ON ORISPHERICAL SUBGROUPS OF A SEMISIMPLE LIE GROUP

By Shigeya Maruyama

1. Let \mathfrak{g} be a real semisimple Lie algebra, and let \mathcal{G} be a Lie group whose Lie algebra is \mathfrak{g} . We take a one-parameter subgroup $g(t) = \exp(tX)$, $X \in \mathfrak{g}$, and define a orispherical subgroup \mathcal{Z} relative to g(t) as follows.

DEFINITION 1. \mathcal{Z} is the set of all $z \in \mathcal{G}$ for which

 $\lim g(t)zg(t)^{-1} = e$ (neutral element of \mathcal{G}).

Orispherical subgroups were introduced by Gelfand, Graev, and Pyatetskii-Shapiro, and played an important role in the theory of representations and automorphic functions; [1], [2]. The purpose of this note is to show that \mathcal{Z} is a connected closed subgroup of \mathcal{Q} .

2. First of all, \mathbb{Z} is easily seen to be connected. Let $z \in \mathbb{Z}$, then $\exp(tX) \cdot z \cdot \exp(-tX) = z_t \in \mathbb{Z}$ by definition. Of course z_t is continuous in t, and $z_t \to e$ as $t \to \infty$. Denote by \mathbb{Z}_0 the connected component of e of \mathbb{Z} . Since \mathbb{Z}_0 is open in \mathbb{Z} , we have $z_{t_0} \in \mathbb{Z}_0$ for sufficiently large t_0 . But then $z_t (0 \le t \le t_0)$ connects z to z_{t_0} , hence $z \in \mathbb{Z}_0$. This proves connectedness of \mathbb{Z} .

3. It is a classical result that any $X \in \mathfrak{g}$ can be expressed by a unique sum Y+N, where $Y, N \in \mathfrak{g}$ satisfy the conditions: i) [Y, N]=0; ii) ad Y is semisimple and all of its eigen values are real; iii) ad N has only pure imaginary eigen values. Here ad means the adjoint representation of \mathfrak{g} .

Let Ad be the adjoint representation of \mathcal{G} into the set of Aut (g) of all automorphisms of the Lie algebra g. We denote the image Ad \mathcal{G} of \mathcal{G} by Int (g) Then it is obvious that if $z \in \mathbb{Z}$, we have

 $\lim \operatorname{Ad} (\exp (tX)) \cdot \operatorname{Ad} z \cdot \operatorname{Ad} (\exp (-tX)) = E \quad (\text{Identity}).$

In Int (g), we consider the subset Z of all $\zeta \in Int(g)$ for which

$$\lim \operatorname{Ad} (\exp (tX)) \cdot \zeta \cdot \operatorname{Ad} (\exp (-tX)) = E.$$

Now we put ad $X=\xi$, ad $Y=\eta$, ad $N=\nu$, then

 $\begin{aligned} & \hat{\xi} = \eta + \nu, \quad \eta \nu = \nu \eta, \\ & \text{Ad} \left(\exp \left(t X \right) \right) = e^{t \xi} = e^{t \nu} e^{t \eta} \end{aligned}$

Received July 6, 1967.

where $e^{\alpha} = \sum_{n=0}^{\infty} \alpha^n / n!$. We denote by a_1, \dots, a_n the proper values of η , and assume $a_1 = a_2 = \dots = a_{k_1} < a_{k_1+1} = \dots = a_{k_1+k_2} < \dots < a_{k_1+\dots+k_{m-1}+1} = a_{k_1+k_2+\dots+k_{m-1}+2} = \dots = a_{k_1+k_2+\dots+k_m}$. Since ν has pure imaginary proper values and commute with η , η and ν are expressed in a suitably chosen basis $\{U_1, \dots, U_n\}$ in $\mathfrak{g}^{\mathcal{O}}$ (the complexification of \mathfrak{g}) as the matrices of the form

We fix in the following the basis U_1, \dots, U_n . Now we consider the subset $\mathbf{Z}' \subset \operatorname{GL}(\mathfrak{g}^c)$ (the set of all nonsingular linear transformations of \mathfrak{g}^c) of all ζ satisfying

$$\lim_{t\to\infty}e^{t\xi}\cdot\zeta\cdot e^{-t\xi}=E.$$

By simple computations of matrices, we easily obtain the following

LEMMA. ζ belongs to Z' if and only if ζ has the form

$$\begin{pmatrix} E_{k_1} & \ast & \cdots & \ast \\ 0 & E_{k_2} & \cdots & \ast \\ & & \ddots & \\ 0 & 0 & & E_{k_m} \end{pmatrix}$$

where there are zeros below the diagonal and E_{k_i} denotes the identity matrix of order k_i .

