ON ANALYTIC MAPPINGS AMONG THREE-SHEETED SURFACES

By Mitsuru Ozawa

1. Introduction. Let R (resp. S) be a three-sheeted covering surface over the finite z-plane (resp. w-plane) defined by an irreducible equation

$$y^{3} = A(z)y + B(z)$$
 (resp. $Y^{3} = a(w)Y + b(w)$),

where A, B (resp. a, b) are meromorphic functions. Here we shall assume that R (resp. S) has an infinite number of branch points. Let \mathfrak{p}_R (resp. \mathfrak{p}_S) be the projection map $(z, y) \to z$ (resp. $(w, Y) \to w$). Let φ be a non-trivial analytic mapping of R into S. If φ preserves the projection maps, that is, $\mathfrak{p}_S \varphi(p) = \mathfrak{p}_S \varphi(q)$ whenever $\mathfrak{p}_R p = \mathfrak{p}_R q$, then φ is called a rigid analytic mapping of R into S. In the sequel we make use of the inverse mapping \mathfrak{p}_R^{-1} (resp. \mathfrak{p}_S^{-1}), as a three-valued analytic branch, of the z-plane (resp. the *w*-plane) onto R (resp. S). So there are three possible choices of \mathfrak{p}_R^{-1} (resp. \mathfrak{p}_S^{-1}). Hiromi-Mutō [4] proved that φ is rigid. In this case $h = \mathfrak{p}_S \circ \varphi \circ \mathfrak{p}_R^{-1}$ is a single-valued regular function of z in $|z| < \infty$.

In the present paper we shall prove a necessary condition for the existence of a non-trivial analytic mapping φ of R into S. Several non-existence criteria for analytic mappings are established by making use of the necessary condition.

2. A necessary condition. Let φ be a non-trivial analytic mapping of R into S and h the corresponding projection of φ , that is, $h = \mathfrak{p}_S \circ \varphi \circ \mathfrak{p}_R^{-1}$. In our case h is independent of the choice of \mathfrak{p}_R^{-1} , since φ is rigid. Let Y^* be the analytic mapping of S into the finite plane, which induces Y in such a manner that $Y^* = Y \circ \mathfrak{p}_S$. Then $Y^* \circ \varphi$ gives an analytic mapping of R into the finite plane. Hence $Y^* \circ \varphi \circ \mathfrak{p}_R^{-1}$ can be represented by

 $f_0 + f_1 y + f_2 y^2$,

where f_0 , f_1 and f_2 are meromorphic functions of z in $|z| < \infty$. Further

$$Y^* \circ \varphi \circ \mathfrak{p}_R^{-1} = Y \circ \mathfrak{p}_S \circ \varphi \circ \mathfrak{p}_R^{-1} = Y \circ h.$$

Hence

$$Y \circ h = f_0 + f_1 y + f_2 y^2$$
.

Since $Y^3 = aY + b$, we have

$$(f_0+f_1y+f_2y^2)^3 = a \circ h(f_0+f_1y+f_2y^2)+b \circ h.$$

Received September 25, 1967.

By $y^3 = Ay + B$, we have

- 1) $f_0^3 + Bf_1^3 + 6Bf_0f_1f_2 + 3ABf_1f_2^2 + B^2f_2^3 = a \circ hf_0 + b \circ h$,
- 2) $3f_0^2f_1 + Af_1^3 + 6Af_0f_1f_2 + 3Bf_1^2f_2 + 3Bf_0f_2^2 + 3A^2f_1f_2^2 + 2ABf_2^3 = a \circ hf_1$,
- 3) $3f_0f_1^2 + 3f_0^2f_2 + 3Af_1^2f_2 + 3Af_0f_2^2 + 3Bf_1f_2^2 + A^2f_2^3 = a \circ hf_2.$

