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SUBMANIFOLDS OF A KAHLERIAN MANIFOLD
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1. Introduction. The following theorem is well known:

THEOREM A (Cf. Yano [3]). A holomorphic submanifold of a Kάhleήan mani-
fold is minimal.

Thus it would be natural to ask whether a minimal submanifold of a Kahlerian
manifold is holomorphic. As to a very special case of a totally geodesic submani-
fold we have shown in [1] the following

THEOREM B. A totally geodesic submanifold S in a In-dimensional Fubinian
manifold M is holomorphic if we assume that n^2 and the codimension of S is 2.
In the exceptional case n=2, S is a holomorphic or an anti-holomorphic submani-
fold of M.

A submanifold S is said to be anti-holomorphic at a point p€S, if TP(S) and
NP(S) are transformed under F into each other, where F is an almost complex
structure of M, TP(S) and NP(S) denoting respectively the tangent space to S at p
and the normal space to S at p. S is called an anti-holomorphic submanifold if it
is anti-holomorphic at each point of S.

Theorem B shows that the converse of Theorem A is not true in general.
Now we shall study, in this paper, submanifolds, especially minimal ones, in a
Kahlerian manifold. The notations and terminologies are found in [1], but we
state some of them at the beginning of the next section for the later use.

2. Let M be a Kahlerian manifold of real dimension 2n and S1} a connected
orientable submanifold of M whose real dimension is 2n—2. It is well known
that a Riemannian metric g on S can be induced from the Riemannian metric
G of M. We denote by < , )M the inner product with respect to G and by < , } s

the inner product with respect to g. We now put, for a tangent vector X on S,

(2.1)

Received June 19, 1967.
1) We use here an identification of a differentiable manifold S with ξ(S), where ξ is

a differentiate immersion from S into M, whose differential £*: Tp(S)-^TςCP:)(M) is in-
jective. Manifolds, mappings and geometric objects considered in this paper are all as-
sumed to be of differentiability class C°°.
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where F is the almost complex structure of M, T(X) denotes the tangential part
and N{X) the normal part, both of F(ξ*X). Since T{X) is tangent to S, we may put

<τ(X), ξ*γyM=<Ax, γys,

where A is a tensor on S of type (1,1) and Y is an arbitrary vector on S. If we
define a 2-form A by

Ά(X, Y)={AXy Y)s

for any pair of vector fields X and Y on S, then we have, denoting by F the
fundamental 2-form of Mf

(2.2) Ά(X, Y) = F(ξ*X,ξ*Y).

(2. 2) shows that A is a skew-symmetric bilinear form.
Now, we restrict ourselves to a sufficiently small neighborhood ΊJ in which

there exist two fields of unit normal vectors to S. First, we ύx in ΊJ two unit
normal vector fields C and D to S which are mutually orthogonal. Then N(X)
defined by (2.1) can be expressed in HJ as

(2. 3) N(X)=ά(X)C+ β(X)D,

where a and β are 1-forms on S. We have

(2.4) a(X) = F(ξ*X,C)

and

(2.5) β(X) = F(ξ*X,D)

for any vector fields X on S. We define | |α|| and \\β\\ respectively by

and | |^I

where a and /5 are contravariant tensors of degree 1 defined by <α, Xys=ά(X) and
</3, X>)S=i§(X) respectively. Then we have, by a direct computation,

(2.6) IMI 8=lljS| | 8=l-y,

where

(2.7) φ=F(C,D).

F(C, D) seems to depend upon the choice of the pair of unit normal vector fields
C and D in CU, but it is not hard to show that F(C, D) is independent of the
choice of C and D. That is to say, F{C, D) is left invariant under any orthogonal
transformation applied to C and D, since S is assumed to be orientable. Thus φ is
a globally defined function on S. On the other hand, (2.6) implies that if ά(X)=0
at a point p for any vector X on S, then β(X)=0 at p and vice versa. Straight-
forward computation shows that
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(2. 8) (a, β}s = 0

and

(2. 9) A2=-I+ά(g)a+β(g)β,

where / is the unit tensor.
The maximal holomorphic subspace Hp of the tangent space TP(S) to S at p is

