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G-STRUCTURES DEFINED BY TENSOR FIELDS

By Koicui Ociue

Introduction.

In this paper we shall give systematic approaches to some pseudogroup struc-
tures and G-structures defined by tensor fields. We consider the following corre-
spondences between structures on even dimensional manifolds and those on odd
dimensional ones:

(%) complex structure (*) cocomplex structure

(#) almost complex structure—— (¥) almost cocomplex structure
(%) symplectic structure (¥) cosymplectic structure

(#) almost symplectic structure ————(#) almost cosymplectic structure
(*) homogeneous contact structure———(%) contact structure

(#) almost homogeneous contact structure—(#) almost contact structuze.

The (x)ed structures are pseudogroup structures and the (f#)ed structures are G-
structures.

§1. Preliminaries.

A pseudogroup is a collection of transformations which is closed under inverse
and composition whenever these are defined.

DerFINITION 1.1. Let V be a differentiable manifold. A pseudogroup, I, is a
collection of local diffeomorphisms of V satisfying the following axioms:

(1) If gel’ and ¢el, and the domain of ¢ equals the range of ¢, then @ogel’.

2) If pel, then ¢ el

(3) If el and U is an open set contained in the domain of ¢, then ¢|Uel'.

(4) If ¢ is a local diffeomorphism with domain U, and U=U. U, with ¢|U.€l,
then gel'.

(5) The identity diffeomorphism is in T

Let I' be a pseudogroup of differentiable transformations of a manifold V (say
R™ and let M be a differentiable manifold. A T-atlas on M is a collection of local
diffeomorphisms {4,; U;} of M into V which satisfies U U,=M and 2;°2;'€l’ for all
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i and j such that U,NU,=4.
Two I'-atlases are said to be equivalent if their union is a I-atlas.

DeriniTION 1. 2. An equivalence class of I'-atlases is called a I'-structure on M.

By an almost T-structure on a manifold M we mean, roughly speaking, a
structure on M which is identified with a I-structure up to a certain order of
contact at each point.

DerFiNiTION 1. 3. An almost I'-structure is said to be integrable if it determines
a I-structure.

Let M be a differentiable manifold of dimension # and F(M) the bundle of
linear frames of M. Then F(M) is a principal fibre bundle over M with structurc
group GL(n, R).

DerFiNiTION 1. 4. Let G be a subgroup of GL(n,R). A G-structure Ps(M) on
M is a reduction of F(M) to the group G.

In this paper, every almost I'-structure is a G-structure for some G.
Let V=R" and V* its dual and G a subgroup of GL(n,R). Let g be the Lie
algebra of G. We define the coboundary operator d: gQV*—TVRAXV*) by

@)z, v)=Hx)-y—ty)-x

for z,yeV. We denote the cohomology group V& AN V*)/a(gRV*) by H*G).
Let Pz(M) be a G-structure on M. We call a connection on Pg(M) a G-connection.
The torsion form of a local G-connection determines a function on Pg(M) with
value in H*%G). We call it the first order structurve tensor of Pg(M) and denote
by c.

We shall give answers to the integrability problems for almost I'-structures in
terms of the first order structure tensor of the corresponding G-structure.

DeriNiTION 1.5. Let L be a Lie algebra with a decreasing sequence of sub-
algebras L=L_;=L_;DLDLDL,D--. We call L a filtered Lie algebra if the
following conditions are satisfied:

I NL={0},

@ Ly LdC Ly

3) dim Lp/Lps1<co,

(4) Lp={teLp-1|[t,L1C Ly}

Suppose we are given a I'-structure on M. Let £ be the sheaf of germs of
infinitesimal automorphisms of the I'-structure. Let x,eM and _L(zo) the stalk of
L at 2. Let _£y(xo) be the subset of (o) consisting of the elements vanishing
to order p at x,. Then _L(x,) is a filtered Lie algebra with filtration _L(xe)D . Lo(x0)

D L1(w0) D La(@o)Dee.
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DerFINITION 1. 6. A filtered Lie algebra L is said to be flat if it is isomorphic
with H;;;_l (Lp/Lp+1).

Let L be a filtered Lie algebra. We call L, the isotropy algebra and Lo/L, the
linear isotrvopy algebra.
Let g be a Lie algebra of linear endomorphisms of a vector space V. We call

g(?’) =g®SZ’( V*) n V® SZH—I( V*)
the p-th prolongation of g.
DeriNITION 1.7. Let V be a vector space of dimension # and g a subalgebra

of gl(V). g is said to be involutive if there exists a basis ey, -+, ¢, of V such that

n—1
dim g =dim g+ > d,
k=1

where
dr=dim {teg| t(e1)=+--=#(ex)=0}.