Moreover the followings are also trivial. For a $\zeta \in GL(\mathfrak{g}^{c})$, the two conditions

$$e^{t\xi} \cdot \zeta \cdot e^{-t\xi} \longrightarrow E,$$

and

 $e^{t\eta} \cdot \zeta \cdot e^{-t\eta} \rightarrow E$

are equivalent.

Since the set Z' is closed in $GL(\mathfrak{g}^{\mathcal{O}})$ by the above lemma and since the intersection of Z' with Int (\mathfrak{g}) is clearly Z, we have the following

PROPOSITION 1. Let \mathfrak{g} be a semisimple Lie algebra and let $X \in \mathfrak{g}$. Then the subgroup \mathbf{Z} of Int (\mathfrak{g}) , consisting of all $\zeta \in Int (\mathfrak{g})$ for which

$$\lim_{t\to\infty} e^{t \operatorname{ad} X} \cdot \zeta \cdot e^{-t \operatorname{ad} X} = E$$

is a closed subgroup of Int(g).

Moreover, X is uniquely decomposed into a sum Y+N as above. Then

$$\left\{ \zeta \in \operatorname{Int} \left(\mathfrak{g} \right) / \lim_{t \to \infty} e^{t \operatorname{ad} Y} \cdot \zeta \cdot e^{-t \operatorname{ad} Y} = E \right\} = \mathbb{Z}.$$

4. We consider the set \mathbb{Z}_1 of all $z \in \mathcal{G}$, for which

$$\lim_{t\to\infty}\exp\left(tX\right)\cdot z\cdot\exp\left(-tX\right)$$

exists and is equal to some element of the center C of \mathcal{G} .

PROPOSITION 2. \mathbb{Z}_1 is the complete inverse image $\operatorname{Ad}^{-1} \mathbb{Z}$ of \mathbb{Z} .

Proof. From the definition of \mathbb{Z}_1 , we have $\mathbb{Z}_1 \supset \mathcal{C}$. Hence we need to show Ad $\mathbb{Z}_1 = \mathbb{Z}$. It is obvious that Ad $\mathbb{Z}_1 \subset \mathbb{Z}$. On the other hand, let $\zeta \in \mathbb{Z}$, then

$$e^{t \operatorname{ad} X} \cdot \zeta \cdot e^{-t \operatorname{ad} X} \to E \qquad (t \to \infty).$$

Take a z such that $\operatorname{Ad} z = \zeta$. Let U be a connected neighbourhood of e in \mathcal{G} for which $U^{-1} = U$, $U^2 \cap \mathcal{C} = e$. Then $\operatorname{Ad} U = \{\operatorname{Ad} g/g \in U\}$ is a neighbourhood of E in Int (g). Hence we have

$$e^{t \operatorname{ad} X} \cdot \operatorname{Ad} z \cdot e^{-t \operatorname{ad} X} \in \operatorname{Ad} U$$

for all t such that $t \ge T$, where T is sufficiently large. This means $\exp(tX) \cdot z \cdot \exp(-tX) \in U \cdot C$ if $t \ge T$. But $\{\exp(tX) \cdot z \cdot \exp(-tX)/t \ge T\}$ is obviously a connected set. Hence there is only a $c \in C$ for which

$$\exp(tX) \cdot z \cdot \exp(-tX) \in U \cdot c \quad \text{if} \quad t \ge T.$$

14

Of course, c is independent of U. This means

$$\lim \exp (tX) \cdot z \cdot \exp (-tX) = c.$$

Hence $z \in \mathbb{Z}_1$ i.e. $Z \subset \operatorname{Ad} \mathbb{Z}_1$.

Now combining prop. 1 and prop. 2, we get

PROPOSITION 3. \mathcal{Z}_1 is a closed subgroup of \mathcal{G} .

5. By the above prop. 3, we see that \mathbb{Z}_1 is a closed Lie subgroup of \mathcal{G} . Let \mathbb{Z}_0 be the connected component of \mathbb{Z}_1 , and let $\frac{1}{2}$ be the Lie algebra of \mathbb{Z}_0 (or \mathbb{Z}_1). We assert that \mathbb{Z}_0 coincides with \mathbb{Z} .

Let $Z \in \mathfrak{z}$, then $\exp(sZ) \in \mathfrak{Z}_0$ for any real s. Hence we have

 $\lim \exp(tX) \exp(sZ) \exp(-tX) = c_s \in \mathcal{C}.$

But since C is a countable set, there can be only a countable number of s_i $(i=1, 2, \dots)$, for which c_{s_i} are mutually different.

