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ON CIRCULAR AND RADIAL SLIT DISC MAPPINGS

By NoBuyvuki Suita

§1. Introduction.

1. This paper contains ameliorations of some results of Marden and Rodin [7].
Recently Marden and Rodin [7] discussed a circular-radial slit mapping in connection
with problems of extremal lengths. For instance they divide boundary components
of a plane domain £ into three sets, «, 8 and y, where « is a component and aU}p
is closed in the Stoilow compactification of £. They proved that if the a is not so
small, a circular-radial slit disc mapping of 2 can be constructed and that the image
of £ under it is bounded by a circle with center at the origin having possible radial
incisions, circular slits with possible radial incisions and radial slits under an as-
sumption of p-isolation.

The aims of the present paper are at first to deal with such a mapping without
the condition of g-isolation, in the second place to construct a radial-circular slit
disc mapping in case where aUy is closed, which was treated by them as a dual
problem [7] and at last to define a circular and radial slit disc mapping in more
general partitions.

We shall also discuss extremal properties of these mappings. Such extremal
properties were discussed by Marden and Rodin in connection with the logarithmic
area [7]. Our version is more classical. These properties are related to extremal
problems treated by Rengel [12] for domains of finite connectivity. One of them
was discussed by Reich and Warschawski [11] for circular slit mappings of arbitrary
domains and recently by Oikawa [9] for radial slit mappings. The other was due
to Grotzsch [6] for radial slit mappings with a restriction which was removed by
the author [16].

§2. Preliminaries.

2. Let 2 be an open plane domain and let @ be its Stoilow ctification
[3]. A boundary component ¢ is defined by a defining sequence {4,} a that the
relative boundary of 4, is a single Jordan curve, 4,54,.; and N4,=¢. Each
member of the defining sequence {4,} forms a neighborhood of a.

The topological representation of {4,} is given by NCI(4,) which is denoted by
the same letter g, where Cl(*) means the closure taken in the Riemann sphere.

Let T'(z) be a topological mapping of 2. 7T(z) can be extended topologically
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onto its compactification Q. The image of ¢ defined by {4,} is given by T'(s) defined
by {T'(4a)}.

Let C be a closed set of boundary components of ¢. Since C is covered by a
finite number of members of defining sequences of elements of C, we can construct
a defining sequence of C, denoted by {D,}, such that D, consists of a finite number
of domain whose relative boundaries are single analytic Jordan curves, DpD Dn.1,
andNCI(D,)=C. 92—D, is a domain, denoted by @2,. {2,} exhausts 2 which is
called an exhaustion of Q towards C.

3. We shall use the method of extremal metrics. Let I" be a family of curves
¢ running within @ whose restriction on 2 consists of at most a countable number
of locally rectifiable curves in £. Let p be a measurable metric on 2 which will
be used instead of p|dz| for short. We mean by P(/") the admissible class of metrics
such that the Lebesgue-Stieltjes integral of p along the restriction of ¢ on 2 is
defined and satisfies.

S pldz|=1.

The module of I', denoted by mod I", is defined by

i 2__ i 2
Pélfr’g") ||p||g pellgg")SSa e dz dy.

The extremal length A(I") is its reciprocal.

Let I7 be the space of [, metrics on 2. We denote by P*(I") the closure of
P(I'YN H which is called the /l;-admissible class of /". Then mod I"'=oo, if and only
if P*(I"Y=¢. Unless P*(/")=¢, there exists a unique metric p, in H, called the
extremal metric, satisfying that mod I"=||p||? [13] and that

(L) Ho—eoll*=110l1*—l0ol|*

for every pe P*(I") [16].

A curve family with vanishing module is called an exceptional family. The
union of a countable number of exceptional families is exceptional [5]. We say
that a proposition holds for almost all (a.a.) cer’, if it is false only for an exceptional
subfamily of I". The /,-admissible class P*(I") is equivalent to the class of satisfying

S oldz|=1 for a.a. cel’

[5, 171.
The following lemma will be used frequently.

LEMMA 1. Let {I".)3-, be an increasing sequence of curve families. DPut Ty
=UTI". Then mod I, tends to mod I'y. Furthermore the sequence of the extremal
metrics pn tends to the extremal metric po of Iy strongly so long as P*(I"o)=¢.
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The proof of the first half is found in [17] and the convergence of p, is obvious
from its proof. Ziemer [19] proved this result for the module of families of complete
measures.

4. Let P(z) be a quasiconformal mapping of 2 whose maximal dilatation is K.
A curve ¢ in £ is mapped onto a curve on the Stoilow compactification of @(2)
which is denoted by @(c). The collection of the image curves of I is written by
O(I"). Then we have

(2) % mod I'=mod @(I")=<K mod I".

For the proof the readers are referred to [1].
We shall use quasiconformal mappings to modify the conformal structure of Q
and to evaluate modules. We shall need the following lemma later on.