defined by

Hp= { F€ Tp(S)\F(ξ* V)G TP(S)}

and the anti-holomorphic subspace H'v of TP(S) is defined by

Hp={We Tp(S)\F(ξ*W)€Np(S)},

where NP(S) denotes the normal space to S at p. These definitions show that

Hp@Hp=Tp(S) (direct sum)

and Hp and Hv are mutually orthogonal. In fact

if VzHp and WGHP. If we restrict ourselves to °U and if we take account of
(2. 3), then wτe see that a necessary and sufficient condition that V belongs to IIp

is expressed as

(2. 10) < V, a}s=0 and < V, β}s=0.

The identity (2.9) and the equations (2.10) show that A restricted to Hp is an
almost complex structure. We note again from (2.10) that Hp is spanned by a
and β at p at which ||α||^=0. Thus we have

dim i7p^dim S-2

and the equality holds at p at which we have | |α | |=0.
The next proposition is a result of a direct computation.

PROPOSITION 2. 1. If S is a totally geodesic submanifold of M, then the func-
tion φ defined by (2.7) is constant and therefore dim Hp is constant on S.

We shall assume, from now on, that there is at least one point p at which
IHI does not vanish.

An assignment of Hp to each p of S defines a distribution D, if άimRp is
constant. Let X and Y be any local vector fields which belong to Hp in a
sufficiently small neighborhood cy. It is well known that the distribution D is
completely integrable if and only if [X, Y] is also a local vector field belonging to
Hp in cy. This condition is equivalent to
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(2. 11) <[X, Y], a}s=0 and <[X, Y], β>8=0*>

The equations (2.11) can be written as

<Pχa, Yys-<Vγa, X)s=0,
(2. 12)

<?zβ, Y>s-<Pγβ, X>s=0

by virtue of

<X, a)s=(X, β)s=<Y, a}s=<Y, β>s=0,

where V denotes the covariant differentiation along S with respect to the connec-
tion induced on S from the Riemannian connection of M. On the other hand we
have, from (2.4) and (2.5),

(2.13) <Vxay Y)s= -φhX, Y)-KAY, X)+I(X)β(Y)

and

(2. 14) (Vxβ, Y)s=φh(X, Y)-k(AY, X)-ϊ(X)ά{Y),

where h and k are the second fundamental forms of S and / the third fundamental
form of S, X and Y being arbitrary vector fields on S. Thus the equations (2.12)
become

f ((Ah+hA)X, Y>s=0,
(2.15)

I «Ak+kA)X, Y>s=0,

h and k being tensors on S of type (1, 1) defined respectively by ζhX, Y}s

=h(Xf Y) and <kX, Y)s=k(X, Y\ Thus we have

PROPOSITION 2. 2. Suppose that dim Hv is constant on S. In order that the
distribution D: p-^Hp is completely integrable, it is necessary and sufficient that
the equations (2.15) are valid for arbitrary vectors X and Y on Rp.

This proposition, together with Proposition 2.1, gives

COROLLARY 2.1. For a totally geodesic submanifold S of M, the distribution
D: p—*Hp is always completely integrable.

In the case in which the distribution D: p-^Hp is completely integrable, the
integral manifold H of the distribution D is a minimal submanifold of M (Theorem
A). We denote submanifold maps by η\ H-+S and ζ: H-+M and their differentials
by Ύ]* and ζ* respectively. We shall use, in the neighborhood <iy, C, £>, fWlkll
and ?*/3/||/3|| as unit normal vector fields to H and denote them by Ci, C2, C3 and
C4 respectively. Then we have

2) Vectors X and Y on Hv are regarded as vectors on TP(S) by the identification map.
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<CX, Cy)M=δxy (x, y=l, 2, 3,4).