From 2) and 3) we have

$$(3f_0+2Af_2)(Bf_2^3+Af_1f_2^2-f_1^3)=0.$$

Since $y^3 = Ay + B$ is irreducible, there is no single-valued solution of the equation. Hence

$$f_{1^{3}} - Af_{1}f_{2^{2}} - Bf_{2^{3}} \equiv 0,$$

whence follows $3f_0+2Af_2=0$. Substituting this into 3), we have

$$f_2\left(Af_1^2 + \frac{1}{3}A^2f_2^2 + 3Bf_1f_2\right) = a \circ hf_2.$$

If $f_2=0$, then $f_0=0$. Thus $f_1 \equiv 0$ and hence

4)
$$\begin{cases} a \circ h = A f_1^2, \\ b \circ h = B f_1^3. \end{cases}$$

If $f_2 \neq 0$, then we have

5)
$$a \circ h = Af_{1}^{2} + A^{2}f_{2}^{2}/3 + 3Bf_{1}f_{2},$$
$$b \circ h = \left(-\frac{2}{27}A^{3} + B^{2}\right)f_{2}^{3} + ABf_{1}f_{2}^{2} + \frac{2}{3}A^{2}f_{1}^{2}f_{2} + Bf_{1}^{3}.$$

Now we compute the discriminants D_R and $D_{S \circ \varphi}$. Then we have

$$D_{S \circ \varphi} \equiv D_S \circ h = 27(b \circ h)^2 - 4(a \circ h)^3$$

= $D_R [f_1^3 - Af_1 f_2^2 - Bf_2^3]^2, \quad D_R = 27B^2 - 4A^3.$

The case $f_2=0$ gives

6)

$$D_{S\circ\varphi}\equiv D_S\circ h=D_Rf_1^6,$$

which is included in 6). Our necessary condition for the existence of analytic mappings is 5) and 6).

3. A regularly branched three-sheeted surfaces. If $a \equiv 0$, then S is called a regularly branched three-sheeted surface. In this case all the branch points of S are three-sheeted locally like $z^{1/3}$. Now we shall prove the following Proposition.

PROPOSITION 1. If all the zeros and poles of D_R are of even order and R has

an infinite number of branch points, then R is conformally equivalent to a regularly branched three-sheeted surface S.

Proof. Consider a new surface R_1 defined by $y_1^3 = A_1y_1 + B_1$ with $B_1 = Bf_1^3$, $A_1 = Af_1^2$. Then by $y_1 = f_1y$ we have $y^3 = Ay + B$, which defines the R. Hence the correspondence $(z, y_1) \leftrightarrow (z, y)$ gives the conformal equivalence of R_1 and R. Further the evenness of orders of all the zeros and poles of D_R implies that of D_{R_1} . By the above process we may assume that A and B are entire functions. We shall use a notation ord (z_j, T) as α defined by

$$T(z) = (z - z_j)^{\alpha} S(z), \qquad \lim_{z \to z_j} S(z) \neq 0.$$

It is easy to prove that R has no branch point of order 2. Hence all the branch points of R are of order 3 [2]. Then every branch point of R, which lies over z_j , satisfies

$$\frac{1}{3} \operatorname{ord} (z_{\jmath}, B) < \frac{1}{2} \operatorname{ord} (z_{\jmath}, A), \quad \operatorname{ord} (z_{\jmath}, B) = 3n \pm 1.$$

Further by considering a new surface, if necessary, we may assume that

$$\begin{cases} \operatorname{ord} (z_{j}, B) = 1 & \\ \operatorname{ord} (z_{j}, A) \ge 1 & \\ \end{cases} \quad \text{or} \quad \begin{cases} = 2 \\ \ge 2. \end{cases}$$

