ON ANALYTIC MAPPINGS AMONG THREE-SHEETED SURFACES

By Mitsuru Ozawa

1. Introduction. Let R (resp. S) be a three-sheeted covering surface over the finite z-plane (resp. w-plane) defined by an irreducible equation

$$
y^{3}=A(z) y+B(z) \quad\left(\text { resp. } \quad Y^{3}=a(w) Y+b(w)\right),
$$

where A, B (resp. a, b) are meromorphic functions. Here we shall assume that R (resp. S) has an infinite number of branch points. Let \mathfrak{p}_{R} (resp. \mathfrak{p}_{S}) be the projection map $(z, y) \rightarrow z$ (resp. $(w, Y) \rightarrow w)$. Let φ be a non-trivial analytic mapping of R into S. If φ preserves the projection maps, that is, $\mathfrak{p}_{S} \varphi(p)=\mathfrak{p}_{S} \varphi(q)$ whenever $\mathfrak{p}_{R} p=\mathfrak{p}_{R} q$, then φ is called a rigid analytic mapping of R into S. In the sequel we make use of the inverse mapping \mathfrak{p}_{R}^{-1} (resp. \mathfrak{p}_{s}^{-1}), as a three-valued analytic branch, of the z-plane (resp. the w-plane) onto R (resp. S). So there are three possible choices of $\mathfrak{p}_{\boldsymbol{R}}^{-1}$ (resp. $\mathfrak{p}_{\bar{s}}^{-1}$). Hiromi-Muto [4] proved that φ is rigid. In this case $h=\mathfrak{p}_{S^{\circ}} \varphi^{\circ} \mathfrak{p}_{R}^{-1}$ is a single-valued regular function of z in $|z|<\infty$.

In the present paper we shall prove a necessary condition for the existence of a non-trivial analytic mapping φ of R into S. Several non-existence criteria for analytic mappings are established by making use of the necessary condition.
2. A necessary condition. Let φ be a non-trivial analytic mapping of R into S and h the corresponding projection of φ, that is, $h=\mathfrak{p}_{S^{\circ}} \varphi^{\circ} \mathfrak{p}_{R}^{-1}$. In our case h is independent of the choice of \mathfrak{p}_{R}^{-1}, since φ is rigid. Let Y^{*} be the analytic mapping of S into the finite plane, which induces Y in such a manner that $Y^{*}=Y \circ p_{s}$. Then $Y^{*}{ }_{\circ} \varphi$ gives an analytic mapping of R into the finite plane. Hence $Y^{*}{ }_{\circ} \varphi \rho^{\circ} p_{R}^{-1}$ can be represented by

$$
f_{0}+f_{1} y+f_{2} y^{2}
$$

where f_{0}, f_{1} and f_{2} are meromorphic functions of z in $|z|<\infty$. Further

$$
Y^{*} \circ \varphi \circ \mathfrak{p}_{R}^{-1}=Y \circ \mathfrak{p}_{S^{\circ}} \varphi \circ \mathfrak{p}_{R}^{-1}=Y \circ h .
$$

Hence

$$
Y \circ h=f_{0}+f_{1} y+f_{2} y^{2} .
$$

Since $Y^{3}=a Y+b$, we have

$$
\left(f_{0}+f_{1} y+f_{2} y^{2}\right)^{3}=a \circ h\left(f_{0}+f_{1} y+f_{2} y^{2}\right)+b \circ h .
$$

