ON RIGID ANALYTIC MAPPINGS AMONG SURFACES $\left\{\boldsymbol{e}^{w}=\boldsymbol{f}(\boldsymbol{z})\right\}$

By Mitsuru Ozawa

1. Introduction. Let R be an open Riemann surface (z, w) defined by

$$
e^{w}=f(z)
$$

with an entire function $f(z)$ which has no zeros other than an infinite number of simple zeros. For the topological structure of the surface R we can refer to a paper due to Heins [1]. Let \mathfrak{p}_{R} be the projection map $(z, w) \rightarrow z$. Let S be another such surface defined by $e^{W}=g(Z)$. Consider a non-trivial analytic mapping φ of R into S, which satisfies the following rigidity condition:

$$
\mathfrak{p}_{S} \varphi(p)=\mathfrak{p}_{S} \varphi(q) \quad \text { whenever } \quad \mathfrak{p}_{R} p=\mathfrak{p}_{R} q .
$$

Let D_{R} be the domain in which $f(z) \neq 0$ and E_{R} the set of zeros of $f(z)$. Evidently $D_{R}=\{|z|<\infty\}-E_{R}$. Let $h(z)=p_{S^{\circ}} \varphi^{\circ} \mathfrak{p}_{R}^{-1}(z)$, then $h(z)$ is a single-valued regular function in D_{R}, whose image $h\left(D_{R}\right)$ lies in D_{S}. In the present paper we shall prove the following theorems.

Theorem 1. Let φ be a non-trivial rigid analytic mapping of R into S, then the corresponding h is a polynomial and φ is onto.

Theorem 2. Let φ be a non-trivial rigid analytic mapping of R into itself, then the corresponding h is of the following form $e^{2 \pi i r} z+\beta$ with a suitable rational number r and φ reduces to a one-to-one conformal mapping of R onto itself.
2. Proof of Theorem 1. Assume that $h(z)$ has an essential singularity at a point z^{*} of E_{R}. Then in an arbitrary small neighborhood of the point $z^{*} h(z)$ takes every value infinitely often excepting at most two. Hence all the points of E_{S} excepting at most two are taken by $h(z)$. This contradicts the into-ness of $h(z)$. Thus there is no essential singularity of h at E_{R}. The same is true for $z=\infty$. Hence $h(z)$ must be a rational function of z in the z-sphere. Next we prove that $h(z)$ is a polynomial of z.

Assume that $h(z)$ has a pole at some point in the finite z-plane. Then a fixed neighborhood of this point is mapped around $Z=\infty$ by $h(z)$ and its image by $h(z)$ contains a neighborhood of $Z=\infty$, which contains at least a point of E_{S}. This contradicts the into-ness of $h(z)$ in D_{R}. This implies that $h(z)$ is a polynomial.