Then

ord
$$(z_j, D_R) = 2$$
 or 4

respectively. Assume that the first case occurs. In this case we have

$$\frac{1}{2}\left(B+\frac{\sqrt{D_R}}{3\sqrt{3}}\right)=(z-z_j)U(z),\qquad U(z_j)=0,\infty$$

and

$$\frac{1}{2}\left(B - \frac{\sqrt{D_R}}{3\sqrt{3}}\right) = \frac{1}{27} \frac{A^3}{\frac{1}{2}\left(B + \frac{\sqrt{D_R}}{3\sqrt{3}}\right)} = \frac{1}{27} (z - z_j)^{3p-1} V(z), \qquad V(z_j) \neq 0, \infty,$$

where p is an integer ≥ 1 . Let b(z) be an entire function satisfying

 $b(z) = (z - z_j)L(z), \qquad L(z_j) \neq 0, \infty$

around z_j . Then

$$\frac{3\sqrt{3}B+\sqrt{D_R}}{2\cdot 3\sqrt{3}b}$$

is regular and non-zero around z_j and further

ANALYTIC MAPPINGS AMONG THREE-SHEETED SURFACES

$$\frac{3\sqrt{3}B - \sqrt{D_R}}{6\sqrt{3}b^2} = (z - z_j)^{3p - 3}M(z), \qquad M(z_j) \neq 0, \infty$$

around z_j . Hence the last term may be zero of order 3(p-1).

If the second case occurs, then

$$\frac{1}{2} \left(B + \frac{\sqrt{D_R}}{3\sqrt{3}} \right) = (z - z_j)^2 U(z), \qquad U(z_j) \neq 0, \infty,$$
$$\frac{1}{2} \left(B - \frac{\sqrt{D_R}}{3\sqrt{3}} \right) = \frac{1}{27} \frac{2A^3}{\left(B + \frac{\sqrt{D_R}}{3\sqrt{3}} \right)} = \frac{1}{27} (z - z_j)^{3p-2} V(z), \qquad V(z_j) \neq 0, \infty,$$

where p is an integer ≥ 2 . In this case we put $b(z) = (z - z_j)^2 L(z)$, $L(z_j) \neq 0$, around z_j . Then

$$\frac{3\sqrt{3}B - \sqrt{D_R}}{6\sqrt{3}b} = W(z), \qquad W(z_j) \neq 0, \infty$$

and

$$\frac{3\sqrt{3} B - \sqrt{D_R}}{6\sqrt{3} b^2} = (z - z_j)^{3p-6} N(z), \qquad N(z_j) \neq 0, \infty.$$

Let z_0 be a point satisfying

$$\frac{1}{3} \operatorname{ord} (z_0, B) < \frac{1}{2} \operatorname{ord} (z_0, A), \quad \operatorname{ord} (z_0, B) = 3n.$$

Then we may assume that $\operatorname{ord}(z_0, B)=0$, since we may consider a new surface R_1 if necessary. Then

$$\frac{1}{2}\left(B+\frac{\sqrt{D_R}}{3\sqrt{3}}\right)=T(z), \qquad T(z_0)\neq 0, \infty,$$
$$\frac{1}{2}\left(B-\frac{\sqrt{D_R}}{3\sqrt{3}}\right)=(z-z_0)^{3p}X(z), \qquad X(z_0)\neq 0, \infty,$$

where $p = \text{ord}(z_0, A) \ge 1$. In this case we put $b(z_0) \neq 0, \infty$. Then

$$\frac{3\sqrt{3}B + \sqrt{D_R}}{6\sqrt{3}b} = P(z), \qquad P(z_0) \neq 0, \infty,$$
$$\frac{3\sqrt{3}B - \sqrt{D_R}}{6\sqrt{3}b^2} = (z - z_0)^{3p}Q(z), \qquad Q(z_0) \neq 0, \infty$$

around z_0 .