§2. Complex structures and almost complex structures.

Let ¢, ---, ¥*® be the natural coordinate system of R*® and let

o0 20
= 8oy @0 Ligym O0

=1
Let £ be the sheaf of germs of all vector fields X on R*" which satisfy
LxF=0,
where Ly denotes the Lie differentiation with respect to X. Let £(0) be the stalk
of £ at the origin 0eR?*". Then _£(0) is a flat filtered Lie algebra of infinite
dimensions. The linear isotropy algebra g of _£(0) is the linear Lie algebra

{ <_A B f;) | 4, Begl(n, R)} cql@2n, R),

which is isomorphic with gl(%,C). The Lie algebra g is involutive. _£(0) is iso-
morphic with R#*4g+4g®+---.

A diffeomorphism f: U—U’, where U and U’ are open subsets of R??, is called
a complex (analytic) transformation if it satisfies

f*°F=F°f*:

where fyx denotes the differential map of f. The collection, I', of all such complex
(analytic) transformations forms an infinite, continuous pseudogroup.

Let M be a differentiable manifold of dimension 2#. A TI-structure on M is
called a complex structure.
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Giving a complex structure is the same as giving a tensor field J of type (1, 1)
which can locally be written as

J=35 -2 @den— f;—a;a;;(@dxa

1=1 ax‘ 1=1

Let T’y be the subset of I' consisting of the elements which leave the origin 0
invariant. Let j: I''—GL(2#n, R) be defined as follows: for fel's, j(f) is the 1-jet
determined by f, that is, the Jacobian of f at 0. Let G=j{T,). Then G is a sub-
group of GL(2n,R) whose Lie algebra is g, the linear isotropy algebra of _£(0). G
is isomorphic with GL(#n,C).

Let M be a differentiable manifold of dimension 2n. An almost complex struc-
ture on M is, by definition, a reduction of the bundle of linear frames F(M) to G,
that is, a G-structure Pgz(M) on M.

Giving a G-structure Pg(M) on M is the same as giving a tensor field J of
type (1,1) on M which satisfies

JP=—1I,

where I denotes the field of identity endomorphisms,

The answer to the integrability problem for an almost complex structure is the
following

TureoREM 2. 1. (Newlander-Nirenberg [4]). An almost complex structuve whose
structure tensor of the first ovder vanishes is complex.

§2’. Cocomplex structures and almost cocomplex structures.

Suppose we are given in R**! an involutive differential system of codimension
one and a complex structure on its integral manifolds. To fix our notations, let
¥°, 9%, -+, ¥** be the natural coordinate system of R***! and let

a=dy°
and
F= 3l @dyn — 3 o ®dy.
=1 0y =1 0y
Let _£ be the sheaf of germs of all vector fields X on R?**! which satisfy
Lxa=0
and
LxF=0.

Let _£(0) be the stalk of £ at the origin 0eR***'. Then .£(0) is a flat filtered
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Lie algebra of infinite dimensions. The linear isotropy algebra g of _£(0) is the
linear Lie algebra

() () 0
0| A B ||A Begln,R) [ <gl(@n+1, R)
0|—-B A

which is isomorphic with gl(#,C). The Lie algebra g is involutive. _£(0) is iso-

morphic with R*+14-g--g® .-,
A local diffeomorphism f of R***! is called a cocomplex transformation if it

satisfies

*a=«a
and
SyoF=Fefy.
The collection, I, of all such cocomplex transformations forms an infinite, continuous
pseudogroup.

Let M be a differentiable manifold of dimension 2z-+1. A I'-structure on M

is called a cocomplex structure.
A cocomplex structure is the same as a 2n-dimensional involutive complex

differential system. In other words, giving a cocomplex structure on M is the
same as giving a closed 1-form o and a tensor field J of type (1,1) on M which
satisfy

weJ=0),
P==I+ZQ o,
where Z is a unique vector field on M defined by
o(Z)=1 and J(Z)=0,

and
VX, JY1-JJX, Y]-JIX, JY1+7°1X, Y]=0

for any vector fields X and Y which satisfy o(X)=w(Y)=0.
o, J and Z can locally be written as

w=dxz°,
=30 Qazn— 3 @de
=1 0x =1 ozt ’
2
7=y
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Let T’y be the subset of I' consisting of the elements which leave the origin 0
invariant. Let j: I'e—GL(2n+1,R) be defined as follows: for fel, j(f) is the 1-jet
determined by f. Let G=jT,). Then G is a subgroup of GL(2z+1,R) whose Lic
algebra is g, the linear isotropy algebra of _£(0). G is isomorphic with GL(x,C).

