ON THE SOLUTION OF THE FUNCTIONAL EQUATION $f \circ g(z)=F(z)$, II

By Mitsuru Ozawa

In this note we shall prove some extensions of our previous results on the functional equation $f \circ g(z)=F(z)$. We have always assumed that F is an entire function of finite order in [3]. In this note we shall be mainly concerned with a special type of entire functions of infinite order as F.

Theorem 1. Assume that $F(z)$ has the form $P(z) e^{H(z)}$ with a polynomial $P(z)$, which is not a constant, and with an entire function $H(z)$ of order less than 1 (which does not exclude a polynomial). Then the functional equation $f \circ g(z)=F(z)$ has no transcendental entire solutions f and g.

Proof. Let $\left\{w_{n}\right\}$ be the set of solutions of $f(w)=0$. If the set $\left\{w_{n}\right\}$ contains at least two points w_{1} and w_{2}, at least one of $g(z)=w_{j}, j=1,2$, contains an infinite number of solutions, which must be the zeros of $P(z)$. This is a contradiction. Hence $f(w)=0$ has at most one solution. If there is no solution of $f(w)=0$, then $P(z)$ must be a constant, which is absurd. Hence $f(w)=0$ has just one solution. Therefore $f(w)=A\left(w-w_{1}\right)^{n} e^{L(w)}, L(0)=0$. Next consider the equation $g(z)=w_{1}$. This has only a finite number of solutions. Hence $g(z)=w_{1}+Q(z) e^{M(z)}, M(0)=0$, where $Q(z)$ is a polynomial. Therefore

$$
P(z) e^{H(z)}=A Q(z)^{n} e^{n M(z)} \exp \left(L\left(w_{1}+Q(z) e^{M(z)}\right)\right) .
$$

This implies that $P(z)=B Q(z)^{n}$ and $H(z)=n M(z)+L\left(w_{1}+Q(z) e^{M(z)}\right)+C$ with two constants B and C. However the second equation implies that the order of $H(z)$ is not less than 1, which contradicts the assumption on the order of $H(z)$.

Theorem 2. Assume that $F(z)$ has the form $P(z) \exp (\exp (z))$ with a nonconstant polynomial $P(z)$. Then the functional equation $f \circ g(z)=F(z)$ has no pair of transcendental entire solutions f and g.

Proof. By the proof of theorem 1 we also have

$$
e^{z}=n M(z)+L\left(w_{1}+Q(z) e^{M(z)}\right)+C, \quad P(z)=B Q(z)^{n} .
$$

If $M(z)$ is a transcendental entire function or a polynomial of degree greater than 1, then the order of $L\left(w_{1}+Q(z) e^{M(z)}\right)$ is not less than 2. Further

$$
T(r, M)=o\left(T\left(r, e^{M}\right)\right)=o\left(T\left(r, L\left(w_{1}+Q e^{M}\right)\right)\right)
$$

outside a set of finite measure. Hence the order of $n M(z)+L\left(w_{1}+Q(z) e^{M(z)}\right)+C$ is
Recerved October 16, 1967.
not less than 2, which is a contradiction. Hence $M(z)$ must be of the form αz with a non-zero constant α. If $L(\mathrm{w})$ is a transcendental entire function,

$$
T(r, M)=o\left(T\left(r, e^{M}\right)\right) \quad \text { and } \quad T\left(r, e^{M}\right)=o\left(T\left(r, L\left(w_{1}+Q e^{M}\right)\right)\right)
$$

outside a set of finite measure. This implies that

$$
T\left(r, e^{z}\right) \sim T\left(r, L\left(w_{1}+Q e^{M}\right)\right),
$$

which is a contradiction. Hence $L(w)$ must be a polynomial. In this case we have the following identity:

$$
e^{z}+Q_{p} e^{\alpha p z}+Q_{p-1} e^{\alpha(p-1) z}+\cdots+Q_{1} e^{\alpha z}=n \alpha z+D
$$

with suitable polynomials Q_{p}, \cdots, Q_{1}, among which Q_{p} is not a constant, and with a suitable constant D. However the above identity leads to a contradiction. This is not trivial. But we can easily modify the reasoning of Nevanlinna's extension [2] of Borel's formulation of Picard's theorem and then we can make use of the fact $Q_{p} \neq \mathrm{a}$ constant. See also [1].