[^0]By $y^{3}=A y+B$, we have

1) $f_{0}{ }^{3}+B f_{1}{ }^{3}+6 B f_{0} f_{1} f_{2}+3 A B f_{1} f_{2}{ }^{2}+B^{2} f_{2}{ }^{3}=a \circ h f_{0}+b \circ h$,
2) $3 f_{0}{ }^{2} f_{1}+A f_{1}{ }^{3}+6 A f_{0} f_{1} f_{2}+3 B f_{1}{ }^{2} f_{2}+3 B f_{0} f_{2}{ }^{2}+3 A^{2} f_{1} f_{2}{ }^{2}+2 A B f_{2}{ }^{3}=a \circ h f_{1}$,
3) $3 f_{0} f_{1}{ }^{2}+3 f_{0}{ }^{2} f_{2}+3 A f_{1}{ }^{2} f_{2}+3 A f_{0} f_{2}{ }^{2}+3 B f_{1} f_{2}{ }^{2}+A^{2} f_{2}{ }^{3}=a \circ h f_{2}$.

From 2) and 3) we have

$$
\left(3 f_{0}+2 A f_{2}\right)\left(B f_{2}{ }^{3}+A f_{1} f_{2}^{2}-f_{1}^{3}\right)=0
$$

Since $y^{3}=A y+B$ is irreducible, there is no single-valued solution of the equation. Hence

$$
f_{1}{ }^{3}-A f_{1} f_{2}{ }^{2}-B f_{2}{ }^{3} \neq 0,
$$

whence follows $3 f_{0}+2 A f_{2}=0$. Substituting this into 3), we have

$$
f_{2}\left(A f_{1}^{2}+\frac{1}{3} A^{2} f_{2}^{2}+3 B f_{1} f_{2}\right)=a \circ h f_{2}
$$

If $f_{2}=0$, then $f_{0}=0$. Thus $f_{1} \neq 0$ and hence
4)

$$
\left\{\begin{array}{l}
a \circ h=A f_{1}^{2}, \\
b \circ h=B f_{1}{ }^{3} .
\end{array}\right.
$$

If $f_{2} \neq 0$, then we have
5)

$$
a \circ h=A f_{1}^{2}+A^{2} f_{2}^{2} / 3+3 B f_{1} f_{2}
$$

$$
b \circ h=\left(-\frac{2}{27} A^{3}+B^{2}\right) f_{2}^{3}+A B f_{1} f_{2}^{2}+\frac{2}{3} A^{2} f_{1}^{2} f_{2}+B f_{1}^{3}
$$

Now we compute the discriminants D_{R} and $D_{\text {Sop. }}$. Then we have

$$
\begin{align*}
D_{S \odot \varphi} & \equiv D_{S^{\circ}} h=27(b \circ h)^{2}-4(a \circ h)^{3} \\
& =D_{R}\left[f_{1}^{3}-A f_{1} f_{2}^{2}-B f_{2}^{3}\right]^{2}, \quad D_{R}=27 B^{2}-4 A^{3} .
\end{align*}
$$

The case $f_{2}=0$ gives

$$
D_{S \circ \varphi} \equiv D_{S^{\circ}} h=D_{R} f_{1}{ }^{6},
$$

which is included in 6). Our necessary condition for the existence of analytic mappings is 5) and 6).
3. A regularly branched three-sheeted surfaces. If $\alpha \equiv 0$, then S is called a regularly branched three-sheeted surface. In this case all the branch points of S are three-sheeted locally like $z^{1 / 3}$. Now we shall prove the following Proposition.

Proposition 1. If all the zeros and poles of D_{R} are of even order and R has
an infinte number of branch points, then R is conformally equivalent to a regularly branched three-sheeted surface S.

Proof. Consider a new surface R_{1} defined by $y_{1}{ }^{3}=A_{1} y_{1}+B_{1}$ with $B_{1}=B f_{1}{ }^{3}$, $A_{1}=A f_{1}{ }^{2}$. Then by $y_{1}=f_{1} y$ we have $y^{3}=A y+B$, which defines the R. Hence the correspondence $\left(z, y_{1}\right) \leftrightarrow(z, y)$ gives the conformal equivalence of R_{1} and R. Further the evenness of orders of all the zeros and poles of D_{R} implies that of $D_{R_{1}}$. By the above process we may assume that A and B are entire functions. We shall use a notation $\operatorname{ord}\left(z_{j}, T\right)$ as α defined by

$$
T(z)=\left(z-z_{j}\right)^{\alpha} S(z), \quad \lim _{z \rightarrow z_{j}} S(z) \neq 0 .
$$

