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^-STRUCTURES DEFINED BY TENSOR FIELDS

BY KOICHI OGIUE

Introduction.

In this paper we shall give systematic approaches to some pseudogroup struc-
tures and G-structures defined by tensor fields. We consider the following corre-
spondences between structures on even dimensional manifolds and those on odd
dimensional ones:

(*) complex structure 0) cocomplex structure
(#) almost complex structure (#) almost cocomplex structure
(*) symplectic structure (*) cosymplectic structure
(#) almost symplectic structure (#) almost cosymplectic structure
(*) homogeneous contact structure (*) contact structure
OK) almost homogeneous contact structure—OK) almost contact structuie.

The (^)ed structures are pseudogroup structures and the (#)ed structures are G-
structures.

§ 1. Preliminaries.

A pseudogroup is a collection of transformations which is closed under inverse
and composition whenever these are defined.

DEFINITION 1.1. Let V be a differentiate manifold. A pseudogroup, Γ, is a
collection of local diffeomorphisms of V satisfying the following axioms:

(1) If φζT and ψεT, and the domain of ψ equals the range of ψ, then φ°ψeV.
(2) If φeT, then φ^eT.
(3) If φ€T and U is an open set contained in the domain of φ, then Ψ\UQΓ.

(4) If ψ is a local diffeomorphism with domain U, and U={Ja Ua with φ\Ua€T,
then φςΓ.

(5) The identity diffeomorphism is in Γ.

Let Γ be a pseudogroup of differentiate transformations of a manifold V (say
Rn) and let M be a differentiate manifold. A T-atίas on M is a collection of local
diffeomorphisms {λ; £/$} of M into V which satisfies U UΊ=M and ^o^j^Γ for all
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i and j such that U%Π
Two Γ-atlases are said to be equivalent if their union is a Γ-atlas.

DEFINITION 1. 2. An equivalence class of Γ-atlases is called a T-structure on M.

By an almost T-structure on a manifold M we mean, roughly speaking, a
structure on M which is identified with a Γ-structure up to a certain order of
contact at each point.

DEFINITION 1. 3. An almost Γ-structure is said to be integrable if it determines
a Γ-structure.

Let M be a differentiate manifold of dimension n and F{M) the bundle of
linear frames of M. Then F(M) is a principal fibre bundle over M with structure
group GL(n,R).

DEFINITION 1. 4. Let G be a subgroup of GLOz, R). A G-structure PG(M) on
Λf is a reduction of F(M) to the group G.

In this paper, every almost Γ-structure is a G-structure for some G.
Let V=Rn and F * its dual and G a subgroup of GL(n, R). Let g be the Lie

algebra of G. We define the coboundary operator d: g(g)F*--*F(x)Λ2(F*) by

(dtXx,y)=t(x) y-t(y)'X

for Λ?,#€F. We denote the cohomology group F ® Λ2(F*)/d(g(x)F*) by if°'2(G).
Let PG(M) be a G-structure on M We call a connection on PG(M) a G-connection.
The torsion form of a local G-connection determines a function on PG(M) with
value in i70)2(G). We call it the ./zrs£ <?rd<?r structure tensor of PG(M) and denote
by c.

We shall give answers to the integrability problems for almost Γ-structures in
terms of the first order structure tensor of the corresponding G-structure.

DEFINITION 1. 5. Let L be a Lie algebra with a decreasing sequence of sub-
algebras L=L-2=L-1ZDLOZDL1ZDL2Z)' '. We call L a filtered Lie algebra if the
following conditions are satisfied:

(1) ΠLp={0},
(2) [Lp,Lq]aLp+q,
(3) dimLP!Lp+1<oo,
(4) Lp

Suppose we are given a Γ-structure on M. Let J? be the sheaf of germs of
infinitesimal automorphisms of the Γ-structure. Let xozM and X(x0) the stalk of
X at xo. Let Xp(xo) be the subset of X(xQ) consisting of the elements vanishing
to order p at x0. Then X(x0) is a filtered Lie algebra with filtration
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DEFINITION 1. 6. A filtered Lie algebra L is said to be flat if it is isomorphic
with Π^L.x (Lp/Lp+1).

Let L be a filtered Lie algebra. We call Lo the isotropy algebra and L0/Li the
isotropy algebra.