As a variant of theorem 1 we have the following theorem.
Theorem 3. Assume that $F^{\prime}(z)$ has the form $P(z) e^{I I^{(z)}}$ with a non-constant polynomial $P(z)$ and with an entire function $H(z)$ of order less than 1 . Then the functional equation $f \circ g(z)=F(z)$ has no pair of transcendental entire solutions f and g.

Proof. We shall start from the functional equation

$$
f^{\prime} \circ g(z) \cdot g^{\prime}(z)=P(z) e^{H(z)}
$$

Again by the same reasoning we have the following two possibilities:
Case i) $f^{\prime}(w)=A\left(w-w_{1}\right)^{n} e^{L(w)}, L(0)=0, g(z)=w_{1}+Q(z) e^{M(z)}$ and $g^{\prime}(z)=R(z) e^{N(z)}$ with two polynomials $Q(z)$ and $R(z)$, and

Case ii) $f^{\prime}(w)=e^{L(w)}$ and $g^{\prime}(z)=Q(z) e^{M(z)}$.
In the first case we have

$$
\left(Q^{\prime}+Q M^{\prime}\right) e^{M}=R e^{N}
$$

and

$$
A Q^{n} e^{n M} e^{L\left(w_{1}+Q^{e M}\right)} R e^{N}=P e^{I I} .
$$

Hence we have

$$
B Q^{n} R=P
$$

and

$$
n M+L\left(w_{1}+Q e^{M}\right)+N=H+C
$$

with two constants B and C. Assume that $M(z)$ is not a polynomial. Then $Q^{\prime}+Q M=0$ has only a finite number of solutions and hence $Q^{\prime}+Q M^{\prime}=R e^{K}$. Hence

$$
K+M=N+D
$$

with a constant D. Evidently

FUNCTIONAL EQUATION $f \circ g(z)=F(z)$, II

$$
\begin{aligned}
T(r, N) & \leqq T(r, M)+T(r, K)+O(\log r) \\
& =o\left(T\left(r, e^{M}\right)\right)
\end{aligned}
$$

outside a set of finite measure. Hence we have

$$
T(r, H)=T\left(r, L\left(w_{1}+Q e^{M}\right)\right)+o\left(T\left(r, e^{M}\right)\right)
$$

which shows that the order of $H(z)$ is not less than 1 . This is a contradiction. Assume that $M(z)$ is a polynomial. Then $M(z)=N(z)+E$ with a constant E. This implies that

$$
T(r, H)=T\left(r, L\left(w_{1}+Q e^{M}\right)\right)+o\left(T\left(r, e^{M}\right)\right)
$$

which is again a contradiction.
In the second case we have

$$
\exp \left(L\left(B+\int_{0}^{z} Q(t) e^{M(t)} d t\right)\right) Q(z) e^{M(z)}=P(z) e^{H(z)}
$$

Hence $Q=C P$ and

$$
L\left(B+\int_{0}^{z} Q(t) e^{M(t)} d t\right)+M(z)=H(z)+D
$$

with two constants C and D. Here we remark that every entire function and its derivatives have the same order. Hence the order of $H(z)$ is not less than that of e^{M}, which is not less than 1 . This is absurd.

Theorem 4. Assume that $F^{\prime}(z)$ has the form $P(z) \exp (\exp (z))$ with a nonconstant polynomial $P(z)$. Then the functional equation $f \circ g(z)=F(z)$ has no pair of transcendental entire solutions f and g.