It is easy to prove that R has no branch point of order 2. Hence all the branch points of R are of order 3 [2]. Then every branch point of R, which lies over z_{3}, satisfies

$$
\frac{1}{3} \operatorname{ord}\left(z_{\jmath}, B\right)<\frac{1}{2} \operatorname{ord}\left(z_{\jmath}, A\right), \quad \operatorname{ord}\left(z_{\jmath}, B\right)=3 n \pm 1
$$

Further by considering a new surface, if necessary, we may assume that

$$
\left\{\begin{array} { l }
{ \operatorname { o r d } (z _ { \jmath } , B) = 1 } \\
{ \operatorname { o r d } (z _ { \jmath } , A) \geqq 1 }
\end{array} \quad \text { or } \quad \left\{\begin{array}{l}
=2 \\
\geqq 2 .
\end{array}\right.\right.
$$

Then

$$
\operatorname{ord}\left(z_{J}, D_{R}\right)=2 \quad \text { or } \quad 4
$$

respectively. Assume that the first case occurs. In this case we have

$$
\frac{1}{2}\left(B+\frac{\sqrt{ } D_{R}}{3 \sqrt{3}}\right)=\left(z-z_{j}\right) U(z), \quad U\left(z_{\jmath}\right) \neq 0, \infty
$$

and

$$
\frac{1}{2}\left(B-\frac{\sqrt{ } D_{R}}{3 \sqrt{ } 3}\right)=\frac{1}{27} \frac{A^{3}}{\frac{1}{2}\left(B+\begin{array}{l}
\sqrt{ } D_{R} \\
3 \sqrt{ } 3
\end{array}\right)}=\frac{1}{27}\left(z-z_{j}\right)^{3 p-1} V(z), \quad V\left(z_{j}\right) \neq 0, \infty,
$$

where p is an integer $\geqq 1$. Let $b(z)$ be an entire function satisfying

$$
b(z)=\left(z-z_{j}\right) L(z), \quad L\left(z_{j}\right) \neq 0, \infty
$$

around z_{\jmath}. Then

$$
\frac{3 \sqrt{3} B+\sqrt{D_{R}}}{2 \cdot 3 \sqrt{3} b}
$$

is regular and non-zero around z_{j} and further

$$
\frac{3 \sqrt{ } 3 B-\sqrt{ } D_{R}}{6 \sqrt{ } 3 b^{2}}=\left(z-z_{j}\right)^{3 p-3} M(z), \quad M\left(z_{j}\right) \neq 0, \infty
$$

around z_{j}. Hence the last term may be zero of order $3(p-1)$.
If the second case occurs, then

$$
\begin{aligned}
& \frac{1}{2}\left(B+\frac{\sqrt{ } D_{R}}{3 \sqrt{ } 3}\right)=\left(z-z_{j}\right)^{2} U(z), \quad U\left(z_{j}\right) \neq 0, \infty, \\
& \frac{1}{2}\left(B-\frac{\sqrt{ } D_{R}}{3 \sqrt{ } 3}\right)=\frac{1}{27} \frac{2 A^{3}}{\left(B+\frac{\sqrt{ } D_{R}}{3 \sqrt{ } 3}\right)}=\frac{1}{27}\left(z-z_{j}\right)^{3 p-2} V(z), \quad V\left(z_{j}\right) \neq 0, \infty,
\end{aligned}
$$

where p is an integer $\geqq 2$. In this case we put $b(z)=\left(z-z_{\jmath}\right)^{2} L(z), L\left(z_{\jmath}\right) \neq 0$, around z_{\jmath}. Then

$$
\frac{3 \sqrt{ } 3 B-\sqrt{\overline{D_{R}}}}{6 \sqrt{ } 3}=W(z), \quad W\left(z_{j}\right) \neq 0, \infty
$$

and

$$
\frac{3 \sqrt{3} B-\sqrt{ } D_{R}}{6 \sqrt{3 b^{2}}}=\left(z-z_{j}\right)^{3 y-6} N(z), \quad N\left(z_{j}\right) \neq 0, \infty
$$

