ON A DECOMPOSITION OF AN EXTENDED CONTRAVARIANT ALMOST ANALYTIC VECTOR IN A COMPACT K-SPACE WITH CONSTANT SCALAR CURVATURE

By Kichiro Takamatsu

1. Introduction.

We have defined an another kind of an almost analytic vector in [5], which is called an extended contravariant almost analytic vector, that is, in an almost complex manifold we have called v^{2} an extended contravariant almost analytic vector if it satisfies

$$
\begin{equation*}
\underset{v}{£} F_{j}{ }^{2}+\lambda F_{j}^{r} N_{r l}{ }^{2} v^{l}=0 \tag{1.1}
\end{equation*}
$$

where $\underset{v}{\mathcal{E}}$ is the operator of Lie derivation with respect to $v^{2}, F_{j}{ }^{\text {l }}$ the almost complex structure tensor, λ a scalar function and $N_{j i}{ }^{h}$ the Nijenhuis tensor:

$$
N_{j i}^{h}=F_{\jmath}^{r}\left(\partial_{r} F_{i}^{h}-\partial_{i} F_{r}^{h}\right)-F_{\imath}^{r}\left(\partial_{r} F_{j}^{h}-\partial_{j} F_{r}^{h}\right) .
$$

When $\lambda=0$, (1.1) is the defining equation of usual contravariant almost analytic vector [6] and when $\lambda=-1 / 2$, (1.1) is Satô's contravariant almost (φ, Φ)-analytic vector obtained by the cross-section of a tangent bundle [3].

On the other hand, we have proved that a contravariant almost analytic vector v^{2} in a compact K-space with constant scalar curvature can be decomposed into the form

$$
\begin{equation*}
v^{i}=p^{2}+F_{s}{ }^{2} q^{s} \tag{1.2}
\end{equation*}
$$

where p^{2} and q^{2} are both Killing vectors [9]. This generalizes the well known Matsushima's theorem [2] and also results of Lichnerowicz [1] and Sawaki [4].

The purpose of the present paper is to prove that an extended contravariant almost analytic vector for a constant λ such that $-3 / 4 \leqq \lambda \leqq 0$ in a compact K-space with constant scalar curvature can be decomposed into the form (1.2).

In $\S 2$ we shall give some definitions and identities. In $\S 3$ we shall give a characterization of the extended contravariant almost analytic vector. In § 4 we shall prepare some lemmas on the extended contravariant almost analytic vector in a K-space. The last section will be devoted to the proof of the main theorem. Throughout this paper, indices run over the range $1,2, \cdots, 2 n$.

2. Preliminaries.

Let M be a $2 n$-dimensional almost-Hermitian manifold which admits an almost Recerved October 26, 1967.
complex structure tensor $F_{j}{ }^{2}$ and a positive definite Riemannian metric tensor $g_{j i}$ satisfying

$$
\begin{align*}
& F_{l}{ }^{i} F_{j}{ }^{l}=-\delta_{j}^{2}, \tag{2.1}\\
& g_{l t} F_{j}{ }^{l} F_{\imath}=g_{j i} . \tag{2.2}
\end{align*}
$$

Then from (2.1) and (2.2), we have

$$
\begin{equation*}
F_{j i}=-F_{\imath j} \tag{2.3}
\end{equation*}
$$

where $F_{j i}=F_{j}{ }^{l} g_{l i}$.
In an almost Hermitian manifold, if it satisfies

$$
\begin{equation*}
\nabla_{j} F_{i h}+\nabla_{i} F_{j h}=0, \tag{2.4}
\end{equation*}
$$

where ∇_{J} denotes the operator of covariant derivative with respect to the Riemannian connection, the manifold is called a K-space or Tachibana space.

From (2.4) we have easily

$$
\begin{equation*}
\nabla_{j} F_{i}^{j}=0 \tag{2.5}
\end{equation*}
$$

Generally, in an almost complex manifold, a tensor $T_{j i}\left(T_{j}{ }^{i}\right)$ is called pure in j, i, if it satisfies

$$
* O_{j i}^{a b} T_{a b}=0 \quad\left(* O_{j b}^{a} T_{a}{ }^{b}=0\right)
$$

and $T_{j i}\left(T_{j}{ }^{i}\right)$ is called hybrid in j, i, if it satisfies

$$
O_{j i}^{a b} T_{a b}=0 \quad\left(O_{j b}^{a_{i}} T_{a}^{b}=0\right)
$$

where

$$
* O_{j i}^{a b}=\frac{1}{2}\left(\delta_{j}^{a} \delta_{i}^{b}+F_{\jmath}^{a} F_{i}{ }^{b}\right) \quad \text { and } \quad O_{j i}^{a b}=\frac{1}{2}\left(\delta_{j}^{a} \delta_{i}^{b}-F_{\jmath}{ }^{a} F_{i}{ }^{b}\right)
$$

For instance in an almost-Hermitian manifold, $\nabla_{j} F_{i h}$ is pure in j, i and $g_{j i}$ is hybrid in j, i.

We have easily the following
Proposition 1. If $T_{j}{ }^{2}$ is pure (hybrid) in j, i, then we have

$$
F_{t}{ }^{i} T_{\jmath}{ }^{t}=F_{\jmath}{ }^{t} T_{t}{ }^{2} \quad\left(F_{t}{ }^{i} T_{\jmath}{ }^{t}=-F_{\jmath}{ }^{t} T_{t}{ }^{i}\right)
$$

Proposition 2. If $S^{j i}$ is pure (hybrid) in j, i, then we have

$$
F_{t}^{j} S^{t i}=F_{t}{ }^{i} S^{j t} \quad\left(F_{t}{ }^{j} S^{t i}=-F_{t}^{i} S^{j t}\right)
$$

Proposition 3. If $T_{j i}$ is pure in j, i and $S_{j}{ }^{2}$ is pure (hybrid) in j, i, then $T_{g r} S_{i}^{r}$ is pure (hybrid) in j, i.

Proposition 4. If $T_{j i}$ is pure in j, i and $S^{j i}$ is hybrid in j, i, then we have $T_{j i} \mathrm{~S}^{j i}=0$.