Let g be a Lie algebra of linear endomorphisms of a vector space F. We call

the >̂-/A prolongation of g.

D E F I N I T I O N 1. 7. Let F be a vector space of dimension n and Q a subalgebra
of QΪ(F). g is said to be involutive if there exists a basis ely ~ ten of F such that

where

§ 2. Complex structures and almost complex structures.

Let y\ ~-,y2n be the natural coordinate system of R2n and let

Let X be the sheaf of germs of all vector fields X on R2™ which satisfy

LXF=O,

where Lx denotes the Lie differentiation with respect to X. Let X(0) be the stalk
of X at the origin OcR2ri. Then X(0) is a flat filtered Lie algebra of infinite
dimensions. The linear isotropy algebra g of J7(0) is the linear Lie algebra

{{-B

which is isomorphic with Ql(n, C). The Lie algebra g is involutive. X(0) is iso-
morphic with R 2 w + g + 9 c υ + .

A diffeomorphism / : U^Uf, where £7 and £/r are open subsets of R2n, is called
a complex (analytic) transformation if it satisfies

where /* denotes the differential map of /. The collection, Γ, of all such complex
(analytic) transformations forms an infinite, continuous pseudogroup.

Let M be a differentiate manifold of dimension 2n. A Γ-structure on M is
called a complex structure.
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Giving a complex structure is the same as giving a tensor field / of type (1, 1)
which can locally be written as

Let Γo be the subset of Γ consisting of the elements which leave the origin 0
invariant. Let j : Γ0—>GL(2n,R) be defined as follows: for /eΓ0, j(f) is the 1-jet
determined by /, that is, the Jacobian of / at 0. Let G=j(T0). Then G is a sub-
group of GL(2n, R) whose Lie algebra is g, the linear isotropy algebra of X(0). G
is isomorphic with GL(n, C).

Let M be a differentiate manifold of dimension 2n. An almost complex struc-
ture on M is, by definition, a reduction of the bundle of linear frames F(M) to G,
that is, a G-structure PQ{M) on M.

Giving a G-structure PG(M) on M is the same as giving a tensor field / of
type (1,1) on M which satisfies

where / denotes the field of identity endomorphisms,
The answer to the integrability problem for an almost complex structure is the

following

THEOREM 2.1. (Newlander-Nirenberg [4]). An almost complex structure whose
structure tensor of the first order vanishes is complex.

§ 2'. Cocomplex structures and almost cocomplex structures.

Suppose we are given in R2w+1 an involutive differential system of codimension
one and a complex structure on its integral manifolds. To fix our notations, let
y°, y1, '-,y2n be the natural coordinate system of R2n+1 and let

a=dy°

and

Let X be the sheaf of germs of all vector fields X on R2n+1 which satisfy

and

LχF=0.

Let X(0) be the stalk of X at the origin 0eR27l+1. Then £(0) is a fiat filtered
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Lie algebra of infinite dimensions. The linear isotropy algebra β of X(0) is the
linear Lie algebra

ϊ °
0

o

0 •••

A

-B

0 ^

B

A )

Cβl(2»+1,R)

which is isomorphic with ql(n, C). The Lie algebra g is involutive. J7(0) is iso-
morphic with R2rι+1+g-fgα) + .

A local diffeomorphism / of R2n+1 is called a cocomplex transformation if it
satisfies

and

The collection, Γ, of all such cocomplex transformations forms an infinite, continuous
pseudogroup.

Let M be a differentiable manifold of dimension 2n-\-l. A Γ-structure on M
is called a cocomplex structure.

A cocomplex structure is the same as a 2n-dimensional involutive complex
differential system. In other words, giving a cocomplex structure on M is the
same as giving a closed 1-form ω and a tensor field / of type (1,1) on M which
satisfy

where Z is a unique vector field on M defined by

ω(Z)=l and 7(Z)=0,

and

[JX,JY]-J[JX, Y]-J[X,JY]+Γ[X, Π=0

for any vector fields X and F which satisfy
ω, / and Z can locally be written as

ω=dx°,
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Let Γo be the subset of Γ consisting of the elements which leave the origin 0
invariant. Let j : Γ0-»GL(2»+l,R) be defined as follows: for / G Γ 0 , j(f) is the 1-jet
determined by /. Let G=i(Γ 0). Then G is a subgroup of GL(2n+l, R) whose Lie
algebra is β, the linear isotropy algebra of X(Q). G is isomorphic with GL(n, C).