Let z_0 be a point satisfying

$$\frac{1}{2} \operatorname{ord} (z_0, A) < \frac{1}{3} \operatorname{ord} (z_0, B), \quad \operatorname{ord} (z_0, A) = 2n.$$

149

Then we may assume that ord $(z_0, A)=0$. Hence $D_R(z_0) \neq 0, \infty$. Then we have

$$\frac{1}{2}\left(B+\frac{\sqrt{D_R}}{3\sqrt{3}}\right) \neq 0, \quad \text{and} \quad \frac{1}{2}\left(B-\frac{\sqrt{D_R}}{3\sqrt{3}}\right) \neq 0.$$

around z_0 . In this case we put $b(z_0) \neq 0, \infty$. Then

$$\frac{3\sqrt{3}B + \sqrt{D_R}}{6\sqrt{3}b} \neq 0, \infty \quad \text{and} \quad \frac{3\sqrt{3}B - \sqrt{D_R}}{6\sqrt{3}b^2} \neq 0, \infty$$

around z_0 .

Let z_0 be a point satisfying

$$\frac{1}{2} \operatorname{ord} (z_0, A) = \frac{1}{3} \operatorname{ord} (z_0, B), \quad \operatorname{ord} (z_0, D_R) = 2p.$$

Then ord $(z_0, A)=2s$ and ord $(z_0, B)=3t$ with two integers satisfying s=t, $6t \leq 2p$. In this case by considering a new surface we may assume that $A(z_0) \neq 0$, $B(z_0) \neq 0$, ord $(z_0, D_R)=2q$, $q \geq 0$. In this case we put $b(z_0) \neq 0, \infty$. Then

$$\frac{3\sqrt{3}B + \sqrt{D_R}}{6\sqrt{3}b} \neq 0, \infty \quad \text{and} \quad \frac{3\sqrt{3}B - \sqrt{D_R}}{6\sqrt{3}b^2} \neq 0, \infty$$

around z_0 .

By our assumption that D_R has only zeros of even order, the following two cases do not occur:

(i)
$$\frac{1}{2} \operatorname{ord} (z, A) < \frac{1}{3} \operatorname{ord} (z, B), \quad \operatorname{ord} (z, A) = 2n - 1,$$

(ii)
$$\frac{1}{2}$$
 ord $(z, A) = \frac{1}{3}$ ord (z, B) , ord $(z, D_R) = 2n - 1$.

Because each case implies an absurdity relation $\operatorname{ord}(z, D_R) = 2q - 1$.

We have enumerated all the possible cases. There is at least one entire function b(z) satisfying the required zero-point conditions. Then there are two suitable entire functions L_1 and L_2 such that

$$\frac{3\sqrt{3}B + \sqrt{D_R}}{6\sqrt{3}b} = L_1^3, \qquad \frac{3\sqrt{3}B - \sqrt{D_R}}{6\sqrt{3}b^2} = L_2^3.$$

Let $Y = L_1 y + L_2 y^2$. Then by $Y^3 = AY + B$

$$(y^3-b)\{(L_2y+L_1)^3+bL_2^3\}=0,$$

which implies either $y^3 = b$ or $(L_2y + L_1)^3 = -bL_2^3$. The latter case is equivalent to $y^{*3} = b$.

If $y^3 = b$ and $Y = L_1y + L_2y^2$, then $Y^3 = AY + B$. Therefore the correspondence $(z, Y) \leftrightarrow (z, y)$ gives the conformal equivalence between R and a regularly branched

150

three-sheeted surface.

4. Non-existence criteria for analytic mappings. We may assume that all the coefficients of the defining equations are entire.

THEOREM 1. Let R be a three-sheeted surface defined by $y^3=Ay+B$ whose discriminant D_R has at least one zero of odd order. Let S be a regularly branched three-sheeted surface defined by $Y^3=b$. Then there is no non-trivial analytic mapping of R into S.

