SUBMANIFOLDS OF A KÄHLERIAN MANIFOLD

By Mitsue Ako
Dedicated to Professor Hitoshi Hombu on his sixtieth birthday

1. Introduction. The following theorem is well known:

Theorem A (Cf. Yano [3]). A holomorphic submanifold of a Kählerian manifold is minimal.

Thus it would be natural to ask whether a minimal submanifold of a Kählerian manifold is holomorphic. As to a very special case of a totally geodesic submanifold we have shown in [1] the following

Theorem B. A totally geodesic submanifold S in a $2 n$-dimensional Fubinian manifold M is holomorphic if we assume that $n \neq 2$ and the codimension of S is 2 . In the exceptional case $n=2, S$ is a holomorphic or an anti-holomorphic submanifold of M.

A submanifold S is said to be anti-holomorphic at a point $p \in S$, if $T_{p}(S)$ and $N_{p}(S)$ are transformed under F into each other, where F is an almost complex structure of $M, T_{p}(S)$ and $N_{p}(S)$ denoting respectively the tangent space to S at p and the normal space to S at $p . S$ is called an anti-holomorphic submanifold if it is anti-holomorphic at each point of S.

Theorem B shows that the converse of Theorem A is not true in general. Now we shall study, in this paper, submanifolds, especially minimal ones, in a Kählerian manifold. The notations and terminologies are found in [1], but we state some of them at the beginning of the next section for the later use.
2. Let M be a Kählerian manifold of real dimension $2 n$ and $S^{1)}$ a connected orientable submanifold of M whose real dimension is $2 n-2$. It is well known that a Riemannian metric g on S can be induced from the Riemannian metric G of M. We denote by \langle,\rangle_{M} the inner product with respect to G and by \langle,\rangle_{S} the inner product with respect to g. We now put, for a tangent vector X on S,

$$
\begin{equation*}
F\left(\xi_{*} X\right)=T(X)+N(X), \tag{2.1}
\end{equation*}
$$

[^0]where F is the almost complex structure of $M, T(X)$ denotes the tangential part and $N(X)$ the normal part, both of $F\left(\xi_{*} X\right)$. Since $T(X)$ is tangent to S, we may put
$$
\left\langle T(X), \xi_{*} Y\right\rangle_{M}=\langle A X, Y\rangle_{S}
$$
where A is a tensor on S of type $(1,1)$ and Y is an arbitrary vector on S. If we define a 2 -form \tilde{A} by
$$
\tilde{A}(X, Y)=\langle A X, Y\rangle_{S}
$$
for any pair of vector fields X and Y on S, then we have, denoting by \tilde{F} the fundamental 2 -form of M,
\[

$$
\begin{equation*}
\tilde{A}(X, Y)=\tilde{F}\left(\xi_{*} X, \xi_{*} Y\right) \tag{2.2}
\end{equation*}
$$

\]

(2.2) shows that \tilde{A} is a skew-symmetric bilinear form.

Now, we restrict ourselves to a sufficiently small neighborhood \mathcal{U} in which there exist two fields of unit normal vectors to S. First, we fix in U two unit normal vector fields C and D to S which are mutually orthogonal. Then $N(X)$ defined by (2.1) can be expressed in U as

$$
\begin{equation*}
N(X)=\tilde{\alpha}(X) C+\tilde{\beta}(X) D \tag{2.3}
\end{equation*}
$$

where $\tilde{\alpha}$ and $\tilde{\beta}$ are 1 -forms on S. We have

$$
\begin{equation*}
\tilde{\alpha}(X)=\tilde{F}\left(\xi_{*} X, C\right) \tag{2.4}
\end{equation*}
$$

and

$$
\begin{equation*}
\tilde{\beta}(X)=\tilde{F}\left(\xi_{*} X, D\right) \tag{2.5}
\end{equation*}
$$

for any vector fields X on S. We define $\|\alpha\|$ and $\|\beta\|$ respectively by

$$
\|\alpha\|=\sqrt{\langle\alpha, \alpha\rangle_{S}} \quad \text { and } \quad\|\beta\|=\sqrt{\langle\beta, \beta\rangle_{S}}
$$