Proposition 5. ${ }^{1)} \quad N_{j i}{ }^{h}$ is pure in j, i and hybrid in i, h.

[^0]Now in a K-space, let $R_{k j i}{ }^{h}$ and $R_{j i}=R_{t j i}{ }^{t}$ be Riemannian curvature tensor and Ricci tensor respectively. Then we have the following identities: ${ }^{2)}$

$$
\begin{gather*}
* O_{j i}^{a b} \nabla_{a} F_{b h}=0, \tag{2.6}\\
F_{h k} \nabla^{t} \nabla_{j} F_{t}^{h}=R_{k j}^{*}-R_{j k} \tag{2.7}
\end{gather*}
$$

where $\nabla^{t}=g^{t a} \nabla_{a}$ and $R^{*}{ }_{j i}=(1 / 2) F^{a b} R_{a b t i} F_{j}{ }^{t}$.

$$
\begin{equation*}
O_{j i}^{a b} R_{a b}=0, \quad O_{j i}^{a b} R_{a b}^{*}=0, \tag{2.8}
\end{equation*}
$$

$$
\begin{equation*}
R^{*}{ }_{j i}=R^{*}{ }_{\imath \jmath}, \tag{2.9}
\end{equation*}
$$

where $F^{j i}=F_{t}{ }^{i} g^{t_{j}}$,
(2.11)

$$
R-R^{*}=\text { constant }
$$

where $R=g^{j i} R_{j i}$ and $R^{*}=g^{j i} R^{*}{ }_{j i}$.
In a Riemannian manifold, we have

$$
\begin{equation*}
\frac{1}{2} \nabla_{i} R=\nabla^{j} R_{j i} \tag{2.12}
\end{equation*}
$$

and in a K-space

$$
\begin{equation*}
\frac{1}{2} \nabla_{i} R^{*}=\nabla^{j} R_{j i .}^{*}{ }^{3)} \tag{2.13}
\end{equation*}
$$

Therefore from (2.11), (2.12) and (2.13), we have

$$
\begin{equation*}
\nabla^{k}\left(R_{i k}-R^{*} i_{i k}\right)=\frac{1}{2} \nabla_{i}\left(R-R^{*}\right)=0 . \tag{2.14}
\end{equation*}
$$

Moreover, for any vector v^{2}, we have

$$
\begin{equation*}
\nabla_{k}\left(N_{t l^{k}} \nabla^{t} v^{l}\right)=0 \tag{2.15}
\end{equation*}
$$

and

$$
\begin{equation*}
N_{j l}{ }^{k}=4 F_{j}^{s} \nabla_{s} F_{l}{ }^{k} \tag{2.16}
\end{equation*}
$$

3. A characterization of an extended contravariant almost analytic vector.

Let M and $T(M)$ be a $2 n$-dimensional almost complex manifold with structure tensor F and a tangent bundle of M respectively. We denote the natural projection $T(M) \rightarrow M$ by π. It is well known that a differentiable cross-section f defines a contravariant almost analytic vector if it satisfies that

$$
\begin{equation*}
d f_{p} \circ F_{p}=\Phi_{f(p)} \circ d f_{p} \quad \text { for } \quad p \in M \tag{3.1}
\end{equation*}
$$

where Φ is an almost complex structure on $T(M)$.

[^1]Let x^{2} be local coordinates in a neighborhood U of a fixed point p of M and y^{2} be the components of a tangent vector v with respect to the natural frame $\partial / \partial x^{i}$. Then $\left(x^{2}, y^{i}\right)$ is a local coordinate in a neighborhood $\pi^{-1}(U)$ of $T(M)$.

If we put

$$
\begin{cases}\Phi_{j}{ }^{2}=F_{j}{ }^{2}, & \Phi_{\bar{j}}{ }^{2}=0, \tag{3.2}\\ \Phi_{j}{ }^{\bar{i}}=\left(\partial_{r} F_{j}{ }^{i}\right) y^{r}+\lambda F_{j}{ }^{s} N_{s r}{ }^{2} y^{r}, & \Phi_{\bar{j}}{ }^{\overline{ }}=F_{j}{ }^{i},\end{cases}
$$

where $\bar{j}=2 n+j$ and λ is a scalar function, then we have a tensor field Φ of type $(1,1)$ on $T(M)$ whose component are $\Phi_{J}{ }^{I}$ with respect to the coordinate neighborhood $\pi^{-1}(U)\left(x^{2}, y^{i}\right)$, and it is easily verified that Φ is an almost complex structure on $T(M)$ by virtue of Proposition 5 where $I, J=1,2, \cdots, 4 n$.

Now, since cross-section f can be locally expressed by

$$
\left\{\begin{array}{l}
\prime x^{2}=x^{2}, \tag{3.3}\\
\prime x^{\overline{2}}=y^{i}\left(x^{1}, x^{2}, \cdots, x^{2 n}\right)
\end{array}\right.
$$

in terms of the local coordinate system (x^{i}, y^{i}) on $T(M)$, (3.1) can be written

$$
\left\{\begin{array}{l}
F_{\jmath}^{r} \partial_{r}^{\prime} x^{i}=\Phi_{r}^{i} \partial_{j}^{\prime} x^{r}+\Phi_{\bar{r}}^{i} \partial_{j}^{\prime} x^{\bar{r}} \tag{3.4}\\
F_{j}^{r} \partial_{r}^{\prime} x^{\bar{\imath}}=\Phi_{r}^{\bar{i} \partial_{j}} x^{r}+\bar{\Phi}_{\bar{r}}^{\bar{i}} \partial_{j}^{\prime} x^{\bar{r}} .
\end{array}\right.
$$

The first equation in (3.4) is an identity and from the second equation in (3.4) we have

$$
\begin{equation*}
F_{\jmath}^{r} \partial_{r} y^{i}=y^{r} \partial_{r} F_{j}{ }^{i}+\lambda F_{j}^{r} N_{r l}{ }^{i} y^{l}+F_{r}{ }^{i} \partial_{j} y^{r} . \tag{3.5}
\end{equation*}
$$

If we denote the components of vector field v by v^{2}, (3.5) can be written as

$$
\underset{v}{£} F_{j}{ }^{2}+\lambda F_{j}{ }^{r} N_{r l}{ }^{2} v^{l}=0
$$

which is nothing but the formula which defines our extended contravariant almost analytic vector.