Let M be a differentiable manifold of dimension 2x%+1. An almost cocomplex
structure on M 1is, by definition, a reduction of the bundle of linear frames F(M)
to G, that is, a G-structure Pg(M) on M.

Given a G-structure Ps(M) on M, we can define a 1-form 7 and a tensor field
¢ of type (1,1) on M which satisfy

2.1 ne¢=0
and
2.2) @P=—I+EQR),

where £ is a unique vector field on M defined by

7§=1 and  $&)=0.

In fact, for each xeM, let u# be a point of Pg(M) with =(u#)=2x, where = Pe(M)—M
is the projection. For any tangent vector X at x, we set

2. 3) no(X)=a(u*X)
and
2.4 S X)=u(F (w1 X)),

where we regard a frame # at x as a linear isomorphism of R**! onto Tu(M).
From the properties of G, this definition is independent of the choice of u.

Conversely, given a pair of a 1-form 7 and a tensor field ¢ of type (1, 1) on A,
let Pg(M) be the set of all linear frames » which satisfy (2’. 3) and (2’. 4) for any
tangent vector X at x=n(u). Then Ps(M) is a G-structure on M.

Thus giving a G-structure on M is the same as giving a pair of a 1-form 7
and a tensor field ¢ of type (1, 1) which satisfy (2’.1) and (2'. 2).

Then the answer to the integrability problem for an almost cocomplex structure
is the following

TureoreM 2.1 ([7]). An almost cocomplex stvucture whose structuve tensor of
the first order vanishes is cocomplex.

Proof. Let Pz(M) be an almost cocomplex structure on M and (¢,7) the
associated pair. Let /I be a linear connection and V the covariant differentiation
with respect to /I. Then II is a G-connection if and only if

Vp=0 and V=0

Since the first order structure tensor of Pg(M) vanishes, there exists a torsionfree
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G-connection.
In general, let I be a torsionfree G-connection and « a differential form. Then

da=J(Va),

where J is the alternation operator. Hence, let I be a torsionfree G-connection.
Then we have
dn=0.

Hence the differential system defined by 7 is involutive.
We have to prove that ¢ gives rise to a complex structure on each integral

manifold of 7.
The equation (2’.2) implies that ¢ is an almost complex structure on each

integral manifold of . Let N be the Nijenhuis torsion tensor field of ¢ and let X
and Y be vector fields on an integral manifold. Then

N&X, Y)=[¢X, ¢Y]—¢[¢X, Y]—9[X, Y] +¢’[X, V]
=[¢X, ¢Y]—-9lpX, Y]—¢[X, ¢Y]-[X, Y],

since 7([X, Y])=0.
On the other hand, since /7 is a torsionfree G-connection, we have

Vp=0

and
[X, Y]=VxY—-VyX

for any X and Y. Therefore
NX, Y)=V2(Y)—Vr(6X)—¢(Vyx Y —Vr (¢ X)) —¢(Vx(p Y )—Vr X)—Vx Y+ Vy X
=¢*(VyX—VxY)—(VxY—-VyX)
==Y, X]+9([Y, X])-6—[X, Y]
=0.

This implies that ¢ defines a complex structure on each integral manifold of 7.

Hence (¢, ) determines a cocomplex structure. (Q.E.D.)
Since g contains no elements of rank 1, the automorphism group of an almost

cocomplex structure on a compact manifold is a Lie group.

§3. Symplectic structures and almost symplectic structures.

Let ', -+-, ¥*® be the natural coordinate system of R?* and let

ﬁ= Z dyi/\dyﬁn.
=1
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Let £ be the sheaf of germs of all vector fields X on R* which satisfy
3.1 Lxp=0.
Let _£(0) be the stalk of £ at the origin 0€R?**. Then _£(0) is a flat filtered Lie

algebra of infinite dimensions. The linear isotropy algebra of _£(0) is

?:p(n):{AegI(Zn,R)l”A]—I—]A=0 for ]2(—0[,, {)")}

The Lie algebra 8p(z) is involutive and _£(0) is isomorphic with
R2*4-8p(5) +8p(72) O+ -+ .

A local diffeomorphism f of R?*! is called a symplectic transformation if it
satisfies

3.2) F*B=4.
The collection, T', of all such symplectic transformations forms an infinite, continuous
pseudogroup.

Let M be a differentiable manifold of dimension 2z. A T-structure on M is
called a symplectic structure.

Giving a symplectic structure is the same as giving a closed 2-form 2 which
satisfies 2”=0.