where α and β are contravariant tensors of degree 1 defined by $\langle\alpha, X\rangle_{S}=\tilde{\alpha}(X)$ and $\langle\beta, X\rangle_{s}=\tilde{\beta}(X)$ respectively. Then we have, by a direct computation,

$$
\begin{equation*}
\|\alpha\|^{2}=\|\beta\|^{2}=1-\varphi^{2}, \tag{2.6}
\end{equation*}
$$

where

$$
\begin{equation*}
\varphi=\tilde{F}(C, D) . \tag{2.7}
\end{equation*}
$$

$\tilde{F}(C, D)$ seems to depend upon the choice of the pair of unit normal vector fields C and D in U, but it is not hard to show that $\tilde{F}(C, D)$ is independent of the choice of C and D. That is to say, $\tilde{F}(C, D)$ is left invariant under any orthogonal transformation applied to C and D, since S is assumed to be orientable. Thus φ is a globally defined function on S. On the other hand, (2.6) implies that if $\tilde{\alpha}(X)=0$ at a point p for any vector X on S, then $\tilde{\beta}(X)=0$ at p and vice versa. Straightforward computation shows that

$$
\begin{equation*}
\langle\alpha, \beta\rangle_{S}=0 \tag{2.8}
\end{equation*}
$$

and

$$
\begin{equation*}
A^{2}=-I+\tilde{\alpha} \otimes \alpha+\tilde{\beta} \otimes \beta, \tag{2.9}
\end{equation*}
$$

where I is the unit tensor.
The maximal holomorphic subspace H_{p} of the tangent space $T_{p}(S)$ to S at p is defined by

$$
H_{p}=\left\{V \in T_{p}(S) \mid F\left(\xi_{*} V\right) \in T_{p}(S)\right\}
$$

and the anti-holomorphic subspace H_{p}^{\prime} of $T_{p}(S)$ is defined by

$$
H_{p}^{\prime}=\left\{W \in T_{p}(S) \mid F\left(\xi_{*} W\right) \in N_{p}(S)\right\},
$$

where $N_{p}(S)$ denotes the normal space to S at p. These definitions show that

$$
H_{p} \oplus H_{p}^{\prime}=T_{p}(S) \quad \text { (direct sum) }
$$

and H_{p} and H_{p}^{\prime} are mutually orthogonal. In fact

$$
\langle V, W\rangle_{S}=\left\langle\xi_{*} V, \xi_{*} W\right\rangle_{M}=\left\langle F\left(\xi_{*} V\right), F\left(\xi_{*} W\right)\right\rangle_{M}=0,
$$

if $V \in H_{p}$ and $W \epsilon H_{p}^{\prime}$. If we restrict ourselves to U and if we take account of (2.3), then we see that a necessary and sufficient condition that V belongs to H_{p} is expressed as

$$
\begin{equation*}
\langle V, \alpha\rangle_{S}=0 \quad \text { and } \quad\langle V, \beta\rangle_{S}=0 . \tag{2.10}
\end{equation*}
$$

The identity (2.9) and the equations (2.10) show that A restricted to H_{p} is an almost complex structure. We note again from (2.10) that H_{p}^{\prime} is spanned by α and β at p at which $\|\alpha\| \neq 0$. Thus we have

$$
\operatorname{dim} H_{p} \geqq \operatorname{dim} S-2
$$

and the equality holds at p at which we have $\|\alpha\|=0$.
The next proposition is a result of a direct computation.
Proposition 2.1. If S is a totally geodesic submanifold of M, then the function φ defined by (2.7) is constant and therefore $\operatorname{dim} H_{p}$ is constant on S.

We shall assume, from now on, that there is at least one point p at which $\|\alpha\|$ does not vanish.