LemMA 2. Let 4 and A" be subdomains of 2 whose relative boundaries consist
of a finite number of analytic closed curves such that 454" and A—47 is relatively
compact. Let {fuln-1 be a sequence of wunivalent functions defined on subdomains
Qn of Q such that 2,C24.1 and UR.=20. Suppose that f, tends to a univalent
function fo uniformly on any compact subset of 2. Then, for a given ¢>0, we can
construct a (1-+-¢)-quasiconformal mapping of a subdomain *=(Q—A)U 2, denoted
by @%(2), such that O(2)=rfoz) in Q—4 and O(R)=Ffu(z) in 4’ N2y for a sufficiently
large n.

Proof. Let D, (j=1, 2, ---, [) be the components of 4—4’. Let C, be the subset
of boundary comsonents of D, contained in the relative boundary of 4 and let C¥
be those contained in the relative boundary of 4’. Denoting by w;(z) the harmonic
measure of C¥ in D,, we put

Jo(2) in 2-—4,
()= (I1—wi)fe()+wi2)f«(z) in D,
Ta(2) in 400,

for so large # that the 2¢, defined by (2—4)U 2., becomes a domain and that
D(21)—D*(22) ~

0 (21, 22€ D, 215 25).
Z1—22

Then @° is univalent in 2°. A simple calculation verifies the statement about the
dilatation of @° for sufficiently large », which is a desired quasiconformal mapping
[1). Another topological proof of the univalency can be given as in [15].

§3. Circular-radial slit mapping.

5. We may assume that 2 is a finite domain. Let a be its outer boundary.
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Let (a, A, B) denote a partition of 92 into three sets. Suppose aUA is closed.
Let {©2,} be an exhaustion of towards aUA. Let a, denote the outer boundary of
2, and let A, be the subset of its relative boundary other than a,. Put B,=B ng,.
Since B, is closed, we take an exhaustion {@2,;} of 2, towards B,. Let B,, be the
relative boundary of 2,, in 2,, and let a,, and A,, be aanM and Anném res-
pectively. Let ¢ be a point of 2. We agree that every member of its exhaustion
contains the point @. There exists a circular-radial slit disc mapping such that

1) fnj(a)=0, f,nj(a)=1»

i) falan;) is a circle |fnjl=Rn,,

iii) fa;(As;) consists of a finite set of circular slits and

iv) faj(Bn;) consists of a finite set of radial slits.

The construction of f,, is now classical and the readers are referred to [7].

6. The function f,, induces two extremal metrics of the following module
problems. Let I'%4, be the family of curves separating the set |fn;l=¢ {rom Qny
within f)nj—Am and let X%, be the family of curves joining them within 2,;— By,.
Then the metrics pn,=|f"n;/(2nf25)| and pn;=|f"n;/((l0g Rau;/q)fn;)| are the extremal
metrics for I}, and X%; respectively and we get

q J
mod /%, o log 7
and
2
mod X¢;= ————.
7™ log Ruilq

The quantity R, is represented in terms of modules. LetA I'nj(g) be the family
of curves sparating a small circle |z—a|=¢q from as, within 2,;—An, and let X,1(q)
be the joining curve family of them within £,;—B,,. Then we have

log R,,J=lirf)1 (27 mod I'»;(g)+1og @)
q—b
=1}5} (27A(Xny(9))+10g @),

both of which are the limits of monotone increasing sequences. This relation is easily
verified from well-known inequalities of extremal lengths as in [2] and [14]. In
general the above quantities can be defined for a general domain and an arbitrary
partition of 02 into a, A and B similarly. These two limits may well differ. If
these coincide, we denote it by R(a, A, B) and call it the extremal vadius of « at
@ with respect to the partition (a, 4, B).

7. We first let j tend to infinity. The function f,, converges to a univalent
function fu(2) in such a way that ||f’a/fa—f"njlfnsllt,,—0 [7]. It is also verified
from the inequality (1). In fact, let M, be the maximum modulus of fn: on the
curve |fa;]=¢ for k>j. Then any curve of I'¥ contains a curve of I',% as a subset,
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Put pn;=|f"i/(2r fn;)] Which is defined to be zero outside of £,,. Let QM denote
the set M,<|fux|<Rux. We have by (1)

]- Rn] Rnk
— 2 i — "
Hons— il g = 5 <log 7 log Mq)
and letting ¢—0 we get
} f/n] ’ flnk | ny
3 - o =2rlo .
( ) !!l fnj ‘ fnk }‘!)n] ™ 108 Raux

From the inequality the convergence of f,, is easily verified [18].

The image of 2, under f, is as follows:

i) fulaw) is the circle |fu|=Rn., where R,=R(an, An, Bn),

ii) fu(A,) consists of a finite set of circular slits and

iii) fa(Bn) is a minimal set of radial slits.

i) and ii) is obvious, since a, and A, are isolated. For the representation of R,,
see the next section no. 8. The property iii) is easily verified by the localization of
minimality [10, 15].

8. The f, again induces two extremal metrics for I'? and X2, where I'¢ is the
family of curves separating an, from the set |f,|=¢ within Qn—An and X{¢ is that of
curves joining them within £,—B, for sufficiently small q. Put p.=|f."/@z /).
Then from Schwarz’s inequality we have

1, R, ,
llolFye= - log 7 pe ()

which implies the extremality of pn, since p,€P*(['}).

Next, we set pn=|fn'/(fnlog Ru/q)|. Considering the maximum and minimum
moduli of f,, on the curve |f,|=¢, we can conclude from Lemma 1 that mod X{=
2r/log (Ra/q) and p, is extremal.