Proof. By 6) we have

$$D_{S} \circ h = D_{R}[f_{1}^{3} - Af_{1}f_{2}^{2} - Bf_{2}^{3}]^{2},$$

if φ exists. By the assumption $D_s = 27b^2$. This is a contradiction. By the way we give another proof. By 5) we have

$$Af_{1}^{2} + \frac{A^{2}}{3}f_{2}^{2} + 3Bf_{1}f_{2} = 0,$$

since $a\equiv 0$. Since f_1 and f_2 are single-valued, the discriminant of this quadratic equation must be of perfectly square form. Hence

$$9B^2 - \frac{4}{3}A^3 = \frac{1}{3}D_R$$

has no zero of odd order, which contradicts our assumption.

THEOREM 2. Let R and S be the same as in theorem 1. Further assume that D_R has at least three zeros of odd order. Then there is no non-trivial analytic mapping of S into R.

Proof. In this case we have

$$D_R \circ h = D_S [f_1^3 - b f_2^3]^2.$$

Assume that h is a transcendental entire function. Then by the Nevanlinna ramification relation h has at most two perfectly branched values. Let w_j be a zero of D_R of odd order, then $h(z)=w_j$ allows only solutions of even multiplicity or only a finite number of solutions. Here j runs from 1 to 3, which contradicts the ramification relation. Next assume that h is a polynomial of degree d. Then the equation $h(z)=w_j$, j=1, 2, 3, has no simple zero. Hence the number of simple zero must be equal to zero. But it is not less than 3d-d. This is a contradiction.

THEOREM 3. Let R and S be two general three sheeted surfaces. Suppose that D_R has m zeros of odd order $(1 \le m < \infty)$ and D_S has n zeros of odd order. Assume that $n > \max(2, m)$. Then there is no non-trivial analytic mapping of R into S.

Proof. In this case we have

MITSURU OZAWA

$$D_{S} \circ h = D_{R}[f_{1}^{3} - Af_{1}f_{2}^{2} - Bf_{2}^{3}]^{2}.$$

Since n>3 and $m<\infty$, h is not transcendental by the Nevanlinna ramification relation. Assume that h is a polynomial of degree d. Consider $h(z)=w_j$, j=1, 2, 3, ..., n, where w_j is a zero of D_s of odd order. These equations have simple zeros, which are not less than nd-d in number. Further these simple zeros correspond to some zeros of D_R of odd order. Hence

$$m \ge nd - d = (n-1)d \ge md.$$

This implies d=1. If d=1, then evidently m=n, which contradicts our assumption.

THEOREM 4. Let R and S be the same as in theorem 3. If $n=m\geq 3$, then there is no non-trivial analytic mapping of R into S unless R and S are conformally equivalent. If there is a positive integer t satisfying (t+1)(n-1)>m>nt and if $n\geq 3$, then there is no non-trivial analytic mapping of R into S.

Proof. If $n=m\geq 3$ and if there is a non-trivial analytic mapping of R into S, then the corresponding h must be a polynomial. Let d be the degree of h. Then we have $m\geq (n-1)d=(m-1)d$, which implies d=1. Hence h must be a linear function $\alpha z+\beta$. Then R and S must be conformally equivalent.

Assume that the latter assumption holds, then the degree d of h satisfies

$$nd \ge m \ge (n-1)d, \quad (t+1)(n-1) > m > nt.$$

Hence

$$t+1>d>t$$
,

which is a contradiction. Thus we have the desired result.

THEOREM 5. Let ρ_R be the order of the Nevanlinna N-function of branch points of R of order 2 and ρ_S the corresponding quantity for S. Assume $\rho_R < \infty$ and $0 < \rho_S < \infty$ and there is a non-trivial analytic mapping φ of R into S. Then $\rho_R = \nu \rho_S$ with a positive integer ν , which is just the degree of h.

Proof. We should remark the following fact. Every branch point of R of order 2 corresponds to a zero of D_R of odd order and vice versa. Hence the Nevanlinna N-function of branch points of R of order 2 is equal to the N-function N of zeros of D_R of odd order, counting only once. Now we can make use of 6)

$$D_S \circ h = D_R [f_1^3 - A f_1 f_2^2 - B f_2^3]^2.$$

Now we can use the same procedure to the above equation as in [3].