Now we introduce van der Waerden-Bortolotti derivative along a submanifold
of M. Let Mf be a submanifold of M and σ a submanifold map from Mr into M
whose differential is denoted by σ*. We denote by Tr

s(M) (resp. Tr

s{Mf)) the space
of all tensor fields of type (r, s) and let T(M)=Σr,s Tr

s(M) (resp. T(M')= Σr,s T
r

s(M')).
Given an element XQ T\(M')> we define a derivation Vσ

x in the formal tensor product
T(M)$T(M') by the following properties:

1) PχV=P<HχV for VeT(M),

where V denotes the covariant derivation with respect to an aίiine connection of M;

2) PxW=(the tangential part of Va*x(

for WeT(M') and

3) ΓKF# W)={VXV)% W+ VWxW),

for F€ T(M) and We T(M'\ Van der Waerden-Bortolotti derivative Fσ along Mr is
defined as the assignment: (X, W*)-+PσzW* for XeTRM') and Wr*e71(M)#Γ(M/).
For detail, see Yano-Ishihara [2].

Van der Waerden-Bortolotti derivative Fc along H as a submanifold of M gives

(2.16) <F^C, C*Wr>jf=-<Aw V, W}Hy

where V and W are tangent to ϋζ each h^ is a tensor on H of type (1,1) and
< , >ir denotes the inner product on H with respect to the metric induced from
that of M. Ci and C2 are respectively transformed under F as follows:

(2.17) ί ϋ ^ p C a - I M I G

and

(2.18) FC^-φd-WaWCt.

Substituting (2.17) into (2.16) we have

because of the fact that F is covariant constant. Since ζ*W is tangent to the
holomorphic submanifold H so is also F(ζ* W) and therefore we can put

(2.19)

where / is a tensor of type (1,1) on H. We can easily show that

I being the unit tensor. Thus we have

(2. 20) <AC1> V, fW}H= -φ(h™ V, W)H+\\a\\(h^ V, W)H,
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by virture of the relation

A similar method gives

(2. 21) <h™V,fW>π=φ<h™V, W>π+\\a\Kh«>V, W)H,

because of (2.18).
On the other hand, if we consider H as a submanifold of S and we choose

α/||α|| and βl\\β\\ as fields of unit normals to H, then we have

(2. 22) <V\{al\\a\|), ?* W)s= -(hf F, W)H,

and

(2. 22) <n(βl\\β\\), η*W>s=-<k'V, W>H,

where V and W are tangent to H and Vη denotes van der Waerden-Bortolotti
covariant derivation along H as a submanifold of S. h' and k' are the so-called
second fundamental tensors of H in S. We can easily verify, by the definition of
van der Waerden-Bortolotti covariant derivation that

(2.24) h'=h™ and k'=hw,

if we take account of (2.16). By a similar argument we have

(2. 25) <A<D W, V>s

and

(2. 26) <A<2> W, F>//

where V and FT are vector fields on H. Since iJ is holomorphic submanifold of
M, we have

T r A w = 0 (a?=l,2,3,4)

and therefore

Trh'=0 and T r ^ = 0.

These equations imply

PROPOSITION 2. 3. The integral manifold II of the distribution D: p—>Hv is a
minimal submanifold of S.

We also have

Trh=«ha, a}s+<hβ, β)s)l\\a\\*

and

β, β}s)l\\a\\2
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by virtue of (2.25) and (2.26). Thus we have

PROPOSITION 2. 4. If S is a minimal submanifold of M and the integrabiliίy
condition (2.15) of the distribution D is satisfied, then we have

(2. 27) {ha, a)s+(hβ, β)s=0

and

(2. 28) (ka, a)s+<kβ, β}s=0.

We can write the equations (2.15) as

(h™X, /F>*-<Aα> F, fX)H=0

and

, fX)Π~0,

if we take account of (2.19), (2.25) and (2.26).
A tensor T of type (1,1) is said to be hybrid with respect to f, if it satisfies

where / is a tensor of type (1,1). (See, e.g. Yano [3].)
Thus we have, taking account of (2.20),

PROPOSITION 2. 5. Under the integrability condition (2.15) of the distribution
D: p—*ffp, each hίX:> is hybrid tensor with respect to the almost complex structure f
on H induced from the almost complex structure F of M.