Proof. Again we have two possibilities:
Case i). $f^{\prime}(w)=A\left(w-w_{1}\right)^{n} e^{L(w)}, L(0)=0, g(z)=w_{1}+Q(z) e^{M(z)}, M(0)=0$ and $g^{\prime}(z)$ $R(z) e^{N(z)}$, and

Case ii). $f^{\prime}(w)=e^{L(w)}$ and $g^{\prime}(z)=Q(z) e^{M(z)}, M(0)=0$.
In the first case we similarly have the following facts: $M(z)=\alpha z$ and L is a polynomial. Then we have the following identity:

$$
e^{z}+Q_{p} e^{\alpha n z}+\cdots+Q_{1} e^{\alpha z}=(n+1) \alpha z+E, \quad \alpha \neq 0
$$

with a constant E and polynomials Q_{1}, \cdots, Q_{p} and Q_{p} is not a constant. Again by Nevanlinna's extension of Borel's formulation of Picard's theorem we have a contradiction.

In the second case we have

$$
\exp \left(L\left(B+\int_{0}^{z} Q(t) e^{M(t)} d t\right)\right) Q(z) e^{M(z)}=P(z) e^{e z}
$$

and hence $Q(z)=C P(z)$ and

$$
L\left(B+\int_{0}^{z} Q(t) e^{M(t)} d t\right)+M(z)=e^{z}+D
$$

By this identity and by the fact that every entire function and its derivatives have the same order, $M(z)$ must be of the form αz and L must be a polynomial. By a simple calculation we have the following identity:

$$
e^{z}+Q_{p} e^{p \alpha z}+\cdots+Q_{1} e^{\alpha z}=\alpha z+E
$$

with a constant E and with a non-constant polynomial Q_{p} and polynomials Q_{p-1}, \cdots, Q_{1}. Again we have a contradiction.

In theorems 3 and 4 the non-constancy of $P(z)$ does not play an essential role. By a little more precise examination of Nevanlinna's extension of Borel's formulation of Picard's theorem we can drop the non-constancy assumption in theorems 3 and 4. Hence the functional equation $f \circ g(z)=F(z)$ for

$$
F=\int_{0}^{z} e^{H(z)} d z \quad\left(\text { or } \int_{0}^{z} e^{e z} d z\right)
$$

has no pair of entire transcendental solutions f and g, if $H(z)$ is an entire function of order less than 1.

We can prove several other results. For example the functional equations

$$
f \circ g(z)=P(z) e^{\sin z} \quad \text { and } \quad f \circ g(z)=\int_{0}^{z} P(z) e^{\sin z} d z
$$

have no pair of transcendental entire solutions f and g, respectively, when $P(z)$ is a non-constant polynomial.

We shall extend theorem 2 to the following theorem 5. In order to prove it we need the following two lemmas.

Lemma 1. Let f and g be two transcendental entire functions of finite order. Then

$$
\varlimsup_{r \rightarrow \infty} \frac{\log \log \log M_{f \cdot g}(r)}{\log r} \leqq \varlimsup_{r \rightarrow \infty} \frac{\log \log M_{g}(r)}{\log r}
$$

Proof. By the maximum principle

$$
M_{f_{\circ g}}(r) \leqq M_{f^{\circ}} M_{g}(r) .
$$

Let μ_{f} and ρ_{g} denote the orders of f and g, respectively. For an arbitrary given positive number ε there exists an r_{0} such that for any $r \geqq r_{0}$

$$
M_{f}(r) \leqq e^{r \rho f+e}, \quad M_{g}(r) \leqq e^{r \rho g+\varepsilon} .
$$

Hence

$$
M_{f_{0} g}(r) \leqq \exp \left(e^{r^{\rho_{g}+\epsilon}}\right)^{\rho_{f}+e}=\exp \left(e^{\left(\rho_{f} f^{+}\right) r r_{g}+\epsilon}\right)
$$

which implies that

$$
\varlimsup_{r \rightarrow \infty} \frac{\log \log \log M_{f o g}(r)}{\log r} \leqq \rho_{g}+\varepsilon .
$$

Here ε is arbitrary. We have the desired result.