An assignment of H_{p} to each p of S defines a distribution D, if $\operatorname{dim} H_{p}$ is constant. Let X and Y be any local vector fields which belong to H_{p} in a sufficiently small neighborhood $\odot \mathcal{V}$. It is well known that the distribution D is completely integrable if and only if $[X, Y]$ is also a local vector field belonging to H_{p} in \widetilde{V}. This condition is equivalent to

$$
\begin{equation*}
\left.\langle[X, Y], \alpha\rangle_{S}=0 \quad \text { and } \quad\langle[X, Y], \beta\rangle_{S}=0 .{ }^{2}\right) \tag{2.11}
\end{equation*}
$$

The equations (2.11) can be written as

$$
\begin{align*}
& \left\langle\nabla_{X} \alpha, Y\right\rangle_{S}-\left\langle\nabla_{Y} \alpha, X\right\rangle_{S}=0, \tag{2.12}\\
& \left\langle\nabla_{X} \beta, Y\right\rangle_{S}-\left\langle\nabla_{Y} \beta, X\right\rangle_{S}=0
\end{align*}
$$

by virtue of

$$
\langle X, \alpha\rangle_{S}=\langle X, \beta\rangle_{S}=\langle Y, \alpha\rangle_{S}=\langle Y, \beta\rangle_{S}=0,
$$

where ∇ denotes the covariant differentiation along S with respect to the connection induced on S from the Riemannian connection of M. On the other hand we have, from (2.4) and (2.5),

$$
\begin{equation*}
\left\langle\nabla_{X} \alpha, Y\right\rangle_{S}=-\varphi \tilde{k}(X, Y)-\tilde{h}(A Y, X)+\tilde{l}(X) \tilde{\beta}(Y) \tag{2.13}
\end{equation*}
$$

and

$$
\begin{equation*}
\left\langle\nabla_{X} \beta, Y\right\rangle_{S}=\varphi \tilde{h}(X, Y)-\tilde{k}(A Y, X)-\tilde{l}(X) \tilde{\alpha}(Y), \tag{2.14}
\end{equation*}
$$

where \tilde{h} and \tilde{k} are the second fundamental forms of S and \tilde{l} the third fundamental form of S, X and Y being arbitrary vector fields on S. Thus the equations (2.12) become

$$
\left\{\begin{array}{l}
\langle(A h+h A) X, Y\rangle_{S}=0, \tag{2.15}\\
\langle(A k+k A) X, Y\rangle_{S}=0,
\end{array}\right.
$$

h and k being tensors on S of type $(1,1)$ defined respectively by $\langle h X, Y\rangle_{S}$ $=\tilde{h}(X, Y)$ and $\langle k X, Y\rangle_{S}=\tilde{k}(X, Y)$. Thus we have

Proposition 2. 2. Suppose that $\operatorname{dim} H_{p}$ is constant on S. In order that the distribution $D: p \rightarrow H_{p}$ is completely integrable, it is necessary and sufficient that the equations (2.15) are valid for arbitrary vectors X and Y on H_{p}.

This proposition, together with Proposition 2.1, gives
Corollary 2.1. For a totally geodesic submanifold S of M, the distribution $D: p \rightarrow H_{p}$ is always completely integrable.

In the case in which the distribution $D: p \rightarrow H_{p}$ is completely integrable, the integral manifold H of the distribution D is a minimal submanifold of M (Theorem A). We denote submanifold maps by $\eta: H \rightarrow S$ and $\zeta: H \rightarrow M$ and their differentials by η_{*} and ζ_{*} respectively. We shall use, in the neighborhood $U, C, D, \xi_{*} \alpha /\|\alpha\|$ and $\xi_{* \beta} \beta\|\beta\|$ as unit normal vector fields to H and denote them by C_{1}, C_{2}, C_{3} and C_{4} respectively. Then we have

[^1]$$
\left\langle C_{x}, C_{y}\right\rangle_{M}=\delta_{x y} \quad(x, y=1,2,3,4) .
$$

Now we introduce van der Waerden-Bortolotti derivative along a submanifold of M. Let M^{\prime} be a submanifold of M and σ a submanifold map from M^{\prime} into M whose differential is denoted by σ_{*}. We denote by $T_{s}^{r}(M)$ (resp. $\left.T_{s}^{r}\left(M^{\prime}\right)\right)$ the space of all tensor fields of type (r, s) and let $T(M)=\sum_{r, s} T_{s}^{r}(M)$ (resp. $T\left(M^{\prime}\right)=\sum_{r, s} T_{s}^{r}\left(M^{\prime}\right)$). Given an element $X \in T_{0}^{1}\left(M^{\prime}\right)$, we define a derivation ∇_{X}^{σ} in the formal tensor product $T(M) \# T\left(M^{\prime}\right)$ by the following properties:
1)