4. Some lemmas.

In this section, we assume that we are in a K-space. In a K-space, by (2.16), (1.1) turns to

$$
\begin{equation*}
\sigma v^{r} \nabla_{r} F_{j}{ }^{2}-F_{j}{ }^{r} \nabla_{r} v^{2}+F_{r}{ }^{i} \nabla_{j} v^{r}=0 \tag{4.1}
\end{equation*}
$$

or

$$
\begin{equation*}
\sigma v^{t} \nabla_{t} F_{j i}-F_{j}{ }^{t} \nabla_{t} v_{i}+F_{t i} \nabla_{j} v^{t}=0 \tag{4.2}
\end{equation*}
$$

where $\sigma=1+4 \lambda$.
Now, we need following lemmas to prove the main theorem,

Lemma 4.1.4) In an almost-Hermitian space, if tensor $S_{j t i}$ is skew-symmetric, then we have

$$
\nabla^{i} \nabla^{t} S_{j t i}=0
$$

Lemma 4. 2. ${ }^{5)}$ In a compact K-space with constant scalar curvature, if $\nabla_{j} p_{i}+\nabla_{i} p_{j}$ is pure in j, i and r_{2} is a vector such that $r_{2}=\nabla_{i} r$ for a certain scalar r, then we have

$$
\int_{M} p^{i} r^{j} R_{j i} d V=0
$$

where $d V$ means the volume element of the space M.
Lemma 4.3. In a K-space, if v^{2} is an extended contravariant almost analytic vector for a constant λ, then following relation holds good:

$$
\begin{equation*}
\sigma\left(R_{r i}-R^{*}{ }_{r i}\right) v^{r}+\frac{1}{2} N_{\jmath r i} \nabla^{\jmath} v^{r}=0 \tag{4.3}
\end{equation*}
$$

Proof. Operating ∇^{ρ} to (4.1) and taking account of (2.5), we have

$$
\begin{equation*}
\sigma \nabla^{j} v^{t}\left(\nabla_{t} F_{j}{ }^{i}\right)+\sigma v^{t} \nabla^{j} \nabla_{t} F_{j}{ }^{2}-F_{j} \nabla^{j} \nabla_{t} v^{2}+\nabla^{j} F_{t}{ }^{i}\left(\nabla_{j} v^{t}\right)+F_{t} i^{j} \nabla_{j} v^{t}=0 . \tag{4.4}
\end{equation*}
$$

In this place, for the second term of the left hand side of (4.4), by (2.7) and (2.9), we have

$$
\sigma v^{t} \nabla^{j} \nabla_{t} F_{j}^{i}=\sigma v^{t}\left(-R_{t}^{*}{ }^{a} F_{a}{ }^{2}+R_{t}^{s} F_{s}{ }^{i}\right)
$$

where $R^{*}{ }_{j}=g^{t i} R^{*}{ }_{j t}$, and for the third term, we have

$$
\begin{aligned}
F_{\jmath} \nabla^{i} \nabla_{t} v^{2} & =\frac{1}{2} F^{j t}\left(\nabla_{j} \nabla_{t} v^{i}-\nabla_{t} \nabla_{j} v^{i}\right) \\
& =\frac{1}{2} F^{j t} R_{j t s}{ }^{i} v^{s} .
\end{aligned}
$$

Thus (4.4) turns to

$$
(\sigma-1) \nabla_{r} F_{j}^{i}\left(\nabla^{j} v^{r}\right)+\sigma F_{a}{ }^{i} R_{r}{ }^{a} v^{r}-\sigma F_{a}^{i} R_{r}^{*}{ }^{a} v^{r}-\frac{1}{2} F^{j r} R_{\jmath r s} v^{i}+F_{r}^{i} \nabla^{j} \nabla_{j} v^{r}=0 .
$$

Transvecting this equation with $F_{i k}$, and using (2.16), we have

$$
\begin{equation*}
\nabla^{j} \nabla_{j} v_{k}+\sigma R_{r k} v^{r}-(\sigma-1) R^{*}{ }_{r k} v^{r}-\frac{(\sigma-1)}{4} N_{k \jmath r} \nabla^{j} v^{r}=0 . \tag{4.5}
\end{equation*}
$$

On the other hand, operating $F^{k j} \nabla_{k}$ to (4.1), we have

$$
\begin{gather*}
\sigma F^{k j}\left(\nabla_{k} v^{r}\right) \nabla_{r} F_{j}{ }^{2}+\sigma v^{r} F^{k j} \nabla_{k} \nabla_{r} F_{j}{ }^{2}-F^{k j}\left(\nabla_{k} F_{j}\right) \nabla_{r} v^{2}-F^{k j} F_{j} \nabla_{k} \nabla_{r} v^{2} \\
+F^{k j}\left(\nabla_{k} F_{r}{ }^{i}\right) \nabla_{j} v^{r}+F^{k j} F_{r}^{i} \nabla_{k} \nabla_{j} v^{r}=0 . \tag{4.6}
\end{gather*}
$$

4), 5) See Takamatsu [9].