Let Sp(n) be the subgroup of GL(2n,R) with Lie algebra 8p(n). An almost
symplectic structuve on M is, by definition, a reduction of the bundle of linear
frames F(M) to Sp(n), that is, a Sp(n)-structure Pspe,(M) on M.

Giving a Sp(n)-structure Pgspm,(M) on M is the same as giving a 2-form £ on
M which satisfies

27%0.

The answer to the integrability problem for an almost symplectic structure is
the following

THEOREM 3. 1. An almost symplectic structurve whose structure temsor of the
Jfirst ovder vanishes is symplectic.

Proof. Let Pspwmy(M) be an almost symplectic structure on M and £ the
associated 2-form. Let /7 be a linear connection. Then I7 is a Sp(n)-connection if
and only if

VR=0.

Since the first order structure tensor of Pspu,(M) vanishes, there exists a
torsionfree Sp(x)-connection. Hence we have

dR=A(V2)=0,
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This implies that Pgs,e,(M) determines a symplectic structure. (Q.E.D.)
If we replace (3.1) and (3. 2) respectively by
3.1y Lxp=28,
where 2 is a function and
3.2y S*B=pp,
where p is a non-zero function, then the linear isotropy algebra is
8p(n)={Aegl(2n, R) |*!AJ+JA=2]}
and _£(0) is isomorphic with
R4 c8p(n) +8p(s) D 4.

The resulting structures are called a conformal symplectic structuve and an almost
conformal symplectic structure.

§3’. Cosymplectic structures and almost cosymplectic structures.
Let 9% %', ---, " be the natural coordinate system of R?"*! and let

a=dy°

and

M=

ﬁ: dyz/\dy””.

7

1
Let £ be the sheaf of germs of all vector fields X on R®***' which satisfy
Lxa=0 and Lxp=0.

Let _£(0) be the stalk of £ at the origin 0eR?***!, Then _£(0) is a flat filtered Lie
algebra of infinite dimensions. The linear isotropy algebra § of _£(0) is

Aesp(n) .,

The Lie algebra ¢ is involutive and _£(0) is isomorphic with
R2n+1+g+g(1)+_,,'

A Tlocal diffeomorphism f of R®*** is called a cosymplectic transformation if it
satisfies
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f*a=a and f*g=4.

The collection, T', of all such cosymplectic transformations forms an infinite, continu-

ous pseudogroup.

Let M be a differentiable manifold of dimension 2n+1. A I'-structure on M
is called a cosymplectic structure.

Giving a cosymplectic structure is the same as giving a pair of a closed 1-form
o and a closed 2-form 2 which satisfy oA Q2"=0.

Let G be a subgroup of GL(2xn+1,R) whose Lie algebra is 8. An almost
cosymplectic structure on M is, by definition, a reduction of the bundle of linear
frames F(M) to G, that is G-structure Pg(M) on M.

Giving a G-structure on M is the same as giving a pair of a 1-form w and a
2-form 2 which satisfy wA£2"=0.

The answer to the integrability problem for an almost cosymplectic structure

is the following

THEOREM 3. 1. An almost cosymplectic structure whose structure temnsor of the
first ovder vanishes is cosymplectic.

Proof. Let Pg(M) be an almost cosymplectic structure on M and (w, 2) the
associated pair. Let /I be a linear connection. Then /I is a G-connection if and
only if

Vo=0  and VR=0.

Since the first order structure tensor of Pg(M) vanishes, there exists a torsion-
free G-connection. Hence we have

do=JNVw)=0
and
dR=_4(V2)=0.

This imlpies the Pg(M) determines a cosymplectic structure (Q.E.D.)

§4. Homogeneous contact structure and almost homogeneous contact struc-
tures.?

Let %, -+, ¥** be the natural coordinate system of R?* and let
12, . )
= —— Z (y”"dyz—yldy”").
2.3

Let £ be the sheaf of germs of all vector fields X on R?® which satisly
4.1 Lya=pa,

1) Perhaps, “exact symplectic structure” 1s more appropriate. But in conformity
with other authors, we use the term “homogeneous contact structure?”,
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where p is a function depending on X.

Let z, be a point of R?* different from the origin and let _£(x,) be the stalk
of [ at m. Then _L(x,) is a filtered Lie algebra of infinite dimensions. The linear
isotropy algebra § of _f(z,) is the direct sum of the linear Lie algebra 8p(x) and
its center, that is, §=c8p(n). By theorem 4.3 in [2], _(z,) is a flat filtered Lie
algebra, that is, () is isomorphic with R2*+4g¢4+g® ...,

A local diffeomorphism f of R?* is called a homogeneous contact transformation
if it satisfies

4.2 [ra=pa,

where p is a non-zero function.