$$
\nabla_{X}^{\sigma} V=\nabla_{\sigma, X} V \quad \text { for } \quad V \in T(M),
$$

where \bar{V} denotes the covariant derivation with respect to an affine connection of M;
2)

$$
\nabla_{X}^{\sigma} W=\left(\text { the tangential part of } \nabla_{\sigma, X}\left(\sigma_{*} W\right)\right),
$$

for $W \in T\left(M^{\prime}\right)$ and
3)

$$
\nabla_{X}^{o}(V \# W)=\left(\nabla_{X}^{o} V\right) \# W+V \#\left(\nabla_{x}^{o} W\right),
$$

for $V \in T(M)$ and $W \epsilon T\left(M^{\prime}\right)$. Van der Waerden-Bortolotti derivative ∇^{σ} along M^{\prime} is defined as the assignment: $\left(X, W^{*}\right) \rightarrow \nabla_{X}^{\sigma} W^{*}$ for $X \in T_{0}^{1}\left(M^{\prime}\right)$ and $W^{*} \in T(M) \# T\left(M^{\prime}\right)$. For detail, see Yano-Ishihara [2].

Van der Waerden-Bortolotti derivative ∇^{5} along H as a submanifold of M gives

$$
\begin{equation*}
\left\langle\nabla_{V}^{\xi} C_{x}, \zeta_{*} W\right\rangle_{M}=-\left\langle h^{(x)} V, W\right\rangle_{H} \tag{2.16}
\end{equation*}
$$

where V and W are tangent to H, each $h^{(x)}$ is a tensor on H of type $(1,1)$ and \langle,\rangle_{H} denotes the inner product on H with respect to the metric induced from that of $M . \quad C_{1}$ and C_{2} are respectively transformed under F as follows:

$$
\begin{equation*}
F C_{1}=\varphi C_{2}-\|\alpha\| C_{3} \tag{2.17}
\end{equation*}
$$

and

$$
\begin{equation*}
F C_{2}=-\varphi C_{1}-\|\alpha\| C_{4} . \tag{2.18}
\end{equation*}
$$

Substituting (2.17) into (2.16) we have

$$
\left\langle F V_{V}^{\xi} C_{1}, \zeta_{*} W\right\rangle_{M}=-\varphi\left\langle h^{(2)} V, W\right\rangle_{H}+\|\alpha\|\left\langle\left\langle h^{(3)} V, W\right\rangle_{H},\right.
$$

because of the fact that F is covariant constant. Since $\zeta_{*} W$ is tangent to the holomorphic submanifold H so is also $F\left(\zeta_{*} W\right)$ and therefore we can put

$$
\begin{equation*}
F\left(\zeta_{*} W\right)=\zeta_{*}(f W), \tag{2.19}
\end{equation*}
$$

where f is a tensor of type $(1,1)$ on H. We can easily show that

$$
f^{2}=-I,
$$

I being the unit tensor. Thus we have

$$
\begin{equation*}
\left\langle h^{(1)} V, f W\right\rangle_{H}=-\varphi\left\langle h^{(2)} V, W\right\rangle_{H}+\|\alpha\|\left\langle h^{(3)} V, W\right\rangle_{H}, \tag{2.20}
\end{equation*}
$$

by virture of the relation

$$
\left\langle F \nabla_{V}^{\varsigma} C_{1}, \zeta_{*} W\right\rangle_{M}=-\left\langle V_{V}^{\xi} C_{1}, F\left(\zeta_{*} W\right)\right\rangle_{M} .
$$