In the left hand side of this equation, for the first term and the fifth term, by (2.16), we have

$$
\begin{aligned}
\sigma F^{k j}\left(\nabla_{k} v^{r}\right) \nabla_{r} F_{j}{ }^{2}+F^{k j}\left(\nabla_{k} F_{r}{ }^{i}\right) \nabla_{j} v^{r} & =-(\sigma+1) F_{j}{ }^{k}\left(\nabla_{k} F_{r}^{i}\right) \nabla^{\jmath} v^{r} \\
& =-\frac{(\sigma+1)}{4} N_{\jmath r}{ }^{i} \nabla^{\jmath} v^{r}
\end{aligned}
$$

for the second term, by (2.9), we have

$$
\begin{aligned}
F^{k j} \nabla_{k} \nabla_{r} F_{j}{ }^{2} & =-\frac{1}{2} F^{k j}\left(\nabla_{k} \nabla_{j} F_{r}^{i}-\nabla_{j} \nabla_{k} F_{r}^{i}\right) \\
& =-\frac{1}{2} F^{k j}\left(R_{k j s}{ }^{i} F_{r}^{s}-R_{k j r}{ }^{s} F_{s}^{i}\right) \\
& =-R^{*} r^{2}+R_{r}^{* \imath}=0
\end{aligned}
$$

For the third term $F^{k j} \nabla_{k} F_{j}^{r}, F^{k j}$ being hybrid in k, j and $\nabla_{k} F_{j}{ }^{r}$ pure in k, j, then this term vanishes by virtue of Proposition 4. For the last term we have

$$
\begin{aligned}
F^{k j} F_{r}^{i} \nabla_{k} \nabla_{j} v^{r} & =\frac{1}{2} F_{r}^{i} F^{k j}\left(\nabla_{k} \nabla_{j} v^{r}-\nabla_{j} \nabla_{k} v^{r}\right) \\
& =\frac{1}{2} F_{r}{ }^{i} F^{k j} R_{k j s}{ }^{r} v^{s} \\
& =R^{*}{ }_{s}{ }^{2} v^{s}
\end{aligned}
$$

Hence, (4. 6) becomes

$$
\begin{equation*}
\nabla^{r} \nabla_{r} v_{k}+R_{r k}^{*} v^{r}-\frac{(\sigma+1)}{4} N_{\jmath r k} \nabla^{\jmath} v^{r}=0 \tag{4.7}
\end{equation*}
$$

Thus, subtracting (4.7) from (4.5), we get (4.3).
Lemma 4. 4. In a compact K-space, if v^{2} is an extended contravariant almost analytic vector for a constant $\lambda \neq-1 / 4$ and r^{2} is a vector such that $r^{2}=\nabla^{i} r$ for a certain scalar r, then we have

$$
\begin{equation*}
\int_{M} r^{\jmath} v^{h}\left(R_{h j}-R_{h j}^{*}\right) d V=0 \tag{4.8}
\end{equation*}
$$

Proof. From

$$
\nabla^{j}\left\{r v^{h}\left(R_{h j}-R_{h j}\right)\right\}=r^{\jmath} v^{h}\left(R_{h j}-R_{h j}\right)+r \nabla^{\jmath} v^{h}\left(R_{h j}-R_{h j}^{*}\right)+r v^{h} \nabla^{j}\left(R_{h j}-R_{h j}^{*}\right),
$$

by Green's theorem, we have

$$
\begin{equation*}
\int_{M}\left[r^{v} v^{h}\left(R_{h j}-R^{*} *_{h j}\right)+r \nabla^{\jmath} v^{h}\left(R_{h j}-R_{h j}^{*}\right)+r v^{h} \nabla^{j}\left(R_{h j}-R_{h j}^{*}\right)\right] d V=0 \tag{4.9}
\end{equation*}
$$

On the other hand, operating Γ^{i} to (4.3), we have

$$
\sigma \nabla^{i}\left(R_{r i}-R^{*} r_{\imath}\right) v^{r}+\sigma\left(R_{r i}-R^{*}{ }_{r \imath}\right) \nabla^{i} v^{r}+\frac{1}{2} \nabla^{i}\left(N_{\jmath r i} \nabla^{\imath} v^{r}\right)=0
$$

In this place, since $1+4 \lambda=\sigma \neq 0$, taking account of (2.14) and (2.15), we have (4. 10)

$$
\nabla^{i} v^{r}\left(R_{r i}-R_{r}^{*}\right)=0
$$

Consequently, from (4.9), we have (4.8).
Lemma 4.5. In a compact K-space, an extended contravariant almost analytic vector v^{2} for a constant λ such that $-3 / 4 \leqq \lambda \leqq 0, \lambda \neq-1 / 4$, can be decomposed into the form

$$
\begin{equation*}
v^{2}=p^{2}+r^{2} \tag{4.11}
\end{equation*}
$$

where $\nabla_{2} p^{2}=0$ and r^{2} is a vector such that $r^{2}=\nabla^{i} r$ for a certain scalar r and

$$
\begin{gather*}
* O_{a b}^{i i}\left(\nabla^{a} p^{b}+\nabla^{b} p^{a}\right)=0, \tag{4.12}\\
r^{t} \nabla_{t} F_{j i}=0 . \tag{4.13}
\end{gather*}
$$

Proof. By the theory of harmonic integrals, (4.11) is the result that holds good for any vector v^{2} in a compact orientable Riemannian space. Next putting

$$
T_{j i}=\nabla_{j} p_{i}+\nabla_{2} p_{j}+F_{j}^{a} F_{i}{ }^{b}\left(\nabla_{a} p_{b}+V_{b} p_{a}\right)
$$

and writing out the square of $T_{j i}$, we get

$$
\frac{1}{4} T_{j i} T^{j i}=\left(\nabla_{\jmath} p_{i}+\nabla_{\imath} p_{j}\right) \nabla^{\jmath} p^{2}+F_{\jmath}^{a} F_{i}^{b} \nabla^{\jmath} p^{i}\left(\nabla_{a} p_{b}+\nabla_{b} p_{a}\right)
$$