Let M be a differentiate manifold of dimension 2n+l. An almost cocomplex
structure on M is, by definition, a reduction of the bundle of linear frames F(M)
to G, that is, a G-structure PG(M) on M.

Given a G-structure Pβ(M) on Λf, we can define a 1-form 77 and a tensor field
0 of type (1,1) on M which satisfy

(2'. 1) ^ = 0

and

(2'. 2) Φ*=-I+ξ®η,

where £ is a unique vector field on M defined by

v(ξ)=l and φ(ξ)=O.

In fact, for each x€M, let u be a point of Pβ(M) with 7r(&)=#, where π: PG(M)-*M
is the projection. For any tangent vector X at x, we set

(2'. 3) ηx{X)=a(u-ιX)

and

(2'. 4) φx(X)=u(F(u~1X))ί

where we regard a frame u at a? as a linear isomorphism of R2w+1 onto TX(M).
From the properties of G, this definition is independent of the choice of u.

Conversely, given a pair of a 1-form η and a tensor field 0 of type (1,1) on M,
let PQ{M) be the set of all linear frames u which satisfy (27. 3) and (2r. 4) for any
tangent vector X at x=π(u). Then PG(M) is a G-structure on M

Thus giving a G-structure on M is the same as giving a pair of a 1-form 37
and a tensor field φ of type (1,1) which satisfy (2'. 1) and (2'. 2).

Then the answer to the integrability problem for an almost cocomplex structure
is the following

THEOREM 2'. 1 ([7]). An almost cocomplex structure whose structure tensor of
the first order vanishes is cocomplex.

Proof. Let PG(M) be an almost cocomplex structure on M and (φ, η) the
associated pair. Let Π be a linear connection and V the covariant differentiation
with respect to Π. Then Π is a G-connection if and only if

V^=0 and V^=0.

Since the first order structure tensor of PQ(M) vanishes, there exists a torsionfree
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G-connection.
In general, let Π be a torsionfree G-connection and a a differential form. Then

where Jl is the alternation operator. Hence, let Π be a torsionfree G-connection.
Then we have

Hence the differential system defined by η is involutive.
We have to prove that φ gives rise to a complex structure on each integral

manifold of η.
The equation (2'. 2) implies that φ is an almost complex structure on each

integral manifold of η. Let N be the Nijenhuis torsion tensor field of φ and let X
and Y be vector fields on an integral manifold. Then

N(X, Y)=[φX,φY]-φ[φX, Y]-φ[X,φY]+φ*[X, Y]

= [φX,φY]-φ[φX, Y]-φ[X,φY]-[X, Y],

since η([X, Y])=0.

On the other hand, since Π is a torsionfree G-connection, we have

and

for any X and Y. Therefore

N(X, Y)=

=-[Y,X]+η([Y,X]) ς-ιx,Y]

This implies that φ defines a complex structure on each integral manifold of η.
Hence (φ, η) determines a cocomplex structure. (Q.E.D.)

Since Q contains no elements of rank 1, the automorphism group of an almost
cocomplex structure on a compact manifold is a Lie group.

§ 3. Symplectic structures and almost symplectic structures.

Let y1, '-',y2n be the natural coordinate system of R2n and let

β=Σdy*Λdyi+n.
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Let X be the sheaf of germs of all vector fields X on R2n which satisfy

(3. 1) Lxβ=0.

Let X(0) be the stalk of X at the origin 0eR2n. Then X(0) is a flat filtered Lie
algebra of infinite dimensions. The linear isotropy algebra of X(0) is

The Lie algebra 8p(ή) is involutive and j?(0) is isomorphic with

A local diffeomorphism / of R2n is called a symplectic transformation if it
satisfies

(3.2) f*β=β.

The collection, Γ, of all such symplectic transformations forms an infinite, continuous
pseudogroup.

Let M be a differentiable manifold of dimension 2n. A Γ-structure on M is
called a symplectic structure.

Giving a symplectic structure is the same as giving a closed 2-form Ω which
satisfies Ωn^0.