A similar method gives

$$
\begin{equation*}
\left\langle h^{(2)} V, f W\right\rangle_{H}=\varphi\left\langle h^{(1)} V, W\right\rangle_{I I}+\|\alpha\|\left\langle h^{(4)} V, W\right\rangle_{H}, \tag{2.21}
\end{equation*}
$$

because of (2.18).
On the other hand, if we consider H as a submanifold of S and we choose $\alpha /\|\alpha\|$ and $\beta /\|\beta\|$ as fields of unit normals to H, then we have

$$
\begin{equation*}
\left\langle\nabla_{V}^{\eta}(\alpha /\|\alpha\|), \eta_{*} W\right\rangle_{S}=-\left\langle h^{\prime} V, W\right\rangle_{H}, \tag{2.22}
\end{equation*}
$$

and

$$
\begin{equation*}
\left\langle\nabla_{V}^{\eta}(\beta /\|\beta\|), \eta_{*} W\right\rangle_{S}=-\left\langle k^{\prime} V, W\right\rangle_{H}, \tag{2.22}
\end{equation*}
$$

where V and W are tangent to H and ∇^{η} denotes van der Waerden-Bortolotti covariant derivation along H as a submanifold of $S . h^{\prime}$ and k^{\prime} are the so-called second fundamental tensors of H in S. We can easily verify, by the definition of van der Waerden-Bortolotti covariant derivation that

$$
\begin{equation*}
h^{\prime}=h^{(8)} \quad \text { and } \quad k^{\prime}=h^{(4)} \tag{2.24}
\end{equation*}
$$

if we take account of (2.16). By a similar argument we have

$$
\begin{equation*}
\left\langle h^{(1)} W, V\right\rangle_{H}=\left\langle h\left(\eta_{*} W\right), \eta_{*} V\right\rangle_{S} \tag{2.25}
\end{equation*}
$$

and

$$
\begin{equation*}
\left\langle h^{(2)} W, V\right\rangle_{I I}=\left\langle k\left(\eta_{*} W\right), \eta_{*} V\right\rangle_{S} \tag{2.26}
\end{equation*}
$$

where V and W are vector fields on H. Since H is holomorphic submanıfold of M, we have

$$
\operatorname{Tr} h^{(x)}=0 \quad(x=1,2,3,4)
$$

and therefore

$$
\operatorname{Tr} h^{\prime}=0 \quad \text { and } \quad \operatorname{Tr} k^{\prime}=0 .
$$

These equations imply
Proposition 2.3. The integral manifold H of the distribution $D: p \rightarrow H_{p}$ is a minimal submanifold of S.

We also have

$$
\operatorname{Tr} h=\left(\langle h \alpha, \alpha\rangle_{S}+\langle h \beta, \beta\rangle_{S}\right) /\|\alpha\|^{2}
$$

and

$$
\operatorname{Tr} k=\left(\langle k \alpha, \alpha\rangle_{S}+\langle k \beta, \beta\rangle_{S}\right) /\|\alpha\|^{2}
$$

by virtue of (2.25) and (2.26). Thus we have
Proposition 2.4. If S is a minimal submanifold of M and the integrability condition (2.15) of the distribution D is satisfied, then we have

$$
\begin{equation*}
\langle h \alpha, \alpha\rangle_{S}+\langle h \beta, \beta\rangle_{S}=0 \tag{2.27}
\end{equation*}
$$

and

$$
\begin{equation*}
\langle k \alpha, \alpha\rangle_{S}+\langle k \beta, \beta\rangle_{S}=0 . \tag{2.28}
\end{equation*}
$$

We can write the equations (2.15) as

$$
\left\langle h^{(1)} X, f Y\right\rangle_{H}-\left\langle h^{(1)} Y, f X\right\rangle_{H}=0
$$

and

$$
\left\langle h^{(2)} X, f Y\right\rangle_{I I}-\left\langle h^{(2)} Y, f X\right\rangle_{I I}=0,
$$

if we take account of (2.19), (2.25) and (2.26).
A tensor T of type $(1,1)$ is said to be hybrid with respect to f, if it satisfies

$$
f T+T f=0,
$$

where f is a tensor of type (1,1). (See, e.g. Yano [3].)
Thus we have, taking account of (2.20),
Proposition 2.5. Under the integrability condition (2.15) of the distribution $D: p \rightarrow H_{p}$, each $h^{(x)}$ is hybrid tensor with respect to the almost complex structure f on H induced from the almost complex structure F of M.