Now, operating ∇^{i} to $p^{j} T_{j i}$, we have

$$
\begin{aligned}
\nabla^{i}\left(p^{j} T_{j i}\right)= & \frac{1}{4} T_{j i} T^{j i}+p^{j} \nabla^{i} T_{j i} \\
= & \frac{1}{4} T_{j i} T^{j i}+p^{\jmath}\left\{\nabla^{i}\left(\nabla_{\jmath} p_{i}+\nabla_{\imath} p_{j}\right)+F_{\jmath}{ }^{a}\left(\nabla^{i} F_{i}{ }^{b}\right)\left(\nabla_{a} p_{b}+\nabla_{b} p_{a}\right)\right. \\
& \left.\quad+\left(\nabla^{i} F_{\jmath}{ }^{a}\right) F_{i}{ }^{b}\left(\nabla_{a} p_{b}+\nabla_{b} p_{a}\right)+F_{\jmath}{ }^{a} F_{i}{ }^{b} \nabla^{i}\left(\nabla_{a} p_{b}+\nabla_{b} p_{a}\right)\right\} \\
= & \frac{1}{4} T_{j i} T^{j i}+p^{\jmath}\left\{\nabla^{i}\left(\nabla_{\jmath} p_{i}+\nabla_{\imath} p_{j}\right)+F_{\jmath}{ }^{a} F_{i}{ }^{b} \nabla^{i}\left(\nabla_{a} p_{b}+\nabla_{b} p_{a}\right)\right\},
\end{aligned}
$$

because $\nabla^{i} F_{i}{ }^{b}=0$ and since $\left(\nabla^{i} F_{\jmath}{ }^{a}\right) F_{i}{ }^{b}=\left(\nabla_{i} F^{b a}\right) F_{j}{ }^{i}$ is skew-symmetric with respect to a and $b,\left(\nabla^{i} F_{j}{ }^{a}\right) F_{i}{ }^{b}\left(\nabla_{a} p_{b}+\nabla_{b} p_{a}\right)$ vanishes.

On the other hand, interchanging j and i in (4.2) and subtracting the equation thus obtained from (4.2), we get

$$
\begin{equation*}
2 v v^{t} \nabla_{t} F_{j i}-F_{j}{ }^{t}\left(\nabla_{t} v_{i}-\nabla_{i} v_{t}\right)+F_{t i}\left(\nabla_{j} v^{t}-\nabla^{t} v_{j}\right)=0 . \tag{4.15}
\end{equation*}
$$

Substituting (4.11) into (4.15) and taking account of $\nabla_{j} r_{2}=\nabla_{i} r_{j}$, we have

$$
2 \sigma v^{t} \nabla_{t} F_{j i}-F_{\jmath}\left(\nabla_{t} p_{i}-\nabla_{\imath} p_{t}\right)+F_{t i}\left(\nabla_{\jmath} p^{t}-\nabla^{t} p_{j}\right)=0 .
$$

Since $\nabla_{i} F_{\jmath}{ }^{2}=0$ and $\nabla_{\imath} p^{2}=0$, this equation can be easily written as

$$
\begin{align*}
& F_{j}^{t}\left(\nabla_{\imath} p_{t}+\nabla_{t} p_{i}\right)-F_{\imath}^{t}\left(\nabla_{j} p_{t}+\nabla_{t} p_{j}\right) \\
= & -2 \sigma v^{t} \nabla_{t} F_{j i}+2 p^{t} \nabla_{t} F_{j i}+2 \nabla^{t}\left(F_{j t} p_{i}+F_{t i} p_{j}+F_{\imath \jmath} p_{t}\right) . \tag{4.16}
\end{align*}
$$

Operating ∇^{i} to (4.16) and using (4.11) and $\nabla^{i} r^{t}\left(\nabla_{t} F_{j i}\right)=0$, we have

$$
\begin{equation*}
\nabla^{i} F_{\jmath}^{t}\left(\nabla_{\imath} p_{t}+\nabla_{t} p_{i}\right)+F_{\jmath} \nabla^{i}\left(\nabla_{\imath} p_{t}+\nabla_{t} p_{i}\right)-F_{\imath} \nabla^{t} \nabla^{i}\left(\nabla_{\jmath} p_{t}+\nabla_{t} p_{j}\right) \tag{4.17}
\end{equation*}
$$

$$
=-2(\sigma-1)\left(\nabla^{i} v^{t}\right) \nabla_{t} F_{j i}-2(\sigma-1) v^{t} \nabla^{i} \nabla_{t} F_{j i}-2 r^{t} \nabla^{i} \nabla_{t} F_{j i}+2 \nabla^{i} \nabla^{t} S_{j t i}
$$

where $S_{j t i}=F_{j t} p_{i}+F_{t i} p_{j}+F_{\imath \jmath} p_{t}$.
In (4.17), since $\nabla^{i} F_{\jmath}^{t}$ is skew-symmetric with respect to i and $t, \nabla^{i} F_{j}^{t}\left(\nabla_{\imath} p_{t}+\nabla_{t} p_{i}\right)$ $=0$ and by Lemma 4.1, $\nabla^{i} \nabla^{t} S_{j t i}=0$.

Hence, (4.17) turns to

$$
\begin{aligned}
& F_{j}^{t} \nabla^{i}\left(\nabla_{\imath} p_{t}+\nabla_{t} p_{i}\right)-F_{\imath}^{t} \nabla^{i}\left(\nabla_{\jmath} p_{t}+\nabla_{t} p_{j}\right) \\
= & -2 r^{t} \nabla^{i} \nabla_{t} F_{j i}-2(\sigma-1) \nabla^{i} v^{t}\left(\nabla_{t} F_{j i}\right)-2(\sigma-1) v^{t} \nabla^{i} \nabla_{t} F_{j i} .
\end{aligned}
$$

Transvecting this equation with $p^{h} F_{h}{ }^{j}$ and taking account of (2.7) and (2.16), we have

$$
\begin{align*}
& p^{h}\left\{\nabla^{i}\left(\nabla_{\imath} p_{h}+\nabla_{h} p_{i}\right)+F_{h}^{j} F_{\imath}^{t} \nabla^{i}\left(\nabla_{\jmath} p_{t}+\nabla_{t} p_{j}\right)\right\} \\
= & 2 p^{h} r^{t}\left(R_{t h}^{*}-R_{t h}\right)+\frac{1}{2}(\sigma-1) N_{i t h}\left(\nabla^{i} v^{t}\right) p^{h}+2(\sigma-1) p^{h} v^{t}\left(R_{t h}^{*}-R_{t h}\right) . \tag{4.18}
\end{align*}
$$