9. Since the family I', of curves separating «, from the point ¢ within Qn— A,
is increasing, so is R, (cf. no. 6). Suppose R,=lim R,<co. Then letting n—oo,
we obtain a univalent function fi(z) such that ||fx'/fu—fo'/follt,—0 [7]. This is
a direct result from an inequality similar to (3)
S

15

since R,=R,. We now state

Ry

R’ for m>n

=2r log

_'ﬁi
Ta

2
2n

THEOREM 1. Under the assumption that R,<oo, the function fo constructed
above possesses the following properties:
1) fola) is the circle | fol= R, with possible vadial incisions of angular measure
zero emanating from it.
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ii) folo), a€A, is a circular slit (possibly a point) with possible radial incisions
of angular measure zero,

iii) fo(B) is @ minimal set of radial slits,

vi) the total area of the image of the boundary of Q under f, vanishes,

V) the metric po=|fy'|2nfy)| is extrAemal for the curve family I'{ of curves
separating « from the set |fol=q within 2—A for sufficiently small ¢ and mod [
=(2r)log Ro/q, and

vi) the metric /;zo=| S [(folog Ro/q)| is extremal for the family X? of curves
joining them within 2—B and mod X?=2x/log Ry/q.

The properties i) and ii) are discussed by Marden and Rodin [7] under an ad-
ditional assumption ¢ g-isolation.” They showed that fy(¢), c€B, is a radial slit.
Here a minimal set is a quasiminimal set in [15]. The property iv) is a common
property of canonical slit mappings stated in [15]. The module problems were
discussed by them [7]. A special module problem for the family of collections of
curves was dealt with by Andreian-Casacu [4].

10. Before proving Theorem 1, we prepare the following

Lemma 3. Let p, be a sequence of metrics such that ||pu||*—0. Let I" be a
family of curves on which p, is defined and measurable. Then we have

limg onldz|=0 for a.a. cel’.

This is due to Fuglede [5] (cf. [7]).

11. The proof of Theorem 1. The property iii) is a direct result of the locali-
zation of minimality [15] which is also proved by a characterization due to Oikawa
[10].

We first show the property ii). The proof of i) is its analogue. Let ¢ be an
element of A. We can select a defining sequence of ¢, denoted by {4,}, from the
components of 2—2,, where {2,} is an exhaustion of 2 towards a«UA to define f,
as before. Let o, be the relative boundary of 4,. The image of ¢, under f5 is a
circular slit with radius 7,. Selecting a subsequence, we may assume that lim »,=7,,
since 7, is bounded by R,. Put wu,=log |fy|, #n=log |f.| in 4,NR2,, and extend u,
on 4,—£2, by the constants taken by it on each component of the relative boundary
of 4,—9,. Let X(o) be the family of curves joining ¢ and o, within £,—B. The
function u, is continuous on ceX(s). We set p,=|grad (wo—u,)|. Then the con-
vergence of f»’'//» in no. 9 and Lemma 3 shows that

limS dwo—u)=0,  for a.a. ceX(o).

Using the uniform convergence of #, on ¢;, we have
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(4) S duo=1log ro—us(z.) for a.a. ce X(v),
c

where z. is the initial point of ¢ on .

Next we evaluate the module of the curve family, denoted by /, consisting of
the curves on which (4) is false. ¥From the construction of fy in nos. 7 and 9 we
can select a subsequence {fn;m} from the sequence {f,;} such that ||/v//fo—Ff"njm
[frjem 2o, 00—0. Let 2, be a relatively compact open set |fo|<g and let Dy be
Q— 241 (B=1) which consists of a finite number of domains, say Dy (/=1, 2, ---, Np).
Let ¢ be a given positive number. Then using Lemma 2, we can construct a sub-
domain Dj, of each Dy, given by Di N Qyjmy, and its (1+4¢)-quasiconformal mapping
®y,(2) such that @y, =f, in Dy—4dyu and G4 =Frjm in 44N Lujeny, Where Ay and 4,
are suitably chosen ends of Dy containing its ideal boundary components which
correspond to 4 and 4’ in Lemma 2 respectively. Set 2°=UDj, U2y and put

Oy in Dj,
=
fo il’l .Qo.

Then £ has at most a countable number of relative boundary components whose
images under @° are radial slits. Furthermore the image of re AU« under ¢°
coincides with fo(z).

In the image domain @°(4,N§*) a ray arg w=const emanating from @ (s,)
(=f4(s))) contains the image of a curve joining ¢; and ¢ within 4,—B, if it intersects
®*(o) and if it is disjoint from the radial slits which is the image of the relative
boundary of £°. Let W be the doubly connected domain bounded by fy(s:) and fo(o).
Since f(o1) encloses fo(s), a ray arg w=const contains two radial segments joining
foley) and fo(e) within W. The set of the arguments of these segments makes two
intervals [a, b], where @ and b are the minimum and maximum values of the argu-
ments of the rays. One is the set of segments on which |w| increase from fy(o:)
to fo(o). and on the other set the contrary holds. The subset £ of the arguments
of the segments along which the relation

lim log |w|=log 7,

does not hold is a set of F,, where 7, is the quantity in (4). Thus the set 5° of
the arguments of the rays in the domain @°(4,) mentioned above is a measurable
subset of £ with the same measure. Let /°(#) denote the logarithmic length of the
curve on the ray in the @° (4, N 2°) for 0 € £° and let /(0) be the length of the segment
for 0eZ which satisfies /(0)=/(0). Let p be an admissible metric for the image
curve on the ray with argument de¢&°. From the Schwarz inequality we have

1
rdr=———, geE"
S&rg w=0p 15(0)

and since the inverse image of the curve for ¢€Z&° belongs to 4
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1 dy
mod A= 1+6 Ssﬁ—l—i(—(}j.
Letting ¢—0, we get
do
(5) mod AESE—I(T)».