Let z_{0} be a point satisfying

$$
\frac{1}{3} \operatorname{ord}\left(z_{0}, B\right)<\frac{1}{2} \operatorname{ord}\left(z_{0}, A\right), \quad \operatorname{ord}\left(z_{0}, B\right)=3 n
$$

Then we may assume that $\operatorname{ord}\left(z_{0}, B\right)=0$, since we may consider a new surface R_{1} if necessary. Then

$$
\begin{aligned}
& \frac{1}{2}\left(B+\frac{\sqrt{D_{R}}}{3 \sqrt{3}}\right)=T(z), \quad T\left(z_{0}\right) \neq 0, \infty \\
& \frac{1}{2}\left(B-\frac{\sqrt{D_{R}}}{3 \sqrt{3}}\right)=\left(z-z_{0}\right)^{3 p} X(z), \quad X\left(z_{0}\right) \neq 0, \infty
\end{aligned}
$$

where $p=\operatorname{ord}\left(z_{0}, A\right) \geqq 1$. In this case we put $b\left(z_{0}\right) \neq 0, \infty$. Then

$$
\begin{aligned}
& \frac{3 \sqrt{ } 3 B+\sqrt{ } D_{R}}{6 \sqrt{3} b}=P(z), \quad P\left(z_{0}\right) \neq 0, \infty \\
& \frac{3 \sqrt{3} B-\sqrt{D_{R}}}{6 \sqrt{3} b^{2}}=\left(z-z_{0}\right)^{3 \nu} Q(z), \quad Q\left(z_{0}\right) \neq 0, \infty
\end{aligned}
$$

around z_{0}.
Let z_{0} be a point satisfying

$$
\frac{1}{2} \operatorname{ord}\left(z_{0}, A\right)<\frac{1}{3} \operatorname{ord}\left(z_{0}, B\right), \quad \operatorname{ord}\left(z_{0}, A\right)=2 n
$$

Then we may assume that $\operatorname{ord}\left(z_{0}, A\right)=0$. Hence $D_{R}\left(z_{0}\right) \neq 0, \infty$. Then we have

$$
\frac{1}{2}\left(B+\frac{\sqrt{D_{R}}}{3 \sqrt{3}}\right) \neq 0, \quad \text { and } \quad \frac{1}{2}\left(B-\frac{\sqrt{D_{R}}}{3 \sqrt{3}}\right) \neq 0,
$$

around z_{0}. In this case we put $b\left(z_{0}\right) \neq 0, \infty$. Then

$$
\frac{3 \sqrt{3} B+\sqrt{ } D_{R}}{6 \sqrt{3} b} \neq 0, \infty \quad \text { and } \quad \frac{3 \sqrt{3} B-\sqrt{ } D_{R}}{6 \sqrt{3} b^{2}} \neq 0, \infty
$$

around z_{0}.
Let z_{0} be a point satisfying

$$
\frac{1}{2} \operatorname{ord}\left(z_{0}, A\right)=\frac{1}{3} \operatorname{ord}\left(z_{0}, B\right), \quad \operatorname{ord}\left(z_{0}, D_{R}\right)=2 p .
$$