Substituting (4.3) into (4.18), we get

$$
\begin{align*}
& p^{h}\left\{\nabla^{i}\left(\nabla_{2} p_{h}+\nabla_{h} p_{i}\right)+F_{h}^{j} F_{\imath}^{t} \nabla^{i}\left(\nabla_{J} p_{t}+\nabla_{t} p_{j}\right)\right\} \\
= & 2 p^{h} r^{t}\left(R^{*}{ }_{t h}-R_{t h}\right)+(\sigma-1)(\sigma+2) p^{h} v^{t}\left(R_{t h}^{*}-R_{t h}\right) . \tag{4.19}
\end{align*}
$$

Thus, substituting (4.19) into (4.14) and making use of Green's theorem, we have
(4. 20) $\int_{M}\left[\frac{1}{4} T_{j i} T^{j i}+2 p^{h} r^{t}\left(R_{t h}^{*}-R_{t h}\right)+(\sigma-1)(\sigma+2) p^{h} v^{t}\left(R^{*}{ }_{t h}-R_{t h}\right)\right] d V=0$.

Substituting $p^{h}=v^{h}-r^{h}$ into (4.20) and taking account of Lemma 4.4, (4.20) becomes

$$
\begin{equation*}
\int_{M}\left[\frac{1}{4} T_{j i} T^{j i}+2 r^{h} r^{t}\left(R_{t h}-R^{*}\right)+(\sigma-1)(\sigma+2) v^{h} v^{t}\left(R_{t h}^{*}-R_{t h}\right)\right] d V=0, \tag{4.21}
\end{equation*}
$$ or by (2.10),

(4. 22) $\int_{M}\left[\frac{1}{4} T_{j i} T^{j i}+2 r^{h} \nabla_{h} F_{j i}\left(r^{t} \nabla_{t} F^{j i}\right)-(\sigma-1)(\sigma+2) v^{h} \nabla_{h} F_{j i}\left(v^{t} \nabla_{t} F^{j i}\right)\right] d V=0$.

Thus, if $-2 \leqq \sigma \leqq 1$, that is, $-3 / 4 \leqq \lambda \leqq 0$ and $\lambda \neq-1 / 4$, then we can deduce $T_{j i}=0$ and $r^{h} \nabla_{h} F_{j i}=0$.

Lemma 4. 6. If $-3 / 4<\lambda<0, \lambda \neq-1 / 4$, we have

$$
\begin{equation*}
v^{h} \nabla_{h} F_{j i}=0, \quad r^{h} \nabla_{h} F_{j i}=0 . \tag{4.23}
\end{equation*}
$$

Proof. This follows from (4.22).
Lemma 4. 7. In a compact K-space, if v^{2} is an extended contravariant almost
analytic vector for a constant λ such that $-3 / 4 \leqq \lambda \leqq 0, \lambda \neq-1 / 4$, then it satisfies

$$
\begin{equation*}
\nabla^{\imath} \nabla_{l} v^{2}+R_{t}{ }^{2} v^{t}=0 \tag{4.24}
\end{equation*}
$$

Proof. When $-3 / 4<\lambda<0, \lambda \neq-1 / 4$, multiplying (4.23) by $\nabla_{k} F^{j i}$ and taking account of (2.10), we have

$$
\left(R_{t k}-R^{*}{ }_{t k}\right) v^{t}=0,
$$

and hence, from (4.3), $N_{t l i} \nabla^{t} v^{l}=0$. Consequently by (4.7), we get (4.24).
When $\lambda=-3 / 4$ or $\lambda=0$, forming (4.5) $\times(\sigma+1)-(4.7) \times(\sigma-1)$, we have

$$
\begin{equation*}
2 \nabla^{i} V_{i} v_{k}+\sigma(\sigma+1) R_{r k} v^{r}-(\sigma-1)(\sigma+2) R_{r k}^{*} v^{r}=0 . \tag{4.25}
\end{equation*}
$$

In this place, if $\lambda=-3 / 4$ or $\lambda=0$, that is, if $\sigma=1$ or $\sigma=-2$, then from (4.25) we have (4.24).

Lemma 4. 8. In a compact K-space, an extended contravariant almost analytic vector v^{\imath} for a constant λ such that $\lambda=-1 / 4$, can be decomposed into the form

$$
\begin{equation*}
v^{2}=p^{2}+r^{2} \tag{4.26}
\end{equation*}
$$

where $\nabla_{2} p^{2}=0$ and r^{2} is a vector such that $r^{2}=\nabla^{i} r$ for a certain scalar r and

$$
\begin{gather*}
* O_{a b}^{i j}\left(\nabla^{a} p^{b}+\nabla^{b} p^{a}\right)=0, \tag{4.27}\\
p^{t} \nabla_{t} F_{j i}=0 .
\end{gather*}
$$

Proof. In (4.2) if $\lambda=-1 / 4$, i.e. $\sigma=0$, we have

$$
\begin{equation*}
\nabla_{j} v_{i}-F_{j}{ }^{a} F_{i}{ }^{b} \nabla_{a} v_{b}=0 . \tag{4.29}
\end{equation*}
$$

Interchanging j and i in (4.29) and subtracting the equation thus obtained from (4.29) and substituting $v^{2}=p^{2}+r^{2}$, we have

$$
\begin{equation*}
\left(\nabla_{\jmath} p_{i}-\nabla_{\imath} p_{j}\right)-F_{j}{ }^{a} F_{i}{ }^{b}\left(\nabla_{a} p_{b}-\nabla_{b} p_{a}\right)=0 \tag{4.30}
\end{equation*}
$$