Let Sp(ή) be the subgroup of GL(2n,R) with Lie algebra §.pθ). An almost
symplectic structure on M is, by definition, a reduction of the bundle of linear
frames F(M) to Sp(ή), that is, a S/<w)-structure P 5 p ( 7 O(M) on M

Giving a S/>(^)-structure Pspcn^M) on M is the same as giving a 2-form Ω on
M which satisfies

The answer to the integrability problem for an almost symplectic structure is
the following

THEOREM 3. 1. An almost symplectic structure whose structure tensor of the
first order vanishes is symplectic.

Proof. Let PSpcn^(M) be an almost symplectic structure on M and Ω the
associated 2-form. Let 77 be a linear connection. Then 77 is a S£θ)-connection if
and only if

Since the first order structure tensor of PSpm(M) vanishes, there exists a
torsionfree Spin)-connection. Hence we have
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This implies that PSp^{M) determines a symplectic structure. (Q.E.D.)

If we replace (3. 1) and (3. 2) respectively by

(3.1)' Lzβ=λβ,

where λ is a function and

(3.2)' f*β=pβ,

where p is a non-zero function, then the linear isotropy algebra is

c8p(w) = {A€gϊ(2w, R) | tΛJ+JA=λJ}

and Xφ) is isomorphic with

The resulting structures are called a conformal symplectic structure and an almost
conformal symplectic structure.

% 3'. Cosymplectic structures and almost cosymplectic structures.

Let y°,y1j - ,y2n be the natural coordinate system of R2w+1 and let

a=dy°

and

β=Σdy%Λdy*+n.

Let X be the sheaf of germs of all vector fields X on R2n+1 which satisfy

Lxa=0 and Lxβ=0.

Let Xφ) be the stalk of X at the origin 0<=R2rι+1. Then X(0) is a flat filtered Lie
algebra of infinite dimensions. The linear isotropy algebra 3 of X(0) is

0 o o

A

The Lie algebra 0 is involutive and Xφ) is isomorphic with

A local diffeomorphism / of R2w+1 is called a cosymplectic transformation if it

satisfies
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f*a=a and f*β=β.

The collection, Γ, of all such cosymplectic transformations forms an infinite, continu-
ous pseudogroup.

Let M be a different!able manifold of dimension 2n+l. A Γ-structure on M
is called a cosymplectic structure.

Giving a cosymplectic structure is the same as giving a pair of a closed 1-form
ω and a closed 2-form Ω which satisfy ωAΩn^0.

Let G be a subgroup of GL(2n+lf R) whose Lie algebra is 9. An almost
cosymplectic structure on M is, by definition, a reduction of the bundle of linear
frames F(M) to G, that is G-structure PG(M) on M

Giving a G-structure on M is the same as giving a pair of a 1-form α> and a
2-form fl which satisfy ω/\Ωn^0.

The answer to the integrability problem for an almost cosymplectic structure
is the following

THEOREM 3'. 1. An almost cosymplectic structure whose structure tensor of the
first order vanishes is cosymplectic.

Proof. Let PG(M) be an almost cosymplectic structure on M and (ω, Ω) the
associated pair. Let 77 be a linear connection. Then Π is a G-connection if and
only if

Vω=0 and VΩ=O.

Since the first order structure tensor of PG(M) vanishes, there exists a torsion-
free G-connection. Hence we have

and

This imlpies the PG(M) determines a cosymplectic structure (Q.E.D.)

§ 4. Homogeneous contact structure and almost homogeneous contact struc-
tures.υ

Let y1, '",y2n be the natural coordinate system of R2n and let

a= - -ί Σ (yί+ndyι-yιdyi+n).

Let X be the sheaf of germs of all vector fields X on R2n which satisfy

(4. 1) Lxa=pa,

1) Perhaps, "exact symplectic structure" is more appropriate. But m conformity
with other authors, we use the term "homogeneous contact structure",
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where p is a function depending on X.
Let xo be a point of R2n different from the origin and let X(x0) be the stalk

of X at x0. Then X(xo) is a filtered Lie algebra of infinite dimensions. The linear
isotropy algebra 9 of J?O0) is the direct sum of the linear Lie algebra %$(n) and
its center, that is, 9=c§p(^). By theorem 4. 3 in [2], X(x0) is a flat filtered Lie
algebra, that is, X(x) is isomorphic with R 2 n +Q+β c l ) + .