Let us define /zCΛ° by

h<xKV, W)=(h™ F, W)H 0=1,2, 3,4)

for any pair of vectors V and W on H. Then we can see, from (2.25) and (2.26),
that ha:> and /zC2) are both symmetric bilinear form. As consequences of (2.15), we
see that /ι(3) and h^ become symmetric when the distribution D is integrable.S)

3. We study, in this section, the integrability condition of the distribution Dr

which assigns H'v to peS. If we use a and β as a local basis of Df in a sufficiently
small neighborhood of p, then the integrability condition of Dr\ p—*H'v is written as

(3.1) <*,,[«, j8]>*=0,

where Xμ is the local basis of the distribution D: p—*Hp. The equation (3.1) is
written as

(3. 2) (Xμ, (hA-Ah)β-(kΛ-Ak)a}s=O

3) If we define, in a sufficiently small neighborhood cy, van der Waerden-BortolotU
covariant derivative along a distribution D and introduce tensors L(Λ° of type (1, 1) in a
similar way as we did for ΛO), i.e. by (normal part of VxY)=Lixy (X, Y)CX (x=ί, 2, 3, 4),
for local vector fields X, YzD then the integrability condition of the distribution D is
given by the hybπdness of LC1) and LC2) or equivalently by the symmetry of LC3) and LC4).
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or

(3.3) φ(Aμ+Bμ)+fμ

v(Bv-Άv)=0,

because of Aa= —φβ and Aβ=φa, where Aμ=(Xμ, ha)s, Bμ=(Xμy hβ)Sy Aμ=(Xμ, kά)s,
Bμ=(Xμ,kβ)s and (//) are components of the tensor / on H. Thus we have

PROPOSITION 3. 1. Suppose that dim Hp=const. In order that the distribution
Dr\ p^Ήp is completely integrable, it is necessary and sufficient that the equation
(3.2) or (3. 3) holds.

COROLLARY 3. 1. If S is a totally geodesic submanifold of M, then the distribu-
tion Df is completely integrable.

On the other hand, we have

(Xμ, grad φ>s=—Bμ+Aμ

and thus we have

COROLLARY 3. 2. For a submanifold S on which φ—0, the distribution Ό' is
completely integrable.

The number of equations (3. 3) is m—2 and that of unknown variables Aμ, Bμy

Άμ and Bμ is 4(m—2). Therefore, it seems that a submanifold which satisfies the
integrability condition (3. 3) of the distribution Df is a very special one. We shall
show, at the end of this section, an example of such submanifolds. In that ex-
ample, the second fundamental tensors h and k which are considered as linear
transformations on TP(S) leave invariant the holomorphic subspace Hp of TP(S).

When the distribution Dr\ p-*H'p is integrable, we denote by Rr the integral
manifold of the distribution Df and by ζ' a submanifold map ζ': H;-*M. We can
choose ξ*Xχ, C, D as unit normal vector fields to Hf. By using van der Waerden-
Bortolotti covariant derivation Fζ/ along H' we have

=-('h^X, Y)H,,

=-</h^x, γyH,

and

where X and Y are arbitrary vector fields on Hf and 'ha\ 'hS™'1^ and xA(m) are
the second fundamental tensors of H! as a submanifold of M. Since we have
chosen a and β as a local basis of H'', we have

(3. 4) | k | | 2 Tr Ά ^ - ^ K A α , a)s+(hβ, β)s)/\\a\\2

and

(3. 5) IHI 2 Tr 'h™ = «ka, a}s+(kβ, β>s)l\\a\\\

On the other hand, we have
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from which we obtain

by virtue of (3. 3). On the other hand, we have, by a straightforward computation,

<Xμ, div A}s=Aμ+Bμ,

where A is the tensor defined in § 2. This proves

PROPOSITION 3. 2. A necessary condition that H' is a minimal submanifold of
M is

1) The second fundamental tensors h and k of S satisfy (3. 4) and (3. 5)
respectively and

2) div AεHp.
Conversely, if we assume 1) and 2) mentioned above and we assume further

grad φQHp and dim Hv—const., then the distribution Dr\ p-+Hp is completely in-
tegrable and the integral manifold Hf of the distribution Όf is a minimal submani-
fold of M.