Then $\operatorname{ord}\left(z_{0}, A\right)=2 s$ and $\operatorname{ord}\left(z_{0}, B\right)=3 t$ with two integers satisfying $s=t, 6 t \leqq 2 p$. In this case by considering a new surface we may assume that $A\left(z_{0}\right) \neq 0, B\left(z_{0}\right) \neq 0$, ord $\left(z_{0}, D_{R}\right)=2 q, q \geqq 0$. In this case we put $b\left(z_{0}\right) \neq 0, \infty$. Then

$$
\frac{3 \sqrt{ } 3 B+\sqrt{ } D_{R}^{-}}{6 \sqrt{3} b} \neq 0, \infty \quad \text { and } \quad \frac{3 \sqrt{3} B-\sqrt{ } D_{R}^{-}}{6 \sqrt{3} b^{2}} \neq 0, \infty
$$

around z_{0}.
By our assumption that D_{R} has only zeros of even order, the following two cases do not occur:

$$
\begin{array}{ll}
\frac{1}{2} \operatorname{ord}(z, A)<\frac{1}{3} \operatorname{ord}(z, B), & \operatorname{ord}(z, A)=2 n-1 \tag{i}\\
\frac{1}{2} \operatorname{ord}(z, A)=\frac{1}{3} \operatorname{ord}(z, B), & \operatorname{ord}\left(z, D_{R}\right)=2 n-1
\end{array}
$$

Because each case implies an absurdity relation ord $\left(z, D_{R}\right)=2 q-1$.
We have enumerated all the possible cases. There is at least one entire function $b(z)$ satisfying the required zero-point conditions. Then there are two suitable entire functions L_{1} and L_{2} such that

$$
\frac{3 \sqrt{3} B+\sqrt{ } D_{R}}{6 \sqrt{ } 3 b}=L_{1}{ }^{3}, \quad \frac{3 \sqrt{3} B-\sqrt{ } D_{R}}{6 \sqrt{3} b^{2}}=L_{2}{ }^{3} .
$$

Let $Y=L_{1} y+L_{2} y^{2}$. Then by $Y^{3}=A Y+B$

$$
\left(y^{3}-b\right)\left\{\left(L_{2} y+L_{1}\right)^{3}+b L_{2}{ }^{3}\right\}=0,
$$

which implies either $y^{3}=b$ or $\left(L_{2} y+L_{1}\right)^{3}=-b L_{2}{ }^{3}$. The latter case is equivalent to $y^{* 3}=b$.

If $y^{3}=b$ and $Y=L_{1} y+L_{2} y^{2}$, then $Y^{3}=A Y+B$. Therefore the correspondence $(z, Y) \leftrightarrow(z, y)$ gives the conformal equivalence between R and a regularly branched
three-sheeted surface.
4. Non-existence criteria for analytic mappings. We may assume that all the coefficients of the defining equations are entire.

Theorem 1. Let R be a three-sheeted surface defined by $y^{3}=A y+B$ whose discriminant D_{R} has at least one zero of odd order. Let S be a regularly branched three-sheeted surface defined by $Y^{3}=b$. Then there is no non-trivial analytic mapping of R into S.

Proof. By 6) we have

$$
D_{S^{\circ}} h=D_{R}\left[f_{1}^{3}-A f_{1} f_{2}^{2}-B f_{2}^{3}\right]^{2},
$$

if φ exists. By the assumption $D_{S}=27 b^{2}$. This is a contradiction. By the way we give another proof. By 5) we have

$$
A f_{1}^{2}+\frac{A^{2}}{3} f_{2}^{2}+3 B f_{1} f_{2}=0,
$$

since $a \equiv 0$. Since f_{1} and f_{2} are single-valued, the discriminant of this quadratic equation must be of perfectly square form. Hence

$$
9 B^{2}-\frac{4}{3} A^{3}=\frac{1}{3} D_{R}
$$

has no zero of odd order, which contradicts our assumption.
Theorem 2. Let R and S be the same as in theorem 1. Further assume that D_{R} has at least three zeros of odd order. Then there is no non-trivial analytic mapping of S into R.

