrary, /(-e) is
analytic on U.

Conditions /9n(0)€θ yield /(O)eζJ. Therefore, we can conclude that f ( z ) is not
constant. In fact, if f ( z ) is a constant, we can show that its absolute value is 1.
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Suppose that f(z) is a constant c with |c|<l, and let σn be an isomorphism of G
onto // such that

(6) f,n(A(z))=A »(f,n(zy) for all AeG.

We fix an element A of G which is not an identity. By choosing a subsequence
if necessary, we may assume that A°n(iv) tends to a function B(w) uniformly in
the wider sense on F. If B(w) is a constant, we may set B(w)=eί9, where θ is a
real constant. Letting n tend to infinity in (6), we have c=ei0, which is a con-
tradiction. Consequently, B(w) must be a linear transformation which maps F onto
itself. Then by the discontinuity of H, A°n are identical with B for all sufficiently
large n. Therefore, by letting n tend to infinity in (6), we have c=B(c). This
shows that an element B of H which is not an identity has a fixed point c in F,
which is a contradiction.

Since A°n are identical with an element B of H for each element A of G if n
is sufficiently large, we can define the correspondence σ: A-^ B. By use of the
maximum principle, we see that |/(z)|<l on every compact subset of U. Therefore,
it is easily proved that a is an isomorphism of G onto H. Furthermore, it follows
from (6) that

(7) f(A(z))=A°(f(z)) for all AeG.

Now we shall show that w=f(z) is a mapping of U onto F. For every w0€ V
and for every n, there exist wn£fηn(P) and Tn€H such as wn=Tn(wQ\ because the
set fηn(P) is a fundamental domain of H. By the maximum principle, we see that

the set f(P)=f(P) is compact. Accordingly, the sequence {wn} is contained in a

compact subset of F, for the set fVn(P) tends to the compact set f(P). Hence, if
we denote by w* an accumulation point of {wn}, then |w*|<l, and w* belongs to
to f(P). We may assume that wn tends to w*. Moreover, we may assume that
Tn(tu) tends to a function T(w) uniformly in the wider sense on F. Then, w* = T(WQ),
consequently, T(w) is non-constant. Therefore, T(w) is a linear transformation
which maps F onto itself. By the discontinuity of H, Tn are equal to T for all
sufficiently large n. Hence, T belongs to H. Let A be an element of G such as
A"=T~1, and let z* be a point of P such as w*=f(z*). If we set z0=A(z*), then,
by (7) we obtain f(z0)=w0. Thus w=f(z) is a mapping of U onto F.

In order to prove the univalence of f(z\ we suppose that Wo=f(zι)=f(z2) for
two distinct points Zi, z2 in U. Since f ( z ) is analytic, if we take a sufficiently
small disk D about wQ, there exist two disjoint connected components Ni and N2 of
the inverse image f~~\D)_ which contain 2:1 and z2, respectively. Since fηn(z) tends
to f ( z ) uniformly on NJt the image of the boundary of Nj by fηn tends to the
boundary of D (j=l, 2). As a consequence, the image fηn(Nj) contains WQ for a
sufficiently large w. Therefore, there exist two points ζj^Nj C/=l, 2) such as
fηn(ζ3)=w<>. Evidently ζι^ζ2, and so, this contradicts with the univalence of fηn(z).

We have just proved that w=f(z) is a conformal mapping of U onto F satis-
fying (7). Therefore, it induces a conformal mapping / of R onto S which belongs
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to the homotopy class a. Thus R and S are conformally equivalent.

Immediately we obtain the following corollary, since for any d>0 there exists
a constant M>0 such as

COROLLARY. Under the same conditions as Theorem 1, if

inf/ f[/J=l
V€Ω3

for a constant d>0, then R and S are conformally equivalent.

We will incidentally state the following result.

THEOREM 2. Let Ω be the family of all normalized conformal metrics on S,
and suppose that

inf-ίUUL-0,

where φη is the attached quadratic differential to a harmonic mapping fη belonging
to a fixed homotopy class. Then, R and S are conformally equivalent.

Proof. We take a sequence ηns.Ω such that \\φηn\\lmηn tends to zero. Evidently,
all ηn belong to Ω% for a constant M. Under the same notation as in the proof
of Theorem 1, we may assume, by Lemma, that fηn(z) converges uniformly in the
wider sense on U. The sequence {dfvjdz} is uniformly bounded on \z\<r for any
r with 0<r<l, and we can assume that it tends to zero almost everywhere on U.
Accordingly, the proof left over follows the same lines.

Concerning Problem 1, we have the following theorem.

THEOREM 3. Let §? be the family of all orientation-preserving homeomorphisms
of R onto S which are L2-derivable and belong to a fixed homotopy class. If

inf /,[/]=!
7€ββ,/€3r

for a positive constant δ, then R and S are conformally equivalent.

Proof. If we take sequences ηnξΩz and /»€??, such that Iηn[fn] tends to 1, we
obtain

(8) l im\\ pn(fn(z)}lim\ \ pn(fn(
n-»coj Jp

dxdy=Q,

where ηn=pn(w)\dw\2.
Let {Ai, Bi, •••, Agy Eg] be a canonical homology basis on R. If we set Af=f(Aj),

Bf=f(Bj) (j=l, 2, •••, g) for a fixed mapping / belonging to g, then {Af, Bf, - ,
Af, A^} is a canonical homology basis on S. We denote by ωj=θj(z)dz (y=l, 2, •••, g)
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and ω$=0$(w)dw(j=l,2, , g ) the normalized bases of the linear spaces of all
abelian differentials of the first kind on R and S belonging to the canonical homology
bases above mentioned, respectively. By definition, they satisfy

\ ωy=fy*, \ ωϊ=
JAk JA£

(j,k=l,2, ,g).

Furthermore, πjk and π*k denote the periods of ωj and ω* over Bk and B$, respec-
tively. We denote by α§° the transplant of ωf by the mapping fn, that is,

Since all fn belong to the same homotopy class, by Riemann's period relation we
find

Thus we have obtained relations

ΓΓ dfn
(9) rfk—Kjk=2i\\ Ok(z)θ*l(fn(z))~-—r-dxdy (j,κ=l,2, •••,</).

Here, we remark that \θ*(w)\2/pn(w) are automorphic functions on V with respect
to the group //, and that they are uniformly bounded on Q for all n, since Q is
compact and pn(w)^d on V for all n. Because of automorphic property, they are
uniformly bounded on V. Therefore, by Schwarz' inequality it follows from (9) that

ί -11/2

dxdy
dz

where C is a constant independent of n. Hence, by (8) we get

π*k=πjk (j, *=1, 2, —, flO

Thus, by using Torelli's theorem (cf. [2], [5]), we can conclude that R and S are
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conformally equivalent.

When 0=1, we can prove in the same way all the results we have mentioned
by taking the whole planes as U and V. Furthermore, when R and S are compact
bordered Riemann surfaces which are topologically equivalent, we can also prove
the similar results by taking their doubles.
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