The above inequality was first obtained by Strebel for the radial slit mapping
[14].

From (5) we conclude that the subset of fy(¢) not lying on the circle | fo| =7, is
possibly a set of radial incisions of angular measure zero.

12. Continued. We now prove the properties iv), v) and vi). As is seen in
no. 8, p,=|fa'/2xfz)| is extremal for the dividing curve family I's. Then selecting
a subsequence of {f.}, if necessary, we can construct such a sequence {g.} with
limit ¢ that {I"%} is increasing and that U I'%»=TI"% since f, converges to f, uniformly
on a neighborhood of the set |fy|=¢ for a sufficiently small g. Thus Lemma 1
shows that mod I'{=(2=)"*log Ro/q and po=|fs'[(2x fo)| is extremal.

The property iv) is obvious from the equality ||po||2=(27)* log (Ro/q).

Finally the metric uo=|fy'/(fslog Ro/g)| is l-admissible and hence we have
mod X{=2xr/log (R,/q). We apply the inequality (5) to X¢ and have

2 do
>\ 2
(6) modX__So i
Since /(#)=log (Ro/q), we get mod X{=2r/log (Ry/q¢) which implies vi). This in-
equality was obtained by Strebel [14] in case where A=¢.
From (6) we also see that fo(a) is the circle |fy|=R, with possible radial
incisions of angular measure zero.

ReMmark. We conclude that Ry=R (¢, A4, B) from v) and vi).

We call the function f, an (extremal) circular-vadial slit disc mapping of 2 with
respect to the partition (@, A, B). Here the closedness of aUA and finiteness of R,
are assumed.

§4. Extremal Properties.

13. We discuss some extremal properties of the circular-radial slit disc mapp-
ing which characterize itself. Marden and Rodin dealt with extremal properties in-
timately related to the extremal length [7]. We shall show these extremal properties
as extensions of classical theorems.

Let 2 be a finite domain and let «, A and B be a partition of 92 such that «
is its outer boundary and aUA is closed. We denote by % («, A4, B) the family of
univalent functions satisfying



CIRCULAR AND RADIAL SLIT DISC MAPPINGS 135

) fl@=0, fla)=1, aef,
ii) f(a) is the outer boundary of f(£) and

iii)

S dargf‘;Zn- for a.a. cel'(g),

where Il(q) is the family of curves separating a from a compact disc |z—a|=q
within 2—A. Put

M(f)= sup | f(2).
2€92
Then we have

THEOREM 2. Suppose R(a, A, B)<co. Then the circular-radial slit disc mapp-
ing fo is the unique funclion minmizing the quantity M(f) within ¥(«, A, B).

Proof. We first show that f,e%(a, A, B). In fact, as is seen in no. 11 we have

I fameny’ [ Fumeny =50 | fol lommeny—0 for a subsequence {fammy} of {fam}. Applying Lemma
3 to the metric

1 Jnmeny | .
- |grad log —?";(—): in Qumeny,
m=r
g-lgrad log | fol| in 2—L2umaw,
we get
S darg fo—S darg fammy—0.
¢ cNQpm (N

for a.a.ce/l(g). Thus we have

=2r for a.a. ceI'(g).

S darg fo

Next we remark that the condition iii) is independent of the choice of neigh-

borhoods. Indeed, for ¢'<gq, we take an »>g¢ such that ¢’=|z—a|=7 is contained
in . Then

log q¢’—log r
log g — log 7

| z I
1']7 eLure in g<lz|=7r
z in Q27

is a quasiconformal mapping of 2% onto 2%. @ maps I'(¢) onto I'(¢’) and a curve

satisfying the inequality in iii) corresponds to a curve with the same property since
the condition
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IS d arg w’ézn
f©

is due to the behavior of the curve near the boundary of £. Thus from (2) we
conclude the independence.

Put po=|/v'/2xfo)| and p=|f"[{2xf)| for feF(a, A, B). From Theorem 1 and
(1) we have

/
0

H yan M(f)‘

s

Thus we have the assertion.

<2 log

0

This extremal property can be deduced from Marden and Rodin [7].

14. From Theorem 2 in case where A=¢, we obtain a characterization of the
minimality of radial slits which will be needed the next corollary.

CoroLLARY 1. Let [ be a compact set contained in an annulus G:q<|z]<Q.
Then E is a minimal set of vadial slils if and only if

(7) ;Scdarg ZEZ—ZTE

Jor a.a.c of the family of curves separvating the circle |z|=Q from |z|=q witlun
the compactification of G—E.