A local diffeomorphism / of R2n is called a homogeneous contact transformation
if it satisfies

(4. 2) / * α = /tκr,

where ^ is a non-zero function.
The collection, Γ, of all such homogeneous contact transformations forms an

infinite, continuous pseudogroup.
Let M be a differentiable manifold of dimension 2n. A Γ-structure on M is

called a homogeneous contact structure.
Giving a homogeneous contact structure on M is the same as giving a 1-form

ω up to a scalar factor on M which satisfies

The theorem of Darboux states that a 1-form satisfying (dω)n^0 can locally be
written as

1 n

ω = - -7Γ- Σ (xτ+ndxι-xιdxί+n).
£ τ = l

A local coordinate system in which the form ω is written as above will be called
an admissible coordinate.

Let Γo be the subset of Γ consisting of the elements which leave the point x0

invariant. Let j : Γ0-+GL(2n,R) be defined as follows: for /€Γ0, j(f) is the 1-jet at
xo determined by/ . Let G=i(Γ0). Then G is a subgroup of GL(2n,R) whose Lie
algebra is 9, the linear isotropy algebra of X(x0).

Let M be a differentiable manifold of dimension 2n. An almost homogeneous
contact structure on M is, by definition, a reduction of the bundle of linear frames
F(M) to G, that is, a G-structure PQ(M) on M

Given a G-structure PG(M) on M, we can define a pair of a 1-form {ω} and a
2-form {Ω} up to scalar factors which satisfy {Ω}n^0. In fact, for each x€M, let «
be a point of PG(M) with π(u)=x. For any tangent vector X and F at a?, set

ΩX(X, Y)=σ-(da)X(i(u-"X,u^Y\

where aXo and (ίfo)*0 denote, respectively, the values of a and da at #0, /> and σ are
scalars, and w can be considered as a linear isomorphism of TXQ(R2n) onto TX(M).
From the properties of G, this definition is independent of the choice of u.

Conversely, given, up to scalar factors, a pair of a 1-form {ω} and a 2-form {Ω},
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let PG(M) be the set of all linear frames u satisfying

{Ω}X(X, Y) = (da)XQ(u~1X,u-1Y)

for any vectors X and Y at x=π(u). Then PG(M) is a G-structure on M.
Thus giving a G-structure on M is the same as giving a pair of a 1-form {ω}

up to a scalar factor and a 2-form {42} up to a scalar factor which satisfies {Ω}n^0
at every point of M.

Let Mo be a manifold with a homogeneous contact structure. Since every re-
structure gives rise canonically to an almost Γ-structure, Mo has a G-structure, an
almost homogeneous contact structure.

THEOREM 4.1. Let PG(M0) be the almost homogeneous contact structure associated
with a homogeneous contact structure on Mo. Then the first order structure tensor
c has the following representative:

) /„'

-in or
Proof. A representative of c is given by the torsion tensor of a G-connection.

Let Π be a connection. Then Π is a G-connection if and only if

Let T be the torsion tensor of Π and T% the components of T with respect to an
admissible coordinate system (x°, x1, •••, x2n). Then the equation Vω=0 implies

In In

^ 1=1 ^ ΐ = i

We can take T as follows:

n χ ι

ηnί+n ηpi+n

2) a,βtr=l,2,'»,2n.
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and the other components are all zero.
Since the first order structure tensor c is independent of the choice of a G-

connection, our assertion is now clear. (Q.E.D.)
Let Co be an element of # ° 2(G) = F(x)Λ2(F*)/d(9(x) F*), V=R2n, whose repre-

sentative is given by

κ °β)

°β) ny1^ \-In 0/'

(C°β >— nt \-In

The answer to the integrability problem for an almost homogeneous contact
structure is the following

THEOREM 4. 2. An almost homogeneous contact structure whose structure tensor
of the first order is c0 is homogeneous contact.

Proof. Let PG(M) be an almost homogeneous contact structure on M whose
structure tensor of the first order is c0.

Since 9 is reductive, there is an invariant complement C to d(8 (x) F*) in
F(x)Λ2(F*), V=R2n. Let c0 be the element in C which corresponds to cQ under the
isomorphism C=H°'2(G). Then there exists a G-connection whose torsion is c0. More
precisely, let τ be an element of F(x)Λ2(F*) whose components (τr

aβ) are given by

I 0 ΛΛ

{-in or

) /„
In 0

Then it is easily seen that τ belongs to C This implies that τ is just c0.
Let σ: U—»PG(M), u=σ(x), be a local cross section. If we set

ΘX(X, Y)=τ(u-1X,u~1Yl

where X,YzTx{M\ then Θ is a R2n-valued 2-form on M defined in £/. Let
σ: U-+PG(.M), u=σ(x), be an another local cross section and set

Then Θ differs from Θ by a scalar factor. Hence we have a global 2-form (9 up
to a scalar factor.

