ON CONCURRENT STRUCTURES

By Koichi Ogiue

§ 1. Concurrent algebras.

Let $V=\mathbb{R}^n$ and V^* its dual. Let x^1, \dots, x^n be the natural coordinate system of \mathbb{R}^n . A vector field $X=\sum_{i=1}^n X^i \partial_i/\partial x^i$ on \mathbb{R}^n is called an *infinitesimal concurrent transformation* if it satisfies

$$\frac{\partial X^i}{\partial x^j} = \rho \delta^i_j,$$

where ρ is a constant on \mathbb{R}^n .

Let \mathcal{L} be the sheaf of germs of all infinitesimal concurrent transformations of \mathbb{R}^n . Then \mathcal{L} is a transitive sheaf of Lie algebra. Let $\mathcal{L}(0)$ be the stalk of \mathcal{L} at the origin $0 \in \mathbb{R}^n$. Then the linear isotropy algebra \mathfrak{G} of $\mathcal{L}(0)$ is the linear Lie algebra

$$\left\{ \left(\begin{array}{ccc} \lambda & & & \\ & \lambda & & 0 \\ & & \ddots & \\ 0 & & & \lambda \end{array} \right) \right\}.$$

Let $\mathfrak{g}^{(1)}$ be the first prolongation of \mathfrak{g} . Then $\mathfrak{g}^{(1)}=0$. By Theorem 4.1 in [2], $\mathcal{L}(0)$ is isomorphic with $\mathbb{R}^n+\mathfrak{g}$:

$$\mathcal{L}(0) \cong \mathbb{R}^n + \mathfrak{g}$$
.

The bracket operation is defined as follows: If ξ , $\eta \in \mathbb{R}^n$ and A, $B \in \mathfrak{g}$, then

$$[\xi, \eta] = 0$$

$$[A, \xi] = A\xi$$

$$[A, B] = 0.$$

Let G be the Lie subgroup of $GL(n, \mathbb{R})$ whose Lie algebra is \mathfrak{g} and let \widetilde{G} be the semidirect product of \mathbb{R}^n and G. Let ω^i , ω^i_j , $i, j=1, \cdots, n$, be the left invariant 1-forms on \widetilde{G} . Then the equations of Maurer-Cartan of \widetilde{G} are given by

$$d\omega^i = -\Sigma \omega_k^i \wedge \omega^k$$

$$d\omega_i^i = 0.$$

Received July 17, 1967.

§ 2. Concurrent structures.

Let M be a differentiable manifold of dimension n and F(M) the bundle of linear frames of M. Let G be the subgroup of $GL(n, \mathbb{R})$ defined in § 1. A concurrent structure on M is, by definition, a reduction of the bundle of linear frames F(M) to G, that is, a G-structure $P_G(M)$ on M.

 \mathbb{R}^n carries a natural G-structure $P_G(\mathbb{R}^n)$ which will be called the *standard G-structure*.

Let $\theta = (\theta^i)$ be the canonical form of F(M) restricted to $P_G(M)$. A linear connection on $P_G(M)$ is called a *G-connection*. Let $\omega = (\omega_j^i)$ be a *G-connection*. Then the *structure equations* of ω are given by

$$(2.1) d\theta^{i} = -\sum \omega_{k}^{i} \wedge \theta^{k} + \Theta^{i},$$

$$(2. 2) d\omega_j^i = \Omega_j^i.$$

For the sake of simplicity, we shall take these equations as a definition of the 2-forms Θ^i and Ω^i_j . We call (Θ^i) the torsion form of the connection ω and (Ω^i_j) the curvature form of ω . Let c^1 and c^2 be the cohomology classes determined by (Θ^i) and (Ω^i_j) respectively. Then c^1 and c^2 are called the first and the second order structure tensor of $P_G(M)$ respectively.

Proposition 2.1. If $\Theta^i = 0$, then $\Omega^i_i = 0$.

Proof. Since $\omega = (\omega_i^i)$ is a g-valued 1-form on $P_G(M)$, ω_i^i can be written as

$$\omega_i^i = \delta_i^i \alpha$$
,

where α is a 1-form on $P_G(M)$. Hence the equations (2.1) and (2.2) reduce to

$$(2.3) d\theta^{i} = -\alpha \wedge \theta^{i} + \Theta^{i}$$

and

$$(2. 4) \delta_{j}^{i} d\alpha = \Omega_{j}^{i}.$$

If $\Theta^i=0$, then $d\theta^i=-\alpha\wedge\theta^i$. Taking the exterior differentiation of the both sides of this equation, we have

$$d\alpha \wedge \theta^i = 0$$

for all i. Hence $d\alpha = 0$. This, together with (2.4), implies that $\Omega_{f}^{i} = 0$. (Q.E.D.) COROLLARY. If $c^{1} = 0$, then $c^{2} = 0$.

§ 3. Concurrent transformations and integrable concurrent structures.

Let $P_G(M)$ and $P_G(M')$ be concurrent structures on manifolds M and M' of the same dimension n respectively. A diffeomorphism $f \colon M \to M'$ is called *concurrent*

(with respect to $P_G(M)$ and $P_G(M')$) if f, prolonged to a mapping of F(M) onto F(M'), maps $P_G(M)$ onto $P_G(M')$. In particular, a transformation f of M is called concurrent (with respect to $P_G(M)$) if it maps $P_G(M)$ onto itself.