On the other hand, it is obvious that $c_s \cdot c_t = c_{s+t}$. Hence, if we put

 $J_0 = \{s/-\infty < s < \infty, c_s = e\}$

then J_0 is an additive group, and we have

(*)
$$(-\infty,\infty) = \bigcup_{i=1}^{\infty} (J_0 + s_i)$$

where $J_0 + s_i = \{s + s_i / s \in J_0\}$. Now, $s \in J_0$ means

(a)
$$\lim_{t \to \infty} \exp(tX) \exp(sZ) \exp(-tX) = e$$

and since the convergency of the left hand side is secured from the fact that Z belongs to 3, the condition (a) is equivalent to

(b)
$$\lim_{n \to \infty} \exp(nX) \exp(sZ) \exp(-nX) = e.$$

But if we take a neighbourhood U of e in \mathcal{Q} , for which $U \cap \mathcal{C} = e$, then the condition (b) is equivalent to

$$\lim_{n \to \infty} \exp(nX) \exp(sZ) \exp(-nX) \epsilon U$$

and this means

$$J_0 = \bigcup_{n=1}^{\infty} \bigcap_{m \ge n} \{ s/\exp sZ \epsilon \exp (-mX) \cdot U \cdot \exp (mX) \}.$$

SHIGEYA MARUYAMA

Thus J_0 is a $G_{\delta\sigma}$ -set and of course measurable.

By virtue of (*) measure of J_0 is positive, and since any measurable subgroup of positive measure of the additive group of all real numbers is the full group, we can see that $J_0 = (-\infty, \infty)$, i.e. we have for all $s \in (-\infty, \infty)$

$$\lim_{t\to\infty} \exp\left(tX\right) \exp\left(sZ\right) \exp\left(-tX\right) = e.$$

This means $\exp(sZ) \in \mathbb{Z}$ for all s. Since \mathbb{Z}_0 is generated by $\exp Z$, $Z \in \mathfrak{z}$, we have $\mathbb{Z}_0 \subset \mathbb{Z}$.

We have already seen that \mathcal{Z} is connected. Hence $\mathcal{Z} \subset \{\text{the connected component of } \mathcal{Z}_1 = \mathcal{Z}_0 \}$. Thus we have

PROPOSITION 4. Let \mathfrak{g} be a real semisimple Lie algebra, and let \mathcal{G} be a connected Lie group whose Lie algebra is \mathfrak{g} . Let $X \in \mathfrak{g}$ and let \mathbb{Z}_1 be the set of all elements zof \mathcal{G} for which

$$\lim_{t\to\infty}\exp{(tX)}\cdot z\cdot\exp{(-tX)}$$

exists and contained in the center C of G. Let Z be the orispherical subgroup relative to X. Then the connected component of Z_1 is Z. Z_1 and Z are closed subgroups of G.

6. For the Lie algebra \mathfrak{z} of \mathfrak{Z} , we have the following

PROPOSITION 5.

$$\mathfrak{z} = \Big\{ Z \in \mathfrak{g} \Big/ \lim_{t \to \infty} e^{t \operatorname{ad} X} Z = 0 \Big\}.$$

Proof. Denote the right hand side by $\frac{3}{2}$. If $Z \in \frac{3}{2}$ we have

 $\exp\left(e^{t \operatorname{ad} X}(sZ)\right) \to e \qquad (t \to \infty)$

for all s. But the left hand side is equal to

$$\exp(s \operatorname{Ad}(\exp(tX))Z) = \exp(tX) \exp(sZ) \exp(-tX).$$

Hence $\exp(sZ) \in \mathbb{Z}$ for all s and this implies $Z \in \mathfrak{z}$.

Conversely if $Z \in \mathfrak{z}$, then $\exp sZ \in \mathfrak{Z}$. Hence $\operatorname{Ad} \exp (sZ) = e^{s \operatorname{ad} Z} \in \operatorname{Ad} \mathfrak{Z} = \mathbb{Z}$. This implies $e^{s \operatorname{ad} Z}$ has the form mentioned in the above lemma. \mathbb{Z} being nilpotent, we have $\operatorname{ad} \mathbb{Z} = \log e^{\operatorname{ad} Z}$. Then $E + \operatorname{ad} \mathbb{Z}$ has the same form as above, and this implies

$$e^{t \operatorname{ad} X} \cdot \operatorname{ad} Z \cdot e^{-t \operatorname{ad} X} \to 0 \qquad (t \to \infty).$$

The left hand side is ad $(e^{t \operatorname{ad} X}Z)$. Since ad is an isomorphism, we have $e^{t \operatorname{ad} X}Z \rightarrow 0$. Hence $Z \in \mathfrak{z}'$.

16

References

- GEL'FAND, I. M., AND M. I. GRAEV, Geometry of homogeneous spaces, representation of groups in homogeneous spaces, and related questions of integral geometry. Trudy Moscow Math. Soc. 8 (1959), 321-390. (in Russian)
- [2] GEL'FAND, I. M., AND I. I. PYATETSKII-SHAPIRO, Theory of representations and theory of automorphic functions. Trudy Moscow Math. Soc. 12 (1963) 389-412. (in Russian)

Department of Mathematics, Tokyo Institute of Tecinology.