Transvecting (4.30) with $F_{k^{j}}$ and taking account of $\nabla^{j} F_{j i}=0$ and $\nabla_{a} p^{a}=0$, we have

$$
\begin{equation*}
F_{k}^{a}\left(\nabla_{\imath} p_{a}+\nabla_{a} p_{i}\right)-F_{i}{ }^{b}\left(\nabla_{k} p_{b}+\nabla_{b} p_{k}\right)=2 p^{a} \nabla_{a} F_{k i}+2 \nabla^{a} S_{k a \imath} \tag{4.31}
\end{equation*}
$$

where $S_{k a \imath}=F_{k a} p_{i}+F_{a \imath} p_{k}+F_{i k} p_{a}$.
Operating ∇^{i} to (4.31), taking account of that $\nabla^{i} F_{k}{ }^{a}$ is skew-symmetric in i, a and $\nabla^{i} F_{i}^{b}=0$, by Lemma 4.1, we have

$$
\begin{equation*}
F_{k}{ }^{a} \nabla^{i}\left(\nabla_{\imath} p_{a}+\nabla_{a} p_{i}\right)-F_{\imath}{ }^{a} \nabla^{i}\left(\nabla_{k} p_{a}+\nabla_{a} p_{k}\right)=2 \nabla^{i} p_{a}\left(\nabla^{a} F_{k \imath}\right)+2 p^{a} \nabla^{i} \nabla_{a} F_{k i} . \tag{4.32}
\end{equation*}
$$

Transvecting (4.32) with $F_{h}{ }^{k}$ and making use of (2.7), we have

$$
\begin{align*}
& \nabla^{i}\left(\nabla_{\imath} p_{h}+\nabla_{h} p_{i}\right)+F_{h}^{k} F_{\imath}{ }^{a} \nabla^{i}\left(\nabla_{k} p_{a}+\nabla_{a} p_{k}\right)=-2 F_{h}{ }^{k}\left(\nabla^{i} p_{a}\right) \nabla^{a} F_{k i}-2 p^{a} F_{h}{ }^{k} \nabla^{i} \nabla_{a} F_{k \imath} \\
&=-F_{h}^{k}\left(\nabla^{a} F_{k}^{i}\right)\left(\nabla_{\imath} p_{a}-\nabla_{a} p_{i}\right)-2 p^{a}\left(R_{h a}^{*}-R_{h a}\right) \tag{4.33}\\
&=2 p^{a}\left(R_{h a}-R_{h a}^{*}\right)
\end{align*}
$$

because, since $\nabla^{a} F_{h^{2}}{ }^{2}$ is pure in a, i and by (4.30), $\nabla_{2} p_{a}-\nabla_{a} p_{i}$ is hybrid in a, i,
$F_{h}{ }^{k}\left(\nabla^{a} F_{k}{ }^{i}\right)\left(\nabla_{\imath} p_{u}-\nabla_{a} p_{i}\right)$ vanishes by virtue of Proposition 4.
Next substituting (4.33) into (4.14) in which $h=j$, we have

$$
\begin{equation*}
\nabla^{i}\left(p^{h} T_{i h}\right)=\frac{1}{4} T^{i h} T_{i h}+2 p^{h} p^{a}\left(R_{a h}-R_{a h}^{*}\right) \tag{4.34}
\end{equation*}
$$

and by Green's theorem, we have

$$
\int_{M}\left[\frac{1}{4} T^{i h} T_{i n}+2 p^{h} p^{a}\left(R_{a h}-R^{*} a n\right)\right] d V=0 .
$$

Thus, we get $T_{i h}=0$ and $p^{h} \nabla_{h} F_{j i}=0$.
Lemma 4.9. In a compact K-space, if v^{2} is an extended contravariant almost analytic vector for a constant λ such that $\lambda=-1 / 4$, then it satisfies

$$
\begin{equation*}
\nabla^{\imath} \nabla_{\imath} v^{2}+R^{*}{ }_{t} v^{t} v^{t}=0 . \tag{4.35}
\end{equation*}
$$

Proof. (4.35) follows from (4.25).

5. Proof of the main theorem.

Theorem. In a compact K-space with constant scalar curvature, an extended contravariant almost analytic vector v^{2} for a constant λ such that $-3 / 4 \leqq \lambda \leqq 0$ is decomposed into the form

$$
v^{2}=p^{i}+F_{r}^{2} q^{r}
$$

where p^{2} and q^{2} are both Killing vectors.
Proof. First of all, we shall prove that p^{2} is a Killing vector. When $-3 / 4 \leqq \lambda \leqq 0$ and $\lambda \neq-1 / 4$, we put

$$
U_{j i}=\nabla_{j} p_{i}+\nabla_{\imath} p_{j} .
$$

Operating ∇^{i} to $p^{j} U_{j i}$ and making use of $p_{i}=v_{i}-r_{i}$, we have

$$
\nabla^{i}\left(p^{j} U_{j i}\right)=\frac{1}{2} U_{j i} U^{j i}+p^{j}\left(\nabla^{i} \nabla_{j} v_{i}+\nabla^{i} \nabla_{i} v_{j}-2 \nabla^{i} \nabla_{j} r_{2}\right)
$$

$$
\begin{equation*}
=\frac{1}{2} U_{j i} U^{j i}+p^{j}\left(\nabla^{i} \nabla_{i} v_{j}+\nabla^{i} \nabla_{j} v_{i}-\nabla_{j} \nabla^{i} v_{i}+\nabla_{j} \nabla^{i} v_{i}-2 \nabla^{i} \nabla_{j} r_{i}+2 \nabla_{j} \nabla^{i} r_{i}-2 \nabla_{j} \nabla^{i} r_{2}\right) . \tag{5.1}
\end{equation*}
$$

In this place, by the Ricci's identity and (4.24), we have

$$
\begin{equation*}
\nabla^{i} \nabla_{i} v_{j}+\nabla^{i} \nabla_{j} v_{i}-\nabla_{j} \nabla^{i} v_{i}=\nabla^{i} \nabla_{i} v_{j}+R_{j i} v^{i}=0 \tag{5.2}
\end{equation*}
$$

and

$$
\begin{equation*}
\nabla^{i} \nabla_{j} r_{i}-\nabla_{j} \nabla^{i} r_{2}=r^{i} R_{j i} . \tag{5.3}
\end{equation*}
$$