The collection, I', of all such homogeneous contact transformations forms an
infinite, continuous pseudogroup.

Let M be a differentiable manifold of dimension 2z. A T-structure on M is
called a komogeneous contact structure.

Giving a homogeneous contact structure on M is the same as giving a 1-form
o up to a scalar factor on M which satisfies

(dw)"=0.

The theorem of Darboux states that a 1-form satisfying (dw)"=0 can locally be
written as

w=— _;_ Z (xz+ndxz_xzdwi+n).
=1

A local coordinate system in which the form o is written as above will be called
an admissible coordinate.

Let Ty be the subset of I' consisting of the elements which leave the point x,
invariant. Let j: T'y—GL(2#n,R) be defined as follows: for fel',, 7(f) is the 1-jet at
xzo determined by f. Let G=jT,). Then G is a subgroup of GL(2%n, R) whose Lie
algebra is ¢, the linear isotropy algebra of _L(xo).

Let M be a differentiable manifold of dimension 2x. An almost homogeneous
contact structure on M is, by definition, a reduction of the bundle of linear frames
F(M) to G, that is, a G-structure Pg(M) on M.

Given a G-structure Pg(M) on M, we can define a pair of a 1-form {w} and a
2-form {©2} up to scalar factors which satisfy {£}"x0. In fact, for each zeM, let u
be a point of Pg(M) with n(u)==x. For any tangent vector X and Y at z, set

o(X)=p"az (w1 X),
Qo(X, Y)=0-(da)g (™' X, u™Y),

where az, and (da)s;, denote, respectively, the values of & and da at 2o, p and ¢ are

scalars, and # can be considered as a linear isomorphism of 7%,(R**) onto Tu(M).

From the properties of G, this definition is independent of the choice of .
Conversely, given, up to scalar factors, a pair of a 1-form {w} and a 2-form {£},
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let Pe(M) be the set of all linear frames # satisfying
{0}o(X)=az,(u™ X),
{2}o(X, Y)=(da)zy(w™' X, u™*Y)

for any vectors X and Y at x=n(#). Then Py(M) is a G-structure on M.

Thus giving a G-structure on M is the same as giving a pair of a 1-form {w}
up to a scalar factor and a 2-form {Q} up to a scalar factor which satisfies {Q2}"=0
at every point of M.

Let M, be a manifold with a homogeneous contact structure. Since every I'-
structure gives rise canonically to an almost I'-structure, M, has a G-structure, an
almost homogeneous contact structure.

THEOREM 4. 1. Let Pg(My) be the almost homogeneous contact structure associated
with a homogeneous contact structuve on M,. Then the first order structuve temsor
¢ has the following representative:

iy L ( 0 [n>
ap) = nyr \—I, 0)°

1 0 L\ ?
Gtny_ _ _*
== <—In 0)'

Proof. A representative of ¢ is given by the torsion tensor of a G-connection.
Let IT be a connection. Then /I is a G-connection if and only if

Vo =0.

Let T be the torsion tensor of II and 7' the components of T with respect to an
admissible coordinate system (z°, 2!, --+, z*®). Then the equation Vo=0 implies

1e . 12
——Z-ZanT‘i;k—l“'ginT‘g}:n:O,
=1 =1
1g itn T Lg i+
-7 le T_7+'n.k+'2— le T4 k= —0jm,
1= 1=
1 i+tn e 1g iin
-——2—2:133 Tj+n,k+n+§zlx j+n,k+n=0-
1= 1=
We can take T as follows:
i i 1
Tj+n,k=—Tk,]+n=— ngk’
ﬁz.k= - T;:c:i,-'t-n= 5jk

x‘l.

2 ap =12 2n
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and the other components are all zero.

Since the first order structure tensor ¢ is independent of the choice of a G-
connection, our assertion is now clear. (Q.E.D.)

Let ¢, be an element of H*%(G)=TV® AN V*)/0BXR V*), V=R*", whose repre-
sentative is given by

iy L (0 L,>
T pyitr \—1, 0)’

1 0 I,
1+ —
(Cnﬂ )—— ny <_In 0).

The answer to the integrability problem for an almost homogeneous contact
structure is the following

THEOREM 4. 2. An almost homogeneous contact structure whose structure tensor
of the first order is ¢, is homogeneous contact.

Proof. Let Pg(M) be an almost homogeneous contact structure on M whose
structure tensor of the first order is c.