Lemma 2. Let $F(z)$ be an entire function satisfying

$$
\hat{\rho}_{F} \equiv \varlimsup_{r \rightarrow \infty} \frac{\log \log \log M_{F}(r)}{\log r}<\infty
$$

and

$$
\rho_{N(r ; 0, F)} \equiv \varlimsup_{r \rightarrow \infty} \frac{\log N(r ; 0, F)}{\log r}<\hat{\rho}_{F} .
$$

If there is a pair of transcendental entire solutions f and g of the functional equation $f \circ g(z)=F(z)$, then $f(w)$ is of the form

$$
f(w)=A\left(w-w_{1}\right)^{n} e^{M(w)},
$$

unless it is of infinite order.
Proof. Assume that $f(w)$ is of finite order and $f(w)=0$ has at least two roots w_{1} and w_{2}. Then

$$
\begin{aligned}
N(r ; 0, F) & =N(r ; 0, f \circ g) \geqq N\left(r ; w_{1}, g\right)+N\left(r ; w_{2}, g\right) \\
& \geqq m(r, g)-O(\log r m(r, g))
\end{aligned}
$$

outside a set of finite measure firstly by the second fundamental theorem for y and then without any exceptional set. Hence

$$
\rho_{g} \leqq \rho_{N(r, 0, F)}<\hat{\rho}_{F} .
$$

On the other hand we have $\hat{\rho}_{F} \leqq \rho_{g}$ by Lemma 1. This is a contradiction. Therefore $f(w)$ has only one zero w_{1}, which implies the desired result.

Theorem 5. Let $L(z)$ be a transcendental entire function of order less than 1 and P a polynomial. Then the functional equation $f \circ g(z)=L(z) \exp \left(P e^{z}\right)$ has no pair of transcendental entire solutions f and g of finite order.

Proof. By a simple calculation

$$
\hat{\rho}_{F}=1, \quad F=L \exp \left(P e^{z}\right)
$$

and $\rho_{N\left(r, 0, r^{\prime}\right)} \leqq \rho_{L}<1$. Hence we can make use of Lemma 2. Therefore $f(w)$ has only one zero w_{1} and it has the following form:

$$
f(w)=A\left(w-w_{1}\right)^{n} e^{K(w)} .
$$

By the given functional equation $g(z)$ must have the following form

$$
g(z)=w_{1}+Q(z) e^{N^{(z)}}, \quad N(0)=0
$$

Therefore we have the following functional equations

$$
L(z)=D Q(z)^{n} \quad \text { and } \quad P(z) e^{z}+C=n N(z)+K\left(w_{1}+Q(z) e^{N(z)}\right)
$$

with two constants C and D. By $\rho_{g} \leqq \rho_{L}<1 N(z)$ vanishes identically and $Q(z)$ is an entire function of order less than 1 . Then we have

$$
P(z) e^{z}+C=K\left(w_{1}+Q(z)\right) .
$$

We already proved that there is no pair of transcendental entire solutions K and Q for the above identity [3]. Hence K must be a polynomial. In this case $K\left(w_{1}+Q(z)\right)$ is of order less than 1 , which is a contradiction.

Theorem 6. Let F be a transcendental entire function of finite order having p non-contiguous asymptotic paths, along which F tends to a finite value, respectively. Further assume that the order of $N(r, A, F)$ for an A is less than $p / 2$. Then there is no pair of transcendental entire functions f and g satisfying the functional equation $f \circ g(z)=F(z)$.