Proof. In this case we have

$$
D_{R^{\circ}} h=D_{S}\left[f_{1}^{3}-b f_{2}^{3}\right]^{2} .
$$

Assume that h is a transcendental entire function. Then by the Nevanlinna ramification relation h has at most two perfectly branched values. Let w_{j} be a zero of D_{R} of odd order, then $h(z)=w_{j}$ allows only solutions of even multiplicity or only a finite number of solutions. Here j runs from 1 to 3 , which contradicts the ramification relation. Next assume that h is a polynomial of degree d. Then the equation $h(z)=w_{j}, j=1,2,3$, has no simple zero. Hence the number of simple zero must be equal to zero. But it is not less than $3 d-d$. This is a contradiction.

Theorem 3. Let R and S be two general three sheeted surfaces. Suppose that D_{R} has m zeros of odd order $(1 \leqq m<\infty)$ and D_{S} has n zeros of odd order. Assume that $n>\max (2, m)$. Then there is no non-trivial analytic mapping of R into S.

Proof. In this case we have

$$
D_{S^{\circ}} h=D_{R}\left[f_{1}{ }^{3}-A f_{1} f_{2}{ }^{2}-B f_{2}{ }^{3}\right]^{2} .
$$

Since $n>3$ and $m<\infty, h$ is not transcendental by the Nevanlinna ramification relation. Assume that h is a polynomial of degree d. Consider $h(z)=w_{j}, j=1,2,3, \cdots, n$, where w_{j} is a zero of D_{S} of odd order. These equations have simple zeros, which are not less than $n d-d$ in number. Further these simple zeros correspond to some zeros of D_{R} of odd order. Hence

$$
m \geqq n d-d=(n-1) d \geqq m d .
$$

This implies $d=1$. If $d=1$, then evidently $m=n$, which contradicts our assumption.
Theorem 4. Let R and S be the same as in theorem 3. If $n=m \geqq 3$, then there is no non-trivial analytic mapping of R into S unless R and S are conformally equivalent. If there is a positive integer t satisfying $(t+1)(n-1)>m>n t$ and if $n \geqq 3$, then there is no non-trivial analytic mapping of R into S.

Proof. If $n=m \geqq 3$ and if there is a non-trivial analytic mapping of R into S, then the corresponding h must be a polynomial. Let d be the degree of h. Then we have $m \geqq(n-1) d=(m-1) d$, which implics $d=1$. Hence h must be a linear function $\alpha z+\beta$. Then R and S must be conformally equivalent.

Assume that the latter assumption holds, then the degree d of h satisfies

$$
n d \geqq m \geqq(n-1) d, \quad(t+1)(n-1)>m>n t .
$$

Hence

$$
t+1>d>t,
$$

which is a contradiction. Thus we have the desired result.
Theorem 5. Let ρ_{R} be the order of the Nevanlinna N-function of branch points of R of order 2 and ρ_{S} the corresponding quantity for S. Assume $\rho_{R}<\infty$ and $0<\rho_{S}<\infty$ and there is a non-trivial analytic mapping φ of R into S. Then $\rho_{R}=\nu \rho_{S}$ with a positive integer ν, which is just the degree of h.

Proof. We should remark the following fact. Every branch point of R of order 2 corresponds to a zero of D_{R} of odd order and vice versa. Hence the Nevanlinna N-function of branch points of R of order 2 is equal to the N-function N of zeros of D_{R} of odd order, counting only once. Now we can make use of 6)

$$
D_{S^{\circ}} h=D_{R}\left[f_{1}{ }^{3}-A f_{1} f_{2}{ }^{2}-B f_{2}{ }^{3}\right]^{2} .
$$

Now we can use the same procedure to the above equation as in [3].