Proof. Let p be an admissible metric for the above separating curve family.
Then the Schwarz inequality shows ||p||2=(2r)!log (Q/q). From (7) po=|2zz|' 1s
l,-admissible and ||oo][2=(27)* log (Q/q). Hence p, is extremal and we see that the
radial slit disc mapping of the disc |z|<@ less E is the function z, which implies
the minimality of £ from Theorem 1.

Conversely if E is minimal, G—FE is a minimal radial slit annulus [15]. Let
{G,} be its exhaustion towards E. Then we have ||1/z—g.//¢.ll%,—0, where g, is
the radial slit annulus mapping of G, with the normalizations ¢,(Q)=@Q and preserv-
ing the outer boundary. Put

~21—‘ grad log 2 g in Gy,
On= i

|27z|~! in G—Gn.

Applying Lemma 3 to p,, we have
S darg z—S darg ¢,—0, for a.a.c,
c cnGy

which implies (7).



CIRCULAR AND RADIAL SLIT DISC MAPPINGS 137

We call a univalent function f a radial slit mapping (with respect to B) if f(B)
is a minimal set of radial slits. We get

COROLLARY 2. fo iS the unique function minimizing M(S) among the radial
slit mappings f satisfying 1) and ii).

This extremal property was found by Oikawa [9] in case where A=¢. The
case where B=¢ is classical [11, 12].

Proof. 1t is sufficient to prove that the condition iii) is equivalent to the
minimality of f(B). Suppose iii). In the image plane, we take a compact subset
2 of f(B). Then we can take a disc |w|=¢C f(£2) and an analytic closed curve &
which separates the image of «UA under f from the disc and E in f(2). Let W
be the domain whose boundary consists of the circle |w|=¢, and the subset of
boundary components of f(B) contained in the interior of &, say E’, which is closed
and contains E. Then we have (7) for a.a.c of the family of curves separating
& from the circle |(w|=¢g within W. Let G be an annulus g<|w|<Q less E’ con-
taining W. Then similarly as in the proof of Theorem 2 we can construct a
quasiconformal mapping @ of W onto G such that @(w)=w in a neighborhood of
E7 (cf. [16] pp. 224-225). Then we have the validity of (7) for G, which implies
the minimality of £’ and hence of E from Corollary 1.

Next suppose f(B) is minimal. Let {2,} be an exhaustion of 2 towards «U A.
Let a, be the outer boundary of £, and let A, be the relative boundary of £,
other than a,. Put B,=2,nB. Denoting by I"x(¢) the family of curves separating
the circle |z—a|=¢q and «, in 2,—A, we have (7) for I'.(g) from Corollary 1, since
f(Bp) is a compact minimal set of radial slits and I',(¢) is a subfamily of the cor-
responding family of a large annulus less f(B,). ['W(@)=UIx(q¢) and a countable
union of exceptional families is also exceptional. So we get (7) for I"«(q).

15. We now deal with another extremal problem. Let § be the family of
univalent functions f in £ satisfying i) and ii). Let X be the family of curves
joining « and ¢ within O-B.

Then the limit

lim
-1

S% df( —ML(f)

exists for a.a.ceX, where ¢, is a subarc of ¢ with its representation z(s), (0=s=¢,
2(0)=a) and tending to « as #—1 [8]. Here the module of the above exceptional
family is measured by the set of subarcs starting from a simply connected compact
neighborhood of @ whose exceptionality does not depend on the choice of neighbor-
hood [16]. We define by m*(f) the least upper bound of m satisfying M.(f)=m
for a.a. ceX. Then we state

THEOREM 3. Under the same assumption in Theorem 2, the circular-radial slit
disc mapping fo is the unique function maximizing the quantity m*(f) within the
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family F.
The Proof is analogous to that of Theorem 4 in [16] and omitted.

§5. Radial-circular slit mapping.

16. Throughout this section we assume that £ is a finite domain containing «,
a is its outer boundary and aU B is closed. Let {2.} be an exhaustion of 2 towards
a and let a, be the outer boundary of 2,. Put An=ANL, and B.=Bn%. We
take an exhaustion of 2, towards B,, denoted by {£2,;}. Let a,, denote the outer
boundary of 2., and let B,, be the set of its relative boundary components other
than an,. Put Anj=AnﬂQ,,,. Since an;UAn, is closed in 2, there exists the
circular-radial slit disc mapping f»;. The image fnj(an;) is a circle | fr;|= Rn,, Where
Ru;=R (anyy Any, Buj), fny (Brj) is a finite set of radial slits and fn; (Ax;) is a minimal
set of circular slits. The incisions do not appear because By, is a finite set. Set
ony=\fn,/|2nfr;)|. Since pn; is exAtremal for the family Iy, of curves separating
an; from the set |fn;|=¢ within 2,;—An, and p.c€ P*(['%;) for £<j, we have from
ey
2 Rnk

=2r log Ry’

2,

| L |
| fre |

letting ¢—0. The sequence R,, is monotone decreasing which tends to a limit R,.
From (8) there exists a univalent function ¢, such that

Ing'
fn;

(8)

i gnl _ fn]l 2

(%) ]! Jn S

—0 as j—oo.
25,

17. We prepare
LEmmA 4. The function gn possesses the following properties:

1) gulan) is the circle |gn|=Ra,

i) gu(An) is @ minimal set of circular slits,

i) gn(0), 6€ By, is a radial slit (possibly a point) with possible circular incisions
emanating from it,

iv) the area of ¢u.(02.) is equal to zero,

V) the metric pn=|9x"/(2rgy)| i’s extremal for the family I'Y of curves separat-
ing an from the set |gn|=q within Q2,— A, for sufficiently small q and mod '8 =(2z)~!
log Rn/q and

vi) the metric pn=|g.'[(gn l0g (Ralq))| is extremal for the family X2 of curves
Joining them within Qn—Bn and mod X%=2z/log (R./q).