Proof. In this case f must be a transcendental entire function of order zero by Pólya's result [4]. If A is a Picard exceptional value of F, then the desired result holds by our earlier result in [3]. Hence we may assume that $F(z)=A$ has an infinite number of roots. Since f is of order zero, there is an infinite number of solutions of $f(w)=A$. Take two roots w_{1} and w_{2}. Then

$$
\begin{aligned}
N(r ; A, F) & =N(r ; A, f \circ g) \geqq\left(r ; w_{1}, g\right)+N\left(r ; w_{2}, g\right) \\
& \geqq m(r, g)-O(\log r m(r, g))
\end{aligned}
$$

outside a set of finite measure firstly by the second fundamental theorem for g and then without any exceptional set. Hence

$$
\rho_{g} \leqq \rho_{N\left(r, A, F^{\prime}\right)}<\frac{p}{2} .
$$

Now consider p non-contiguous asymptotic paths $\Gamma_{1}, \cdots, \Gamma_{p}$ of $F(z)$. If $g\left(\Gamma_{1}\right)$ is unbounded, $f \circ g\left(\Gamma_{1}\right)$ is unbounded by Wiman's theorem. This is a contradiction, since $f \circ g(z)=F(z)$ tends to 'a finite value along Γ_{1}. If $g\left(\Gamma_{1}\right)$ is bounded but $g(z)$ does not tend to a finite value along Γ_{1}, then $f \circ g(z)$ does not tend to a single point along Γ_{1}, which is again untenable. Hence $g(z)$ tends to a finite value along Γ_{1}. The same holds for each Γ_{\jmath}. Assume that Γ_{1} and Γ_{2} are contiguous for $g(z)$. Then there is an unbounded domain D, which is bounded by Γ_{1} and Γ_{2} and in which $g(z)$ is bounded. In this case $f \circ g(z)$ is bounded in D, that is, Γ_{1} and I_{2}^{\prime} are contiguous for $f \circ g(z)=F(z)$. This is a contradiction. The same holds for $\Gamma_{1}, \cdots, \Gamma_{p}$. We have, therefore, that $\Gamma_{1}, \cdots, \Gamma_{p}$ are p non-contiguous asymptotic paths of $g(z)$, along which $g(z)$ tends to a finite value, respectively.

Now we can apply the Denjoy-Carleman-Ahlfors theorem and then we have

$$
p \leqq 2 \rho_{g}
$$

This contradicts $\rho_{g}<p / 2$. Thus we have the desired result.
Theorem 7. Let F be the same as in theorem 6. Assume that the order of $N\left(r ; 0, F^{\prime}\right)$ is less than $p / 2$. Then there is no pair of transcendental entire functions f and g satisfying the functional equation $f \circ g(z)=F(z)$.

Proof. By our earlier result in [3] we may assume that $F^{\prime}(z)=0$ has an infinite number of roots. Then by the derived functional equation

$$
f^{\prime} \circ g(z) \cdot g^{\prime}(z)=F^{\prime}(z)
$$

we have

$$
\begin{aligned}
N\left(r ; 0, F^{\prime}\right) & =N\left(r ; 0, f^{\prime} \circ g\right)+N\left(r ; 0, g^{\prime}\right) \\
& \geqq N\left(r ; w_{1}, g\right)+N\left(r ; w_{2}, g\right)+N\left(r ; 0, g^{\prime}\right)
\end{aligned}
$$

for two roots w_{1} and w_{2} of $f^{\prime}(w)=0$. By the second fundamental theorem

$$
N\left(r ; 0, F^{\prime}\right) \geqq m(r, g)-O(\log r m(r, g)),
$$

which implies $2 \rho_{g}<p$.
The remaining reasoning is the same as in theorem 6. Hence we have the desired result.

References

[1] Hiromi, G., and M. Ozawa, On the existence of analytic mapping between two ultrahyperelliptic surfaces. Kōdaı Math. Rep. 17 (1965), 281-306.
[2] Nevanlinna, R.. Einıge Eindeutigkeitssätze in der Theorie der meromorphen Funktionen. Acta Math. 48 (1926), 367-391.
[3] Ozawa, M., On the solution of the functional equation $f \circ g(z)=F(z)$. Kōda1 Math. Sem. Rep. 20 (1968), 159-162.
[4] Pólya, G., On an integral function of an integral function. Journ. London Math. Soc. 1 (1926), 12-15.

Department of Mathematics, Tokyo Institute of Technology.