5. Analytic mappings of R into itself.

PROPOSITION 2. Let R be a general three-sheeted surface. Assume that D_R has either $n(\geq 3)$ zeros of odd order or no zero of odd order. Then any non-trivial analytic mapping φ of R into itself induces

$h(z) = e^{2\pi i p/q} z + \beta$

with a suitable rational number p/q and a constant β .

Proof. If D_R has no zero of odd order, then R is a regularly branched threesheeted surface by Proposition 1. Hence we have the desired result by [3]. Assume that D_R has n zeros of odd order. When n is finite, we can apply the first part of Theorem 4. Thus $h(z)=\alpha z+\beta$. When n is infinite, we can make use of the same method for 6) as in [3]. This implies $h(z)=\alpha z+\beta$. In this case we can use again the same method as in [3] and then we have the desired result. If n is finite, then we make the p-th iteration h_p of h. Then h_p makes a permutation of the underlying set of branch points of order 2. Hence there is an integer ν for which h_{ν} fixes all points of the set. Since h_{ν} is a linear function, h_{ν} must be the identity. Thus h(z) has the desired form.

We prove the following theorem.

THEOREM 6. Let R be a general three-sheeted surface. Then any non-trivial analytic mapping φ or R into itself is a conformal mapping onto itself and the corresponding h(z) has the following form $e^{2\pi i p/q} z + \beta$, where p/q is a rational number.

Proof. By Proposition 2 it is sufficient to prove our result in two cases: (A) D_R has only one zero of odd order and (B) D_R has only two zeros of odd order.

In order to prove this theorem we need a result due to Kubota [5], which is a generalization of Heins' theorem [1]: In any hyperbolic surface R whose fundamental group is not abelian, φ satisfies either i) for some integer n the n-th iteration φ_n of φ coincides with the identity mapping or ii) φ_n tends to some ideal boundary or iii) φ_n tends to a point p in R and $\varphi(p)=p$.

Case (B). By 6) $D_R \circ h = D_R (f_1^3 - A f_1 f_2^2 - B f_2^3)^2$. Let w_1, w_2 be two zeros of D_R of odd order. Then $h(w_j)$ must be a zero of D_R of odd order and hence $h(w_j)$ must be w_k . Assume $h(w_1) = w_1$. Then φ has two fixed points on R, which lie over the same w_1 . Hence ii) and iii) do not occur. Assume $h(w_1) = w_2$, then $h(w_2) = w_1$ or w_2 . The latter case can be omitted. Hence the second iteration h_2 of h has two fixed points and hence φ has four fixed points. Hence ii) and iii) do not occur.

Case (A). This case implies a contradiction unless i) occurs.

In both cases for some $n h_n = z$. Thus h(z) must be of the desired form.

The following problem seems to be very important. Determine the class of Riemann surfaces on which any non-trivial analytic mapping into itself reduces to a conformal automorphism.

References

 HEINS, M., On the iteration of functions which are analytic and single-valued in a given multiply-connected region. Amer. Journ. Math. 63 (1941), 461–480.

MITSURU OZAWA

- [2] HENSEL, K., AND G. LANDSBERG, Theorie der algebraischen Funktionen einer Variabeln und ihre Anwendung auf algebraische Kurven und Abelsche Integrale. (1902).
- [3] HIROMI, G., AND H. MUTŌ, On the existence of analytic mappings, I. Kōdai Math. Sem. Rep. 19 (1967), 236-244.
- [4] HIROMI, G., AND H. MUTŌ, On the existence of analytic mappings, II. Kōdai Math. Sem. Rep. 19 (1967), 439-450.
- [5] KUBOTA, Y., On an analytic mapping of an open Riemann surface into itself. Kanazawa symposium in function-theory (July, 1967).

DEPARTMENT OF MATHEMATICS, TOKYO INSTITUTE OF TECHNOLOGY.