[^0]Next we prove the onto-ness of φ. Suppose that φ is not onto. Evidently $h(z)$ is a mapping of the z-sphere onto the Z-sphere with a constant finite valence. If $h(z)$ is a mapping of D_{R} onto D_{S}, then there is a point P of S such that φ does not cover P but h does cover its projection $\mathfrak{p}_{s} \mathrm{P}$. Then there is a point Q such that $\varphi(q)=\mathrm{Q}, p_{S} \mathrm{Q}=p_{S} \mathrm{P}$. On S we join P and Q by a suitable curve C and make its projection $p_{s} C$. $p_{S} C$ is a closed curve joining $p_{S} \mathrm{P}$ with itself. There is a curve c which starts from $\mathfrak{p}_{R} q$ and ends to a point t whose image by h is $\mathfrak{p}_{s} \mathrm{P}$. Now t does not belong to E_{R} by the onto-ness of h. Then we can construct the curve \tilde{c} whose projection is c and whose starting point is q. Then φ can be continued along \tilde{c} to the end point. This means that P is covered by $\varphi(R)$. If $h(z)$ is a mapping of D_{R} into D_{S}, then there is a point z^{*} of E_{R} such that $Z^{*} \equiv h\left(z^{*}\right) \notin E_{S}$. Consider the set of counter-images $\left\{z_{\mu}^{*}\right\}_{\mu-1}, z_{\mu}^{*}=h^{-1}\left(Z^{*}\right), z_{1}^{*}=z^{*}$ of Z^{*}. Really this is a finite set. All the $z_{\mu}^{*}(\mu=1, \cdots, \nu)$ must belong to E_{R}. Consider the set of small neighborhoods n_{j} of z_{j}^{*} such that $h\left(n_{j}\right)$ covers just the same neighborhood $N\left(Z^{*}\right)-Z^{*}$ of Z^{*} and $n_{j} \cap n_{k}=\phi$ for $j \neq k$. We can make $N\left(Z^{*}\right)$ a sufficiently small disc. Then consider $\mathfrak{p}_{S}^{-1} N\left(Z^{*}\right)=\tilde{N}\left(Z^{*}\right)$. This consists of an infinite number of disjoint discs K_{1}, K_{2}, \cdots. Since φ is analytic, $\varphi \circ \mathfrak{p}_{R}^{-1}\left(n_{j}\right)$ must be connected. Hence $\varphi \cdot \mathcal{p}_{R}^{-1}\left(n_{j}\right)$ lies in a single K_{j}. There remains still an infinite number of discs. Take such a disk K_{n}. If every point of K_{n} is not covered by $\varphi(R)$, then this point must be a point of S over a point in $h\left(E_{R}\right)$. Then we can find a point which is near from that point and is covered by $\varphi(R)$. We have already taken all the counter-images $h^{-1}(N(Z)$), ν in number. If there is another disc lying over $N\left(Z^{*}\right)$ which has a point covered by $\nu(R)$, the number of $h^{-1}\left(N\left(Z^{*}\right)\right)$ must be greater than ν. This contradicts the definition of ν.
3. Proof of Theorem 2. By theorem $1 h(z)$ must be a polynomial and a mapping of D_{R} onto itself. Let d be the degree of $h(z)$. Suppose $d \geqq 2$. Consider the solutions of $h(z)=z_{j}, z_{j} \in E_{R}$. Then every solution belongs to E_{R}. If $\left|z_{j}\right| \leqq R_{0}$ for a sufficiently large R_{0}, the solution satisfies the same inequality. Making these processes for some z, successively then, the successive solutions make a bounded infinite set. This implies that E has at least one cluster point in a bounded part of the z-sphere. This is a contradiction. Hence $d=1$, that is, $h(z)=\alpha z+\beta$. If $\alpha \neq e^{2 \pi i r}$ with any rational number r, we make the iterations of h. Then we have some cluster point of E_{R} in a bounded part of the z-plane. This is a contradiction.
4. We do not have any effective method in order to decide whether there is a non-rigid analytic mapping of R into S or not. Now we shall consider a simple case. Let R be the surface (z, w) defined by $e^{w}=z^{3}+a z+b$ with two constant a and b. We here assume that $a \neq 0$. Let S be the surface (Z, W) defined by e^{W} $=Z^{3}+A Z+B$ with $B \neq 0$. Then R and S are two three-sheeted algebroid surfaces over the w-plane and the W-plane, respectively. Let $p_{S}^{*} \circ \varphi \circ p_{R}^{*-1}=h^{*}$ is a single-valued function [3], [6]. However the rigidity in this sense is not the rigidity defined in No. 1. Anyhow we have the following condition:

$$
D_{S^{\circ}} h^{*}(w)=D_{R}\left[f_{1}{ }^{3}+a f_{1} f_{2}{ }^{2}-\left(e^{w}-b\right) f_{2}{ }^{3}\right]^{2},
$$

where $D_{S}=27\left(e^{w}-B\right)^{2}+4 A^{3}, D_{R}=27\left(e^{w}-b\right)^{2}+4 a^{3}$. Hence

$$
27\left(e^{h *(w)}-B\right)^{2}+4 A^{3}=\left[27\left(e^{w}-b\right)^{2}+4 a^{3}\right]\left[f_{1}^{3}+a f_{1} f_{2}^{2}-\left(e^{w}-b\right) f_{2}^{3}\right]^{2} .
$$

Assume $a=0$. Then $A=0$ and vice versa. In this case we have $a=0, A=0$. Then R and S are regularly branched three-sheeted. By an earlier result in [4] there exists a suitable entire function $f(w)$ satisfying either $e^{h^{\hbar(w)}}-B=f(w)^{3}\left(e^{w}-b\right)$ or $e^{h^{\star}(w)}-B$ $=f(w)^{3}\left(e^{w}-b\right)^{2}$. In the second case we have a contradiction by considering the set of simple zeros. In the first case by [2] or [5] ${ }^{1)}$ we have $h^{*}(w)=\alpha w+\beta,|\alpha|=1$. Consider the sets of zeros of $e^{w}-b$ and $e^{\alpha w}-e^{-\beta} B$, that is, $\{\log b+2 n \pi i\},\left\{\alpha^{-1}(-\beta\right.$ $+\log B+2 n \pi i)\}$. These two sets must be coincide with each other. Hence

$$
\alpha(\log b+2 n \pi i)+\beta=\log B+2 m \pi i .
$$

Thus $\alpha= \pm 1$.
Assume $a A \neq 0$. If $27 B^{2}+4 A^{3}=0$ and $27 b^{2}+4 a^{3}=0$, then we have

$$
27 e^{h^{*}(w)}\left(e^{h^{*}(w)}-2 B\right)=27 e^{w}\left(e^{w}-2 b\right)\left(f_{1}{ }^{3}+a f_{1} f_{2}{ }^{2}-\left(e^{w}-b\right) f_{2}{ }^{3}\right)^{2}
$$