We shall now discuss a sufficient condition under which the distributions
D: p-*Hp and Dr: p-*Hp are both integrable. We assume that the following equa-
tions are valid for any local vector field X of the distribution D:

ί (Ah+hA)X=0,
(3. 6)

[ (Ak+kA)X=0.

The equation (2.15) shows that (3. 6) is one of sufficient conditions under which
the distribution D is completely integrable. The next lemma is a result of a
direct computation

LEMMA 3.1. Under the condition (3.6), we have

(3.7) Aμ=Bμ=Άμ=Bμ=0

and therefore grad φ and div A belong to Hv.

(3.7) proves

PROPOSITION 3. 3. If we assume (3.6), then the holomorphic subspace Hp of
TP(S) is left invariant under the linear transformations induced from the second

fundamental tensors h and k of S.

PROPOSITION 3. 4. The distributions D and D' are both completely integrable,
if we assume dim Hv=const, and the equations (3.6).

LEMMA 3. 2. Let S be a minimal submanifold of M. If the equations (3.6)
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are valid for any XeHp, then we have

Ah+hA=Q,
(3. 8)

Ak+kA=0
on TP(S).

Conversely, a submanifold S whose second fundamental tensors h and k satisfy
the equations (3.8), then S is a minimal submanifold of M, if φ does not vanish.

Proof
Straightforward computations show that

((Ah+hA)a, a)s=<Aha, a)s-φ(hβ, a}s

=φ(ha, β)s-φ(hβ, a)s=Q;

((Ah+hA)a, β}s=<Aha, β>s-φ<hβ, β}s

= —φ(ha, a)s-φ(hβ, β)s

= 0, by (2.27);

({Ah+hA)β, a)s=-((Ah+hA)a, β)s=0;

and

<(Ah+hA)β, β)s= ~φ(hβ, a}s+φ<ha, β)s=0.

We have, from (3. 6),

<(Ah+hA)a, X)s=<(Ah+hA)β, X)s=0

for any XεHp. These equations give

(3.9) (Ah+hA)a=(Ah+hA)β=Q.

Similar computations show that

(3. 10) (Ak+kA)a=(Ak+kA)β=0.

The equations (3. 8) follow from (3. 6), (3.9) and (3.10).

The converse is now obvious by a straightforward computation, q.e.d.

COROLLARY 3. 3. Let S be a minimal submanifold of M. We assume that
the equations (3. 6) are valid and further the function φ is constant. Then A defined
by (2.2) is harmonic form.

Proof. From the definition of Ά and the equation

(FzA) (F, Z)=-h(X, Y)ά(Z)+h(X, Z)ά(Y)

it is obvious that A is skew-symmetric and closed. We can easily see that
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<div A, a)s=(ha, a><?+<&/3, a)s

and

<div A, jS>s=<Aα, p>s+<kβ, β)s.

On the other hand, we have

<grad φ, a)s--=(ka, a)s-(hβ, a}s

and

<grad φ, β)s=(ka, β)s~<hβ, β)s,

from which we have

<div A, a)s=<ha, a}s+<hβ, β)s

and

<div A, β)s=

The right hand side of each equation above must be zero because of (2. 27) and
(2.28). Since άiv A belongs to Hp (Lemma 3.1), we have divA=0 which implies,
together with dΆ=0, that A is a harmonic form, q.e.d.

Summing up the results, we have

THEOREM 3. 1. Let S be a minimal submanifold of a Kάhleήan manifold M
whose codimension is 2.4) We assume that dim Hp=const, and the second funda-
mental tensors h and k of S satisfy the condition (3. 6). Then S is locally decom-
posed into two submanifolds one of which is holomorphic in M and the other is
anti-holomorphic in M both being minimal submanifolds of S and at the same time
of M. The dimension of the anti-holomorphic submanifold equals to the codimen-
sion of S.
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4) We have assumed, throughout this paper, that codimension of S is 2, but we can
also discuss in the same way the case in which the condimension of S is even and smaller
than or equals to the half of the dimension of M.