Since ¢ is reductive, there is an invariant complement C to 9B® V*) in
VR AHV*), V=R?*". Let & be the element in C which corresponds to ¢, under the
isomorphism C=H®?*G). Then there exists a G-connection whose torsion is &. More
precisely, let - be an element of V' ® A% V*) whose components (¢;) are given by

1 0 I
T ) —
(Taﬂ)— ny“" (—In O )y

1 0 I
T4y — n
(eei™)= ny" <_In 0)'

Then it is easily seen that = belongs to C. This implies that ¢ is just &.
Let o: U—Pg(M), u=o(x), be a local cross section. If we set

0u(X, V)= X, u ' Y),

where X, YeT,(M), then @ is a R?**-valued 2-form on M defined in U. Let
& U—Py(M), #i=5&(x), be an another local cross section and set

60X, Y)=c(ii' X, 4'Y).

Then @ differs from © by a scalar factor. Hence we have a global 2-form 6 up
to a scalar factor.

Let T be a tensor field of type (1, 2) on M determined by ©. The dimension of the
space of G-connections with torsion tensor 7 is equal to dim 8 =(2/3)n(n+1)(2n+1).
On the other hand, let ¢ be a 1-form on M, Then the dimension of the space of
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G-connections satisfying V¢ =0 is equal to dim {{€3&) V*| ot =0} =2n—1)2n*+n-1).
Since dim §® V*=2n(2n*-+n+1), there exists a G-connection, with torsion tensor 7,
which satisfies V¢g=0.

Let {0} and {Q} be the classes of 1-forms and 2-forms on M determined by
Pg(M). Then we can find locally a 1-form o in {w} and a G-connection with
torsion tensor 7" which satisfy

Vo=0.
The 1-form o satisfies
2do(X, YV)=o(T(X, Y))
for any X and Y. In fact, for any X and Y, we have
0=(Vxo)(¥Y)=X a(Y)—o(VxY)
and
0=Vyo)(X)=Y (X))~ o(VyrX).
Hence we obtain
X-o(Y)=Y-a(X)—o([X, Y] =0V Y)—o(VrX)—o(X, Y]),
that is,
2do(X, Y)=o(T(X, Y)).

Let U be a coordinate neighborhood in M with a local coordinate system
zl, -+, 22", We denote by X, the vector field 0/oz®, a=1, ---, 2n, defined in U. Every
linear frame at a point x of U can be uniquely expressed by

2n 2n
(2 X1 ) 2 XaX),

where (X§) is a non-singular matrix.

We take (2", X5) as a local coordinate system in =~ *(U). Let (Y$) be the
inverse matrix of (X4). Let ey -+, es, be the natural basis for R*». Let # be a
point of Pg(M) with coordinates (z%, X§) so that # maps e. into X5 X4 Xp)a,
where x=rnr(u).

If X=>2,8X, and Y=X%,7"X,, then

2n

uX= ), Yite, and # 'Y=

a,f=1

2n
Yirfe,.
=S}

Hence we have
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o(T(X, Y))=az(0(X, Y))
=0tz (c(u' X, u'Y))

2n n
=—p 5 LYY Yy ey,

1=1

On the other hand,

2(da)zy (™ X, u 'Y )=2 i @yindy*™)(u X, u'Y)

=1

= i:l {dyi (@ X)-dy ™ (w Y ) —dyt+ (w2 X) - dy (w1 Y)}

Il
ilNak]
M=

(YEY§r =YY ey,

af=11=1
Therefore we have
do(X, YV)=—p-(da)z(u X, u'Y).
This implies that dwe{2} and hence o satisfies
(dw)*=0.

Hence {0} defines a homogeneous contact structure on M. (Q.E.D.)

If we replace (4.1) and (4. 2) by

4. 1) Lxa=0
and
4. 2y f*a=a

respectively, then the resulting structures are called a strict homogenecous contact
structure and an almost strvict homogeneous contact structure.

§4’. Contact structures and almost contact structures.

Suppose we are given a differential system of codimension one which is of
maximal rank. To fix our notations, let ¥° ¥, ---,¥*® be the natural coordinate
system of R?***! and let

Cl,._=dy0_ % Z (yi+ndyi_yidyi+n).
=1
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Let £ be the sheaf of germs of all vector fields X on R?**! which satisfy
@&.1) Lya=p-a,

where p is a function depending on X.

Let _£(0) be the stalk of _£ at the origin 0eR?**!, Then _£(0) is a non-flat
filtered Lie algebra of infinite dimensions. The linear isotropy algebra § of _£(0) is
the sum of the linear Lie algebra

* Aedp(n)
A

and

ProrosiTION 4’.1. @ is involutive.
Proof. Let e, ey, -+, e2n, be the natural basis for R+, Let
dy=dim {te8| t(eq)="-=Hex)=0}.