By this equation we have $h^{*}(w)=\alpha w+\beta,|\alpha|=1$. Then by the same argument we have $\alpha= \pm 1$. If $27 B^{2}+4 A^{3}=0$ and $27 b^{2}+4 a^{3} \neq 0$, then

$$
27 e^{\hbar^{\hbar}(w)}\left(e^{h^{*}(w)}-2 B\right)=\left[27\left(e^{w}-b\right)^{2}+4 a^{3}\right]\left[f_{1}^{3}+a f_{1} f_{2}^{2}-\left(e^{w}-b\right) f_{2}^{3}\right]^{2} .
$$

By this equation we have $h^{*}(w)=\alpha w+\beta$. The set of zeros of $\left(e^{w}-b+2 l a^{3 / 2} / 3 \sqrt{ } 3\right)$ ($e^{w}-b-2 i a^{3 / 2} / 3 \sqrt{3}$) coincides with that of $e^{a w}-2 B e^{-\beta}$. Then $|\alpha|=2$. This implies that the distance of two successive zeros must be equal to π. But this is not the case unless $b=0$. This is a contradiction. If $27 B^{2}+4 A^{3} \neq 0$ and $27 b^{2}+4 a^{3}=0$, then

$$
27\left(e^{h^{*} *(w)}-B\right)^{2}+4 A^{3}=27 e^{w}\left(e^{w}-2 b\right)\left[f_{1}^{3}+a f_{1} f_{2}^{2}-\left(e^{w}-b\right) f_{2}{ }^{3}\right]^{2}
$$

By this equation we have $h^{*}(w)=\alpha w+\beta$. Consider the set of zeros of $e^{w}-2 b$. Then $|\alpha|=1 / 2$. In order that the minimum distance of two zeros of $\left(e^{n v+\beta}-B\right)^{2}-4 A^{3} / 27$ is equal to $2 \pi, B$ must be equal to zero, which is a contradiction. If $\left(27 B^{2}+4 A^{3}\right)$ $\left(27 b^{2}+4 a^{3}\right) \neq 0$, then $h^{*}(w)=\alpha w+\beta,|\alpha|=1$. In this case we have $\alpha= \pm 1$.

Summing up these results we have the desired rigidity of φ with respect to p_{R} and \mathfrak{p}_{S}. Indeed $\mathfrak{p}_{R} p=\mathfrak{p}_{R} q, p=(z, w), q=\left(z, w^{\prime}\right)$ imply $w^{\prime}=w+2 n \pi i$ and $\mathfrak{p}_{\varsigma} \varphi(p)=p_{s} \varphi(q)$, $\varphi(p)=(Z, W), \varphi(q)=\left(Z, W^{\prime}\right)$ imply $W^{\prime}=W+2 m \pi i$. And further $h^{*}(w)= \pm w+\beta$ implies $W^{\prime}-W= \pm\left(w^{\prime}-w\right)$ and hence $W^{\prime}-W= \pm 2 n \pi i$ whenever $w^{\prime}-w=2 n \pi i$. This is nothing but the rigidity of φ with respect to \mathfrak{p}_{R} and \mathfrak{p}_{s}.

Theorem 3. Let R and S be three-sheeted surfaces defined by

$$
y^{3}+a y+b=e^{x} \quad \text { and } \quad Y^{3}+A Y+B=e^{x}, \quad B b \neq 0,
$$

[^1]respectively. If there is a non-trivial analytic mapping φ of R into S, then φ is rigid in the sense of No. 1.

References

[1] Heins, M., Riemann surfaces of infinite genus. Ann. of Math. 55 (1952), 296317.
[2] Hiromi, G., and H. Mutō, On the existence of analytıc mappıngs, I. Kōdai Math. Sem. Rep. 19 (1967), 236-244.
[3] Hiromi, G., and H. Mutō, On the existence of analytic mappings, II. Kōdai Math. Sem. Rep. 19 (1967), 439-450.
[4] Mutō, H., On the exıstence of analytic mappıngs. Kōdaı Math. Sem. Rep. 18 (1966), 24-35.
[5] Ozawa, M., On the exıstence of analytic mappıngs, II. Kōdaı Math. Sem. Rep. 18 (1966), 1-7.
[6] Ozawa, M., On analytic mappıngs among three-sheeted surfaces. Kōdaı Math. Sem. Rep. 20 (1968), 146-154.

Departement of Mathematics,
Tokyo Institute of Technology.

[^0]: Recerved September 25, 1967.

[^1]: 1) In [5] we proved several estimations of the N-function of a composed function. In these estimations we used the second fundamental theorem erronously. Mann theorem was proved in [2] correctly. In our present case we can use our estimations in [5]. Indeed $\left|w_{j}-w_{k}\right| \geqq 2 \pi$ for any two roots of $e^{w}-b=0$.