A concurrent structure $P_G(M)$ on a manifold M is said to be *integrable* 1f, for each point of M, there exists a neighborhood U and a concurrent diffeomorphism (with respect to $P_G(M)$ and $P_G(\mathbb{R}^n)$) of U onto an open subset of \mathbb{R}^n . The answer to the integrability problem for a concurrent structure is the following

Theorem 3.1. A concurrent structure whose structure tensor of the first order vanishes is integrable.

Proof. Let $P_G(M)$ be a concurrent structure on M. Since $P_G(M)$ is a G-structure of type 1, our assertion follows immediately from Theorem 5. 1 in [1] and Corollary to Prososition 2. 1. (Q.E.D.)

Every vector field X on M generates a 1-parameter local group of local transformations. This local group, prolonged to F(M), induces a vector field on F(M), which will be denoted by \widetilde{X} . We call X an *infinitesimal concurrent transformation* (with respect to $P_{\sigma}(M)$) if the local 1-parameter group of local transformations generated by X in a neighborhood of each point of M consists of local concurrent transformations. In other words, X is an infinitesimal concurrent transformation if \widetilde{X} is tangent to $P_{\sigma}(M)$ at each point of $P_{\sigma}(M)$.

Let \mathcal{L} be the sheaf of germs of infinitesimal concurrent transformations of $P_G(M)$ and $\mathcal{L}(x)$ the stalk of \mathcal{L} at $x \in M$. Then

$$\dim \mathcal{L}(x) \leq \dim P_G(M) = n+1.$$

THEOREM 3. 2. Let $P_G(M)$ be a concurrent structure on M. Then $P_G(M)$ is integrable if and only if dim $\mathcal{L}(x)=n+1$ at every point x of M.

Proof. Let $\theta = (\theta^i)$ be the canonical form of F(M) restricted to $P_G(M)$ and let $\omega = (\omega_J^i)$ be an arbitrary G-connection on $P_G(M)$. Let E be the identity element in \mathfrak{g} and E^* the vertical vector field on $P_G(M)$ corresponding to E. From the structure equations (2. 1) and (2. 2) we have

$$d\Theta^{i} = \Sigma \Omega_{k}^{i} \wedge \theta^{k} - \Sigma \omega_{k}^{i} \wedge \Theta^{k}$$
.

If we denote by L_X the Lie differentiation with respect to X, then we have

$$L_{E*}\Theta^{\imath} = (\iota_{E*} \circ d + d \circ \iota_{E*})\Theta^{\imath}$$

$$= \iota_{E*}d\Theta^{\imath}$$

$$= -\Theta^{\imath}$$

since Θ^{ι} and Ω^{ι}_{j} are horizontal form, where $\iota_{E^{*}}$ denotes the interior product with respect to E^{*} .

If \widetilde{X} is the vector field of $P_G(M)$ induced by an infinitesimal concurrent

106

transformation X, then we have

$$L_{\tilde{\mathbf{X}}}\Theta^{i} = L_{\tilde{\mathbf{X}}}(d\theta^{i} + \Sigma\omega_{k}^{i} \wedge \theta^{k})$$
$$= \Sigma(L_{\tilde{\mathbf{X}}}\omega_{k}^{i}) \wedge \theta^{k}$$

since $L_{\tilde{X}}\theta^{i}=0$.

On the other hand, since dim $\mathcal{L}(x) = \dim P_G(M)$, for every point u of $P_G(M)$, there exists an infinitesimal concurrent transformation X such that $\tilde{X}_u = E_u^*$. We have therefore

$$\begin{split} \Theta^{\imath} &= -L_{E^{*}} \Theta^{\imath} = -L_{\tilde{X}} \Theta^{\imath} \\ &= -\Sigma (L_{\tilde{X}} \omega_{k}^{i}) \wedge \theta^{k} \\ &= -\Sigma (L_{E^{*}} \omega_{k}^{i}) \wedge \theta^{k} \end{split}$$

at u. This implies that

$$(u^*\Theta^i) \in \partial(\mathfrak{g} \otimes V^*),$$

where u is considered as a linear isomorphism of $V=\mathbb{R}^n$ onto $T_x(M)$ with $x=\pi(u)$ and $\partial: \mathfrak{g} \otimes V^* \to V \otimes \wedge^2(V^*)$ is the usual coboundary operator. Thus the structure tensor of the first order c^1 of $P_G(M)$ vanishes. Our assertion follows from Theorem 3.1. (Q.E.D.)

BIBLIOGRAPHY

- [1] Guillemin, V., The integrability problem for G-structures. Trans. Amer. Math. Soc. 116 (1965), 544-560.
- [2] Kobayashi, S., and T. Nagano, On filtered Lie algebras and geometric structures IV. J. Math. Mech. 15 (1965), 163-175.
- [3] Kobayashi, S., and K. Nomizu, Foundations of Differential Geometry. Interscience (1963).
- [4] OGIUE, K., G-structures of higher order. Kōdai Math. Sem. Rep. 19 (1967), 488–497.
- [5] SCHOUTEN, J. A., Ricci Calculus. Springer (1954).

DEPARTMENT OF MATHEMATICS, TOKYO INSTITUTE OF TECHNOLOGY.