5. Analytic mappings of \boldsymbol{R} into itself.

Proposition 2. Let R be a general three-sheeted surface. Assume that D_{R} has either $n(\geqq 3)$ zeros of odd order or no zero of odd order. Then any non-trivial analytuc mapping φ of R into itself induces

$$
h(z)=e^{2 \pi i p / q} z+\beta
$$

wilh a suitable rational number p / q and a constant β.
Proof. If D_{R} has no zero of odd order, then R is a regularly branched threesheeted surface by Proposition 1. Hence we have the desired result by [3]. Assume that D_{R} has n zeros of odd order. When n is finite, we can apply the first part of Theorem 4. Thus $h(z)=\alpha z+\beta$. When n is infinite, we can make use of the same method for 6) as in [3]. This implies $h(z)=\alpha z+\beta$. In this case we can use again the same method as in [3] and then we have the desired result. If n is finite, then we make the p-th iteration h_{p} of h. Then h_{p} makes a permutation of the underlying set of branch points of order 2. Hence there is an integer ν for which h_{ν} fixes all points of the set. Since h_{ν} is a linear function, h_{ν} must be the identity. Thus $h(z)$ has the desired form.

We prove the following theorem.
Theorem 6. Let R be a general three-sheeted surface. Then any non-trivial analytic mapping φ or R into itself is a conformal mapping onto itself and the corresponding $h(z)$ has the following form $e^{2 \pi i p / q} z+\beta$, where p / q is a rational number.

Proof. By Proposition 2 it is sufficient to prove our result in two cases: (A) D_{R} has only one zero of odd order and (B) D_{R} has only two zeros of odd order.

In order to prove this theorem we need a result due to Kubota [5], which is a generalization of Heins' theorem [1]: In any hyperbolic surface R whose fundamental group is not abelian, φ satisfies either i) for some integer n the n-th iteration φ_{n} of φ coincides with the identity mapping or ii) φ_{n} tends to some ideal boundary or iii) φ_{n} tends to a point p in R and $\varphi(p)=p$.

Case (B). By 6) $D_{R} \circ h=D_{R}\left(f_{1}{ }^{3}-A f_{1} f_{2}{ }^{2}-B \dot{J}_{2}{ }^{3}\right)^{2}$. Let w_{1}, w_{2} be two zeros of D_{R} of odd order. Then $h\left(w_{j}\right)$ must be a zero of D_{R} of odd order and hence $h\left(w_{j}\right)$ must be w_{k}. Assume $h\left(w_{1}\right)=w_{1}$. Then φ has two fixed points on R, which lie over the same w_{1}. Hence ii) and iii) do not occur. Assume $h\left(w_{1}\right)=w_{2}$, then $h\left(w_{2}\right)=w_{1}$ or w_{2}. The latter case can be omitted. Hence the second iteration h_{2} of h has two fixed points and hence φ has four fixed points. Hence ii) and iii) do not occur.

Case (A). This case implies a contradiction unless i) occurs.
In both cases for some $n h_{n}=z$. Thus $h(z)$ must be of the desired form.
The following problem seems to be very important. Determine the class of Riemann surfaces on which any non-trivial analytic mapping into itself reduces to a conformal automorphism.

References

[1] Heins, M., On the iteration of functions which are analytic and single-valued in a given multiply-connected regıon. Amer. Journ. Math. 63 (1941), 461-480.
[2] Hensel, K., and G. Landsberg, Theorie der algebraischen Funktionen einer Varıabeln und ihre Anwendung auf algebraische Kurven und Abelsche Integrale. (1902).
[3] Hiromi, G., and H. Mutō, On the exıstence of analytic mappıngs, I. Kōdaı Math. Sem. Rep. 19 (1967), 236-244.
[4] Hiromi, G., and H. Mutō, On the exıstence of analytic mappıngs, II. Kōdaı Math. Sem. Rep. 19 (1967), 439-450.
[5] Kubota, Y., On an analytic mapping of an open Riemann surface into itself. Kanazawa symposium in function-theory (July, 1967).

Department of Mathematics,
Tokyo Institute of Technology.

[^0]: Received September 25, 1967.