Proof. 1) is obvious, since a, is isolated. 1ii) is the property of minimal sets
which is shown in no. 8. In order to prove iii) we return to the definition of fu,.
Let {2%;} be an exhaustion of £,, towards a;U Ax;. Let o, be the outer boundary
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of Q%, and let A%, be the subset of the relative boundary of 2%, in £2,, other than
ak,. Put BE;=DBy, nok ;- Let £k, be the circular-radial slit disc mapping with respect
to (af, Ak, Bk;). Then we can select a subsequence {f%”} of {f%;} such that
/51 5 —gu’ lgal| kp—0 as j—oo. Thus the same proof as in iii) of Theorem 1

is applicable. The details are omitted.
The properties v) and vi) is proved similarly as in no. 12 and iv) follows from
V).

REMARK. From the properties v) and vi) we see that
Rn=R(am An) Bﬂ)'

18. We have |||g4'/gal — |9’ |9ml|||bn=27 l0g Rn/Rn (n>m) as before. R, is in-
creasing and we put R,=lim R,. Suppose the sequence R, is bounded. Then there
exists a univalent function g, such that

(10) wg_"’_ﬂ

2
0.
[l gn 9o

12

Now we state

THEOREM 4. Under the assumption that R,<oco, the function ¢, has the fol-
lowing properties.

1) go(a) is the circle |go|=R, with possible radial incisions emanating from it,

il) ¢o(A) is @ minimal set of circular slits,

iii) go(o), 6€B, is a radial slit (possibly a point) with possible circular incisions
emanating from it,

iv) the area of ¢,(02) vanishes,

V) po=|90'/(2rg0)| is extremal for the I'{ of curves separating a from the set
lgo|=q within O— A and mod I'{=(2x)*log (Ro/q) and

vi)  po=[90"/(g0 log (Ro/q))| is extremal for the family X§ joining them within
@ —B and mod Xi=2x/log (R,/q).

Most of the proof of the theorem is analogous to that of Theorem 1. We shall
prove the properties i), iii) and vi).

Proof. To prove iii), similarly as in the proof of iii) of Lemma 4 we select a
subsequence {f&%,} of {f%;} such that

Using this sequence to establish a similar inequality to (5), we can prove iii) analo-
gously as in the proof of ii) of Theorem 1.

Next we show vi). The metric po=|g.'/(g0 log (Ro/q))| is l:-admissible for X§ and
we have mod X{=2x/log (Ro/q). It is a direct result from the fact that

’ k(n)’ 2
o nff(zz)

kG
Jdo f nj'ézo

—0.

k(n)
D)



140 NOBUYUKI SUITA

’ 2

e o’
| elog (Refa) ~ an1og (RalMign))

|
j’_()qu(.l]n)_) ’

where My (9,) is the maximum modulus of g, on the set |go|=g¢, tending to ¢q. In
order to prove Strebel’s inequality we take a subsequence {fuj} Of {fn;} such that

|

Let 9o be a relatively compact set |go] <g, put dyx=2;—2%_; and 4,=2,. Then
applying Lemma 2 to 4; and the sequence {fnj,} We can construct a subdomain
2 of 2 whose relative boundary consists of a countable number of closed analytic
curves enclosing all the boundary components of B and its (1-+e)-quasiconformal
mapping @°(z) such that @*(«) is equal to go(«). Since the radial slits of @°(2°) is countable
we get Strebel’s inequality (6). Thus we have mod X?=2x/log (R,/q) which implies
vi). The property i) follows from (6) because /(0)=log Ry/q except for a set of
angular measure zero.

’ ’ '
Jo f njn) 2

—0.
Jo I njny

|20

ReEMARK. In this case, R, is equal to R(a, A, B).

19. We call the function ¢, a radial-circular slit disc mapping of 2. We can
show the same extremal properties of g, as f, stated in Theorems 2 and 3.

§6. Circular and radial slit mapping.

20. Let (a, A, B) be an arbitrary partition of 92, where 2 and « are as before.
Let A; be a subset of A such that «aUA; is closed. Put 02—aUA,=B" If
R(a, Ay, BY)<oo, from Theorem 1 there exists the circular-radial slit disc mapping
of 2, denoted by f4,(2). Let I'(A;) be the family of curves separating a from the
point @ within @—A, and let X(BY) be that joining them within 2—B*. If A,CA,,
I'(A)DI'(A) and X(BY)c X(B?). Thus we have R(a, A1, BY)=R(«a, As, B?).