Let T be a tensor field of type (1, 2) on M determined by Θ. The dimension of the
space of G-connections with torsion tensor Tis equal to dim9 ( υ = (2/3)^(^+l)(2^+l).
On the other hand, let ψ be a 1-form on M, Then the dimension of the space of
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G-connections satisfying V^=0 is equal to dim {έG$(g) F * | ψ°t=Q} ~(2n—l)(2n2+n~{-l).
Since dimδ(x) V*=2n{2n2-\-nJ

rl), there exists a G-connection, with torsion tensor T,
which satisfies V^=0.

Let {ω} and {Ω} be the classes of 1-forms and 2-forms on M determined by
PG{M). Then we can find locally a 1-form ω in {ω} and a G-connection with
torsion tensor T which satisfy

The 1-form ω satisfies

2dω(X, Y) = ω(T(X, Y))

for any X and Y. In fact, for any X and F, we have

and

0=(Vyω)(X)= Y-o)(X)-ω(VγX).

Hence we obtain

X ω(Y)-Y'ω(X)-ω([X, Y]) = ω(VxY)-ω(yrX)-ω([X, Y]),

that is,

2dω(X, Y) = ω(T(X, Y)).

Let U be a coordinate neighborhood in M with a local coordinate system
x1, -", x2n. We denote by Xa the vector field d/dxa, α = l , •••, 2w, defined in CΛ Every
linear frame at a point x of U can be uniquely expressed by

where (Xj) is a non-singular matrix.
We take (xa, Xa

β) as a local coordinate system in π~\U). Let (Ya

β) be the
inverse matrix of (Xa

β). Let #i, •••, β2w be the natural basis for R2r\ Let u be a
point of PG(M) with coordinates (V*, Xj) so that ^ maps ea into Σ^
where x=π(u).

If l = Σ f = 1 ? % and F=ΣΓ=i^X, then

u~xX= Σ Yaβiβe« and u~1Y= Σ Yaβrfe«
a,β=l a,β = l

Hence we have
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ω(T(X, Y))=a9o(β(X, Y))

= -ρ Σ Σ

On the other hand,

2{dά)XQ{u-1X, u~1Y)=2 Σ (dy'Ady^iu-'X, u~ιY)

= Σ {dyί(u-1X)'dy^n(u-1Y)-dyi+n(u-1X)'dyKu-1Y)}

t = l

2n n

= Σ Σ(YiYi+n-Yί+nYί)ξΎ.
a,β=l %=\

Therefore we have

dω(X, Y) = -p'(da)Xo(u-1X}u~1Y).

This implies that dω€{Ω} and hence ω satisfies

(dώ)n*0.

Hence {ω} defines a homogeneous contact structure on M. (Q.E.D.)

If we replace (4.1) and (4. 2) by

(4.1)' Lxa=0

and

(4. 2)' f*a=a

respectively, then the resulting structures are called a strict homogeneous contact
structure and an almost strict homogeneous contact structure.

% 4'. Contact structures and almost contact structures.

Suppose we are given a differential system of codimension one which is of
maximal rank. To fix our notations, let y°, y1, •••, y2n be the natural coordinate
system of R2n+1 and let

a=dy°- -ί Σ (y^dyi



G-STRUCTURES DEFINED BY TENSOR FIELDS 69

Let X be the sheaf of germs of all vector fields X on R 2 w f l which satisfy

(4'. 1) Lxa=p'cχ,

where p is a function depending on X.
Let X(0) be the stalk of X at the origin θ€R2w+1. Then J7(O) is a non-flat

filtered Lie algebra of infinite dimensions. The linear isotropy algebra 9 of X(0) is
the sum of the linear Lie algebra

\

0

*
:

*

0

A

0 \

)

Aztyiri)

and

t2λ
λ

0

PROPOSITION 4' .1. 9 is involutive.

Proof. Let e0, elf •••, e2n be the natural basis for R2n+1. Let

dk=άim {t€Q \ t(eo)='-=t(eic)=O}.