Then we have

de=mn+1)2n+1)—(k+1)2n+1)+ k(k;-l) ’

and hence

2n—1

;Z:o dp= -g—n(n—l—l)(Zn—l—l).

On the other hand, since ¢ =8p(n)*+8, we have dim ¢ =(1/3)(n+1)2xn+1)
(2n-+3). Therefore dim ¢ =dim ¢+ Y25 d.
This implies that § is involutive. (Q.E.D.)

A local diffeomorphism f of R+ is called a contact transformation if it satisfies
“.2) f*a=p-a,

where p is a non-zero function.
The collection, T, of all such contact transformations forms an infinite, continuous

pseudogroup.
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Let M be a differentiable manifold of dimension 2#-+1. A TI'-structure on M
is called a contact structure.

Giving a contact structure on M is the same as giving a 1-form o wup lo
a scalar factor on M which satisfies

o /\(dw)"x0.

The theorem of Darboux states that a 1-form w satisfying w/A(dw)*=0 can locally
be written as

1

w=dx’— E'Z

M=

(z* " *dz*—xrdx*t™).
1

A local coordinate system in which the form o is written as above will be called
an admissible coordinate.

Let T'y be the subset of I' consisting of the elements which leave the origin
0 invariant. Let j: I''—GL(2%n+1, R) be defined as follows: for fel'y, 5(f) is the 1-jet
determined by f. Let G=j{). Then G is a subgroup of GL(2r+1,R) whose Lie
algebra is @, the linear isotropy algebra of _£(0).

Let M be a differentiable manifold of dimension 2z-+1. An almost contact
structure on M is, by definition, a reduction of the bundle of linear frames F(M)
to G, that is, a G-structure Pg(M) on M.

Given a G-structure Pg(M) on M, we can define, up to scalar factors, a pair
of a 1-form {0} and a 2-form {2} which satisfy {w}A{®Q}"=0. In fact, for each
xeM, let # be a point of Pg(M) with n(#)=2x. For any tangent vectors X and Y
at x, set

wx(X)=p-a(uX),
QJ:(X> Y):U' (da)ﬂ(u_lX; u! Y):

where a, and (da), denote, respectively, the values of « and da at the origin 0, and
o and ¢ are scalars. From the properties of G, this definition is independent of the
choice of «.

Conversely, given, up to scalar factors, a pair of a 1-form {w} and a 2-form {2},
let Ps(M) be the set of all linear frames # satisfying

{0}a(X)=a(u™X),
{Qa(X, YV)=(da)o(u™ ' X, ™ Y)

for any vectors X and Y at x=n(u#). Then Pg(M) is a G-structure.

Thus giving a G-structure on M is the same as giving a pair of a 1-form {w}
up to a scalar factor and a 2-form {Q} up to a scalar factor which satisfies
{w}N{2}"=x0 at every point of M.

Let ¢, be an element of H**G)=V QR AYV*)[0B&Q V*), V=R**' whose repre-
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sentative is given by

010 --0
o=l 0|0 I}
0|—7I, 0

(el =(cif™ =02

The answer to the integrability problem for an almost contact structure is the
following

TueoreM 47. 1 ([6]). An almost contact structure whose structure temsor of the
first order is ¢, is contact.

Proof. Let Pg(M) be an almost contact structure on M whose structure tensor
of the first order is c,.

Since 8 is reductive, there is an invariant complement C to 9@&@ V*)in VR A2(V*).
Let &, be the element in C which corresponds to ¢, under the isomorphism C=H*¥G).
Then there exists a G-connection on Pg(M) whose torsion is &. More precisely,
let 7 be an element of V@ A% V*) whose componeuts (<7;) are given by

0 0 0
(T?!ﬁ)’: () 0 In »
0|—I, 0

(clp)=(cif™)=0.

Then it is easily seen that = belongs to C. This implies that 7 is just &.
Let o: U—Py(M), u=o(x), be a local cross section. If we set

(X, V)=t X, uY),

where X, YeT,(M). Then 6 is a R**"'-valued 2-form on M defined in U. Let
& U—Pg(M), #i=3d(x), be an another local cross section and set

06X, V)= X, 471Y).
Then 6 differs from © by a scalar factor.

Hence we have a global 2-form @ up to a scalar factor.
Tet T be a tensor field of type (1,2) on M determined by ©. The dimension

3 apyr=0,12,:, 2n.
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of the space of G-connections with torsion tensor T is equal to dim ¢ =(1/3)(z-1)
(2n4+1)2n+3). On the other hand, let ¢ be a 1-form on M. Then the dimension
of the space of G-connections satisfying V¢=0 is equal to dim {£e§ Q@ V*|p-t=0}
=2n(n+1)2n+1). Since dim3&Q V*=m+1)2n+1)?, there exists a G-connection,
with torsion tensor 7, which satisfies V¢ =0.