Put

R(A)= inf R(a, Ai, BY)
A1CA

for every compact aUA;. Let {A,} be a minimal sequence satisfying that A,C A,
@U Ay is compact and lim R(a, An, BY)=R(A). Then we have

LeMMA 5. Let fa,(2) be the circular-radial slit disc mapping of Q with respect
to the partition («, An, B™). Then the sequence fa,(2) tends to a univalent function
fa(z) such that

| fran  Srallf
| fa, Ja

The funclion f4(z) is independent of the choice of minimal sequences,

—0.

Q2
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Proof. Taking a new sequence {U7?-,A;}, we may assume that 4, is increasing.
Then from the monotonity of I'(A,) the same reason as the proof of (3) shows

S am || a0 | iz - R(a, Am, B™)
Far |7 a2 08 TRl AL B

for n>m which implies the existence of f4 such that || f’4,/fu,— ' alfal>—0.
The independence of f4 follows from (11).

|

21. Next we take a subset B, of B such that «U B, is compact. Let I'(AY)
and X(B:) be the families defined as before. Considering the family 7'(A,), we see
that R(wa, AY, By) is increasing with respect to Bi.. Put

R(B)=sup R(a, A, By)
B1CB

for B, such that a«UB; is compact. Let {B,} be a maximal sequence such that
lim R(a, A", B,)=R(B). Then we have

LEmMMA 6. Suppose R(B)<oo. Let gg,(2) be the radial-circular slit disc mapp-
mg of £ with respect to the partition (a, A®, Bn). Then therve exists a univalent
Sfunction gs(z) such that

H 9's _ ngn >

9B 9B,

—0.

Q

The function gp is independent of the choice of maximal sequences.
The proof is similar to Lemma 5, which may be omitted.
22. We now state

THEOREM 5. Suppose R(A)=R(B)<co. Then the function fi defined in Lemma
5 coincides with the function gz in Lemma 6.

Put R(A)=R(a, A, B) and fa=@a,5. Then the function ¢a,p possesses the fol-
lowing properties:

1) oa,8la) is the circle |p4,8|=R(a, A, B) with possible radial incisions emana-
ting from it,

il) ¢a,8(0), 0€A, is a circular slit (possibly a poinl) with possible radial incisions
emanating from it,

iii) ¢u4,5(0), 6€B, is a radial slit (possibly a point) with possible circular incisions
emanating from it,

iv) the area of ¢a,5(08) vanishes,

V) the metric po=|¢}, s/(Crpa )| is extremal for the family I''(A) of curves
separating o from the set ¢4, 5l=q within O—A for sufficiently small q and mod
I'(A)=(2r) 'log R(a, A, B)|q and

vi) the metric po=|¢. sl(pa. 5 log (R(a, A, B)|q))| is extremal for the family X(B)
of curves joining them within @ —B and mod X9 B)=2r/log (R(a, A, B)q).
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Proof. Let {A,} be a minimal sequence in Lemma 5 and let {B,} be a maximal
sequence in Lemma 6. Then we get similarly as in (11)

%

since I'(An)DI'(A™), which implies the coincidence of f4 and ¢s.

Next we show the properties v) and vi). Taking a subsequence of {fa,}, if
necessary, we can construct such a sequence {g,} with limit ¢ that {/"»(A,)} is
decreasing and I'"(A,)D>I'%(A). Here I'™»(A,) is the family of curves separating «
from the set |f4,l=¢» within 2—A,. Let {g"} be a sequence with the same limit
such that {I"™(A,)} is increasing and I'“(A™cI'%A), where I'?(A™) is the similar
curve family for A" and ¢5,. Then we have NI'%(A,)DI'(A)D U IMm(A™).

From Lemma 1 the metric po=|¢/}, 5/(2rp4,5)| is extremal for UI»(A™). On
the other hand, po€ P*(N1"%(A,)) from the strong convergence of pn=|s%,/2xfa,)l.
Thus p, is extremal for NI"%"(A,) and so is for I'%(A). The module is calculated
from the convergence of p.. The extremality of u, is proved analogously.

The property iv) follows from e.g. the fact the mod I"%(A)=(2z) ' log (R(«, A, B)/q).

2 R(a, An, B™)
=108 T By

| 95
98,

23. Continued. Finally we prove i), ii) and iii). In order to show the property
ii), we may assume that o€ A; of {4,}, where {A,} is an increasing sequence such
that f4, tends to fa4. Let {2n} be an exhaustion of £ towards o such that 2,3«
and let o, be the relative boundary of @n. Put #,=log|f4,| and uo=log|fa|. Let
X(o, B™) denote the family of curves joining o1 and ¢ within ?—B". Then as in
the proof of Theorem 1, we have for a constant 7,(c)

S dun=10g rn(6)—un(2.) for a.a. ceX(s, B™),
c

where z, is the initial point of ¢ on ¢:. Since || grad (#,—u,)||2>—0, there exists an
7o(¢) such that

12) S duto=10g 7o(0)—1usz)  for a.a. ce UX(s, BY).

This is easily seen from Lemma 3 and the uniform convergence of #, on ai.