Hence, making use of (5.2) and (5.3), from (5.1) by Green's theorem we find

$$
\begin{equation*}
\int_{M}\left[\frac{1}{2} U_{j i} U^{j i}-2 p^{\jmath} r^{i} R_{j i}+p^{j} V_{j} \alpha\right] d V=0 \tag{5.4}
\end{equation*}
$$

where $\alpha=V^{i} v_{i}-2 V^{i} r_{2}$.
From $\nabla_{j}\left(\alpha p^{j}\right)=p^{j} \nabla_{j} \alpha+\alpha \nabla_{j} p^{j}=p^{j} \nabla_{j} \alpha$, we have

$$
\begin{equation*}
\int_{M} p^{j} \nabla_{j} \alpha d V=0 \tag{5.5}
\end{equation*}
$$

Thus taking account of (4.12) and Lemma 4.2, (5.4) becomes

$$
\int_{M} \frac{1}{2} U_{j i} U^{j i} d V=0
$$

from which it follows that

$$
\begin{equation*}
U_{j i}=\nabla_{J} p_{i}+\nabla_{\imath} p_{j}=0, \tag{5.6}
\end{equation*}
$$

that is, p^{2} is a Killing vector.
Next, when $\lambda=-1 / 4$, again we consider (5.1). In this place, by the Ricci's identity and Lemma 4.9, we have

$$
\begin{align*}
\nabla^{i} \nabla_{i} v_{j}+\nabla^{i} \nabla_{j} v_{i}-\nabla_{j} \nabla^{i} v_{i} & =\nabla^{i} \nabla_{i} v_{j}+R_{j i} v^{i} \\
& =-R^{*}{ }_{j i} v^{2}+R_{j i} v^{i} . \tag{5.7}
\end{align*}
$$

Hence, making use of (5.3) and (5.7), from (5.1) by Green's theorem, we find

$$
\begin{equation*}
\int_{M}\left[\frac{1}{2} U_{j i} U^{j i}+p^{j} v^{i}\left(R_{j i}-R^{*}{ }_{j i}\right)-2 p^{\jmath} r^{i} R_{j i}+p^{j V_{j} \alpha}\right] d V=0 \tag{5.8}
\end{equation*}
$$

where $\alpha=\nabla^{i} v_{i}-2 \nabla^{i} r_{i}$.
Multiplying (4.28) by $\nabla_{h} F^{j i}$ and using (2.10), we have

$$
p^{i}\left(R_{j i}-R^{*}{ }_{j i}\right)=0 .
$$

Thus taking account of (4.27), by Lemma 4.2 and (5.5), (5.8) becomes

$$
\int_{M} \frac{1}{2} U_{j i} U^{j i} d V=0
$$

from which it follows that

$$
U_{j i}=\nabla_{\jmath} p_{i}+\nabla_{\imath} p_{j}=0
$$

If we put

$$
\begin{equation*}
q^{2}=-F_{t}^{2} r^{t}, \quad \text { or } \quad r^{2}=F_{t}^{2} q^{t} \tag{5.9}
\end{equation*}
$$

then, $v^{2}=p^{2}+r^{2}$ can be written as

$$
\begin{equation*}
v^{2}=p^{2}+F_{t}{ }^{2} q^{t} \tag{5.10}
\end{equation*}
$$

Lastly, we shall prove that q^{2} is a Killing vector. From (5.9), we have $q_{i}=F_{2}{ }^{t} r_{t}$ from which it follows

$$
\begin{equation*}
\nabla_{h} q_{i}+\nabla_{i} q_{h}=\left(\nabla_{h} F_{\imath}{ }^{t}+\nabla_{i} F_{h}{ }^{t}\right) r_{t}+\left(F_{\imath}{ }^{t} \nabla_{h} r_{t}+F_{h}{ }^{t} \nabla_{i} r_{t}\right) . \tag{5.11}
\end{equation*}
$$

Interchanging j and i in (4.2) and adding the equation thus obtained to (4.2), we get

$$
F_{\imath}{ }^{t}\left(\nabla_{j} v_{t}+\nabla_{t} v_{j}\right)+F_{j}{ }^{t}\left(\nabla_{i} v_{t}+\nabla_{t} v_{i}\right)=0 .
$$

Substituting $v_{i}=p_{i}+r_{2}$ into this equation and using (5.6) and $\nabla_{i} r_{i}=\nabla_{i} r_{l}$, we have

$$
\begin{equation*}
F_{\imath}{ }^{t} \nabla_{j} r_{t}+F_{\jmath}{ }^{t} \nabla_{i} r_{t}=0 \tag{5.12}
\end{equation*}
$$

Thus, by (2.4) and (5.12), the right hand side of (5.11) vanishes. Consequently we find q^{2} is a Killing vector. q.e.d.

Bibliography

[1] Lichnerowicz, A., Geometrie des groupes de transformations. Paris (1958).
[2] Matsushima, Y., Sur la structure du groupe d'homeomorphısmes analytiques d'une certane variété Kählérienne. Nagoya Math. J. 11 (1957), 145-150.
[3] Satô, I., Almost analytic tensor fields in almost complex manifolds. Tensor, New Series 17 (1966), 105-119.
[4] Sawaki, S., On the Matsushıma's theorem in a compact Einstein K-space. Tôhoku Math. J. 13 (1961), 455-465.
[5] Sawaki, S., and K. Takamatsu, On extended almost analytic vectors and tensors in almost complex manıfolds. Scı. Rep. Niigata Unıv. 4 (1967), 17-29.
[6] Tachibana, S., On almost-analytic vectors in almost-Kählerıan manıfolds. Tôhoku Math. J. 11 (1959), 247-265.
[7] Tachibana, S., On almost-analytic vectors in certain almost-Hermitian manifolds. Tôhoku Math. J. 11 (1959), 351-363.
[8] Tachibana, S., On infinitesimal conformal and projective transformations of compact K-space. Tôhoku Math. J. 13 (1961), 386-392.
[9] Takamatsu, K., On a decomposition of an almost-analytic vector in a K-space with constant scalar curvature. Tôhoku Math. J. 16 (1964), 72-80.
[10] Yano, K., The theory of Lie derıvatives and its applications. Amsterdam, 1957.

[^0]: 1) See Yano [10].
[^1]: 2) See Tachibana [7], [8].
 3) See Sawaki [4].