Let {w} and {©Q} be the classes of 1-forms and 2-forms on M determined by
Ps(M). Then we can find locally a 1-form o in {w} and a G-connection with
torsion 7" which satisfy

Vo=0.
The 1-form o satisfies
2do(X, Y)=w(T(X, Y))

for any X and Y.
Moreover, by the straightforward calculation, we have

do(X, Y)=p-(da)o(u™* X, u*Y).
This implies that dwe{2} and hence w satisfies
oA (dw)"*0.
Hence {w} defines a contact structure on M. (Q.E.D.)

If we replace (4. 1) and (4'. 2) by

.1y Lxa=0
and
“. 2y Fra=a

respectively, then the resulting structures are called a strict comtact structure and
an almost strict contact structure.

§5. A concluding remark.

Let a, B, -+ be tensor fields on R"™ with constant components.
Let £ be the sheaf of germs of all vector fields X on R™ which satisfy

an'=0,
Lxp=0,
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Let _f(xy) be the stalk of £ at a point x,€R”. Then _L(x,) is a filtered Lic
algebra. Let § be the linear isotropy algebra of _(x,) and G a subgroup of GL(%, R)
whose Lie algebra is @.

Let I' be the pseudogroup of local diffeomorphisms of R” which preserve a, g, +-.
An almost I'-structure on a manifold M is, by definition, a reduction of the bundle
of linear frames F(M) to G, that is, a G-structure on M.

The answer to the integrability problem for an almost I'-structure is clearly
the following

THEOREM 5. 1. An almost T-structure whose structure tensor of the first order
vanishes is a T-structure.

Appendix. F-structures and framed f-structures.

Let w3, -, vk, yk+l, . g2k o2+ ... 9" be the natural coordinate system of R”
and let

E 0 k 0
F= Z ayl ®d’y7'+k—1§l—a—y—tﬁ®dy1’

Let _£ be the sheaf of germs of all vector fields X on R™ which satisfy
LxF=0.

Let _£(0) be the stalk of _£ at the origin 0eR". Then _£(0) is a flat filtered
Lie algebra of infinite dimensions. The linear isotropy algebra 8 of _£(0) is the
linear Lie algebra

A B 0
—B A 0||A4, Bedl(k R), Cedli(n—2k, R)
0 0 C

which is isomorphic with
8l(k, C)+98l(n—2k, R).

Let G be a subgroup of GL(n, R) whose Lie algebra is 8. Then G is isomorphic
with GL(k,C)XGL(n—2k,R). Let M be a differentiable manifold of dimension #.
An f-structure on M is, by definition, a reduction of the bundle of linear frames
F(M) to G, that is, a G-structure Pg(M) on M. Giving a G-structure on M is the
same as giving a tensor field f of type (1, 1) which satisfies

Si-r=0
and
rank f=2k.

Then the answer to the integrability problem for an f-structure is the following
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THEOREM A. 1 ([11). An f-structure whose structure temsor of the first ovder
vanishes is integrable.

Let
a=dy***?, -, ap_sp=dy"

and

k

Let £ be the sheaf of germs of all vector fields X on R™ which satisfy
Lxa;=0, -+, Lxatp_2:=0
and
LxF=0.

Let _£(0) be the stalk of £ at the origin 0eR™. Then _£(0) is a flat filtered
Lie algebra of infinite dimensions. The linear isotropy algebra ¢ of _£(0) is the
linear Lie algebra

A B O
—B A 0f|A, Bedl(g R) (c8l(n,R)
0 0 0

which is isomorphic with 8{(%, C).

Let G be a subgroup of GL(n, R) whose Lie algebra is 8. Then G is isomorphic
with GL(k, C). A framed f-structure on M is, by definition, a reduction of the bundle
of linear frames F(M) to G, that is, a G-structure Pg(M) on M. Giving a G-structure
on M is the same as giving #—2k 1-forms w, -+, wn—2x and a tensor field f of type
(1,1) which satisfy

(1)1°f=0, ) wn_2k°f:0,
Fobf=0
and

rank f=2%k.

Then the answer to the integrability problem for a framed /f-structure is the
following

THEOREM A. 2. A framed f-structure whose structuve tensor of the first order
vanishes is integrable.

Since 8 contains no elements of rank 1, (ke awutomorphism group of a framed
f-structure on a compact manifold is a Lie group.
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