Set dn="0m—0m_1 (m=1, 2o=¢). Considering the sequence {f4,} in each 4n,
from Lemma 2 we can construct a (1+e¢;)-quasiconformal mapping @(z) of £ such
that @%t=f4,., in a subdomain 4;, of 4, whose complement with respect to 4, is
relatively compact in 2, #1=f4 in a neighborhood of the relative boundary of 4
and fa(0)=0%). Let B*™ denote B™™ N4, which is open in 2. Put B
=UnB"™ and A.=02—a—B% Then B% is open. We see that @U(z)=ruyum, (),
1€ AnmyNdm and &)= fanay(a). Furthermore we show that @*(B%) is a minimal
set of radial slits. In fact, any compact subset of @i(B®) is covered by a finite
number of mutually disjoint open sets @ (Bn™ys. The intersection of the subset
with each member of the covering is a compact minimal set and hence the union
of these intersections is also minimal [15], which implies the minimality of @(B*%).
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Put W=0%Q). Consider an exhaustion of W towards ®(aU A.,), denoted by
(Wi} and set Vi=Wi— Wi_, (k=1, Wo=¢). Each V consists of a finite number of
domains, say Vi, (j=1,2, -, Ny). The set @(B)NV%,, denoted by By, is a com-
pact minimal set of radial slits and we put Dy,=(Bx;)°, where the complement is
taken in the extended w-plane. Then, for an exhaustion {D};}52, of Dx,, the radial
slit mapping 4, with the normalizations that 4iw)=w+--- near the point at in-
finity and that 4.;(0)=0 tends to the function w uniformly on any compact subset
(e.g. [15]). Again using Lemma 2 we can construct a subdomain W% of W and
its (14-ez)-quasiconformal mapping with the following properties: the relative boundary
of W< consists of at most a countable number of analytic curves enclosing the
elements of @(B*%) only, its image under @ is a set of radial slits and @%2-@°x(z)
=@(7) for q)‘l(r)e'??/”zn@el(auAel). Let 2* be the inverse image of W®under ®°.
We denote by A*(s) the subfamily of U,X(s, B,) consisting of the curves contained
in 0* less its relative boundary along which (12) is false. Clearly @20 is a
(1+e)(1+-ez)-quasiconformal mapping. Then each radial ray joining the images of
of ¢ and ¢, under @%2.Q% within @Sz(VV‘Z) less the image of the relative boundary of
2* contain an image curve of UX(s, B). Since the number of relative boundary
components of @%2(W*) is at most countable, the inequality (5) is applicable to
D10 P2 A*(0)) and ii) follows. The proof of i) is similar, because we can establish
Strebel’s inequality (6). The proof of iii) is analogous under use of {gz,}. We
complete the proof of Theorem 5.

24. We call the function ¢4, in Theorem 5 a circular and radidl slit disc
mapping of 2 with respect to the partition (e, A, B). The same extremal properties
stated in Theorems 2 and 3 are valid for this function.

We can see from these theorems that both the circular-radial and radial-circular
slit mappings are indeed circular and radial slit disc mappings. It follows from the
following.

THEOREM 6. If A or B is closed in 02—a, the quantities R(A) and R(B)
coincide with R(a, A, B). Here R(a, A, B) is the extremal radius in Theorems 1 and
4, if it is finite and R(a, A, B)=co otherwise.

Proof. Suppose, at first, that aU A is compact. Then clearly R(A)=R(a, 4, B).
To show that R(B)=R(a, A, B), consider an exhaustion {2,} of 2 towards aU A.
Put B,=0,NB and A"=3Q2—a—B,. Then we have under the same notations in
no. 20 I'(4) = UI'(A™). By Lemma 1, we have R(a, A", B,)—R(a, A, B), which
implies R(B)=R(a, A, B), since aU B, is compact.

Next, if aUB is compact, R(B)=R(a, A, B). When R(a, A, B)=oco, we get
R(A)=oc0 from the monotonity of module. In case R(a, A, B)<co, considering an
exhaustion {2} of 2 towards a, set Vau=0mn—0mn_1 (m=1, 2o=4¢), A™=V,nA.
Let {Vmn} denote an exhaustion of V, towards 9 V,—AY and let A be the open
and closed set VaunNA™. We set Apn=APUA—A™) and Bur=02—a—Ann
which is closed. We have A=UnAn. and X(B)=U,X(Bn») as above. Putting
m=1, from Lemma 1 and (1) we have ||95/05—05,,/98,,1|1>—0. Thus there exists
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an #n; such that

R(at, Aun,, Bin)<R(a, A, B)+ %

For the partition (@, Ain,, Bin,), applying the same argument to V3, we have an
open subset Asn, of Ain, such that {2, N Az, is compact for m=2 and that

R(e, Aan, an2)<R(a', Alnl, Bln1)+ %

and so on. Summing up these inequalities, we have

R(a, Aknyy Brny) <R(a, A, B)+-e.

We now prove that A.=NiAk, is a closed subset of A in 32—a and that
R(a, Ainyy Biny)—R(a, As, B?) as k—oo, where (a, A., B%) is determined by A., which
implies the assertion. In fact 72, NA. is compact for all m, whence aU A. is com-

pact. The convergence of the extremal radii follows from the fact that I'(A.)
= U sl (Akmy)-
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