Then we have

and hence

2^x 2

On the other hand, since 9α)=§)3(^)α:>+9, we have
(2»+3). Therefore dim α c i )=dim α+ SRό1 dk.

This implies that 9 is involutive. (Q.E.D.)

A local diffeomorphism / of R2n+1 is called a contact transformation if it satisfies

(4'. 2) f*a=p-a,

where p is a non-zero function.

The collection, Γ, of all such contact transformations forms an infinite, continuous
pseudogroup.
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Let M be a differentiate manifold of dimension 2n+l. A Γ-structure on M
is called a contact structure.

Giving a contact structure on M is the same as giving a 1-form ω up to
a scalar factor on M which satisfies

The theorem of Darboux states that a 1-form ω satisfying ωΛ(dω)n^0 can locally
be written as

1 n

ω = dx°- — Σ (xιbndxι-xιdxι+n).
£ %=\

A local coordinate system in which the form ω is written as above will be called
an admissible coordinate.

Let Γo be the subset of Γ consisting of the elements which leave the origin
0 invariant. Let /: Γ0->GL(2«+l, R) be defined as follows: for/€Γ0, j(f) is the 1-jet
determined by /. Let G=i(Γ0). Then G is a subgroup of GL(2n+l, R) whose Lie
algebra is 0, the linear isotropy algebra of X(0).

Let M be a differentiate manifold of dimension 2n+l. An almost contact
structure on M is, by definition, a reduction of the bundle of linear frames F(M)
to G, that is, a G-structure P0(M) on M

Given a G-structure PG(M) on Λf, we can define, up to scalar factors, a pair
of a 1-form {ω} and a 2-form {Ω} which satisfy {ω}A{Ω}n^ψ0. In fact, for each
xεM, let u be a point of PG(M) with 7r(̂ )=Λ7. For any tangent vectors X and Y
at x, set

^(X, Y)=σ'(da)0(u-1X,u~1Y),

where a0 and (Jα)0 denote, respectively, the values of a and da at the origin 0, and
p and σ are scalars. From the properties of G, this definition is independent of the
choice of u.

Conversely, given, up to scalar factors, a pair of a 1-form {ω} and a 2-form {Ω},
let PG(M) be the set of all linear frames u satisfying

{ωUX)=a(u~1X\

for any vectors X and Y at x=π(u). Then PG(M) is a G-structure.
Thus giving a G-structure on M is the same as giving a pair of a 1-form {ω}

up to a scalar factor and a 2-form {Ω} up to a scalar factor which satisfies
{ω}Λ{Ω}n*0 at every point of M.

Let Co be an element of ^° 2(G)= F(x)Λ2(F*)/d(G(x) F*), F = R 2 n + 1 , whose repre-
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sentative is given by

' 0

0

o ...

0

-In

0

In

0

The answer to the integrability problem for an almost contact structure is the
following

THEOREM 4'.1 ([6]). An almost contact structure whose structure tensor of the
first order is c0 is contact

Proof. Let PQ(M) be an almost contact structure on M whose structure tensor
of the first order is c0.

Since Q is reductive, there is an invariant complement C to d(0 (x) F*) in F(x) Λ2( F*).
Let Co be the element in C which corresponds to c0 under the isomorphism C=H0>2(G).
Then there exists a G-connection on PG(M) whose torsion is c0. More precisely,
let τ be an element of F(x)Λ2(F*) whose componeuts (τr

aβ) are given by

/

V

0

0

o

0 -

0

-In

°Ί
In

Then it is easily seen that τ belongs to C. This implies that τ is just c0.
Let σ: U-^PG(M), u~σ(x), be a local cross section. If we set

where X,YeTx(M). Then θ is a R2w+1-valued 2-form on M defined in U. Let
σ: U->PG(M), u=σ(x), be an another local cross section and set

θx(X, ϊ r)=r(α-1-X",α- iy).

Then θ differs from θ by a scalar factor.
Hence we have a global 2-form θ up to a scalar factor.
Let T be a tensor field of type (1, 2) on M determined by θ. The dimension

3) α,β,γ=0,1, 2, •••,
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of the space of G-connections with torsion tensor T is equal to dimβ c υ = (
(2w+l)(2w+3). On the other hand, let ψ be a 1-form on M. Then the dimension
of the space of G-connections satisfying Vψ=0 is equal to dim {£GQ(X)F* \ψ°t=O}
=2»(«+l)(2w+l). Since dim0®F*=(^+l)(2^+l) 2 , there exists a G-connection,
with torsion tensor T, which satisfies Vψ=0.

Let {ω} and {Ω} be the classes of 1-forms and 2-forms on M determined by
PQ(M). Then we can find locally a 1-form ω in {ω} and a G-connection with
torsion T which satisfy

The 1-form ω satisfies

2dω(X, Y)=ω(T(X, Y))

for any X and F.

Moreover, by the straightforward calculation, we have

dω(X, Y)=p-(daUu-1X,u~1Y).

This implies that dωs{Ω} and hence ω satisfies

Hence {ω} defines a contact structure on M (Q.E.D.)

If we replace (4'. 1) and (4r. 2) by

(4'. 1)' Lzα=0

and

(4r. 2/ / % = α

respectively, then the resulting structures are called a strict contact structure and
an almost strict contact structure.

§5. A concluding remark.

Let a, β, - - be tensor fields on Rn with constant components.
Let JΓ be the sheaf of germs of all vector fields X on Rn which satisfy

Lχa=0,

Lxβ=0,
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Let X(x0) be the stalk of X at a point xoζRn. Then X(x0) is a filtered Lie
algebra. Let 9 be the linear isotropy algebra of X(xo) and G a subgroup of GL{n, R)
whose Lie algebra is 0.

Let Γ be the pseudogroup of local diffeomorphisms of Rn which preserve a, β, •••.
An almost Γ-structure on a manifold M is, by definition, a reduction of the bundle
of linear frames F(M) to G, that is, a G-structure on M.

The answer to the integrability problem for an almost Γ-structure is clearly
the following

THEOREM 5.1. An almost Γ-structure whose structure tensor of the first order
vanishes is a Γ-structure.

Appendix, /"-structures and framed /-structures.

Let yι,"'1y
lc,yk+ι,'"1y

2k,y2k+ιr"'>yn be the natural coordinate system of Rn

and let

Let X be the sheaf of germs of all vector fields X on Rn which satisfy

LXF=O.

Let X(0) be the stalk of X at the origin θ€Rn. Then X(0) is a flat filtered
Lie algebra of infinite dimensions. The linear isotropy algebra 0 of X(0) is the
linear Lie algebra

A, Be$ί(k, R), C€8ϊ(»-2fc, R)

0 0 C1

which is isomorphic with

Let G be a subgroup of GLin, R) whose Lie algebra is 0. Then G is isomorphic
with GL(k,C)xGL(n—2k,R). Let M be a differentiable manifold of dimension n.
An f-structure on M is, by definition, a reduction of the bundle of linear frames
F(M) to G, that is, a G-structure Pσ(M) on M. Giving a G-structure on M is the
same as giving a tensor field / of type (1,1) which satisfies

and

rank/=2&.

Then the answer to the integrability problem for an /-structure is the following
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THEOREM A. 1 ([1]). An f-structure whose structure tensor of the first order
vanishes is integrabίe.

Let

ai=dy2k+1, '-',an-2k=dyn

and

Let X be the sheaf of germs of all vector fields X on Rn which satisfy

Lxa1=0, ••

and

Let X(0) be the stalk of X at the origin OeR71. Then X(0) is a flat filtered
Lie algebra of infinite dimensions. The linear isotropy algebra 0 of X(0) is the
linear Lie algebra

!L B 0\

- B A 0

0 0 0'

A, B€8t(fc,Rncβϊ(«,R)

which is isomorphic with
Let G be a subgroup of GL(n, R) whose Lie algebra is β. Then G is isomorphic

with GL(&, C). A framed f-structure on Mis, by definition, a reduction of the bundle
of linear frames F(M) to G, that is, a G-structure PG(M) on M Giving a G-structure
on M is the same as giving n—2k 1-forms ωu •• ,<wn_2fc and a tensor field /of type
(1,1) which satisfy

/3+/=0

and

rank f=2k.

Then the answer to the integrability problem for a framed /-structure is the
following

THEOREM A. 2. A framed f-structure whose structure tensor of the first order
vanishes is integrάble.

Since 9 contains no elements of rank 1, the automorphism group of a framed
f'Structure on a compact manifold is a Lie group.
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