Let us define $\tilde{h}^{(x)}$ by

$$
\tilde{h}^{(x)}(V, W)=\left\langle h^{(x)} V, W\right\rangle_{H} \quad(x=1,2,3,4)
$$

for any pair of vectors V and W on H. Then we can see, from (2.25) and (2.26), that $\tilde{h}^{(1)}$ and $\tilde{h}^{(2)}$ are both symmetric bilinear form. As consequences of (2.15), we see that $\tilde{h}^{(3)}$ and $\tilde{h}^{(4)}$ become symmetric when the distribution D is integrable. ${ }^{3)}$
3. We study, in this section, the integrability condition of the distribution D^{\prime} which assigns H_{p}^{\prime} to $p \in S$. If we use α and β as a local basis of D^{\prime} in a sufficiently small neighborhood of p, then the integrability condition of $D^{\prime}: p \rightarrow H_{p}^{\prime}$ is written as

$$
\begin{equation*}
\left\langle X_{\mu},[\alpha, \beta]\right\rangle_{S}=0, \tag{3.1}
\end{equation*}
$$

where X_{μ} is the local basis of the distribution $D: p \rightarrow H_{p}$. The equation (3.1) is written as

$$
\begin{equation*}
\left\langle X_{\mu},(h A-A h) \beta-(k A-A k) \alpha\right\rangle_{S}=0 \tag{3.2}
\end{equation*}
$$

3) If we define, in a sufficiently small neighborhood $\subset \geqslant$, van der Waerden-Bortoloth covariant derivative along a distribution D and introduce tensors $L^{(x)}$ of type (1, 1) in a similar way as we did for $h^{(x)}$, i.e. by (normal part of $\left.\nabla_{X} Y\right)=\widetilde{L}^{(x)}(X, Y) C_{x}(x=1,2,3,1)$, for local vector fields $X, Y \in D$ then the integrability condition of the distribution $\underset{\sim}{D}$ is given by the hybridness of $L^{(1)}$ and $L^{(2)}$ or equivalently by the symmetry of $\widetilde{L}^{(3)}$ and $\widetilde{L}^{(4)}$.
or

$$
\begin{equation*}
\varphi\left(A_{\mu}+\bar{B}_{\mu}\right)+f_{\mu}{ }^{\nu}\left(B_{\nu}-\bar{A}_{\nu}\right)=0, \tag{3.3}
\end{equation*}
$$

because of $A \alpha=-\varphi \beta$ and $A \beta=\varphi \alpha$, where $A_{\mu}=\left\langle X_{\mu}, h \alpha\right\rangle_{S}, B_{\mu}=\left\langle X_{\mu}, h \beta\right\rangle_{S}, \bar{A}_{\mu}=\left\langle X_{\mu}, k \alpha\right\rangle_{S}$, $\bar{B}_{\mu}=\left\langle X_{\mu}, k \beta\right\rangle_{S}$ and $\left(f_{\mu}{ }^{\nu}\right)$ are components of the tensor f on H. Thus we have

Proposition 3.1. Suppose that $\operatorname{dim} H_{p}^{\prime}=$ const. In order that the distribution $D^{\prime}: p \rightarrow H_{p}^{\prime}$ is completely integrable, it is necessary and sufficient that the equation (3.2) or (3.3) holds.

Corollary 3.1. If S is a totally geodesic submanifold of M, then the distribution D^{\prime} is completely integrable.

On the other hand, we have

$$
\left\langle X_{\mu}, \operatorname{grad} \varphi\right\rangle_{S}=-B_{\mu}+\bar{A}_{\mu}
$$

and thus we have
Corollary 3.2. For a submanifold S on which $\varphi=0$, the distribution D^{\prime} is completely integrable.

The number of equations (3.3) is $m-2$ and that of unknown variables A_{μ}, B_{μ}, \bar{A}_{μ} and \bar{B}_{μ} is $4(m-2)$. Therefore, it seems that a submanifold which satisfies the integrability condition (3.3) of the distribution D^{\prime} is a very special one. We shall show, at the end of this section, an example of such submanifolds. In that example, the second fundamental tensors h and k which are considered as linear transformations on $T_{p}(S)$ leave invariant the holomorphic subspace H_{p} of $T_{p}(S)$.

When the distribution $D^{\prime}: p \rightarrow H_{p}^{\prime}$ is integrable, we denote by H^{\prime} the integral manifold of the distribution D^{\prime} and by ζ^{\prime} a submanifold map $\zeta^{\prime}: H^{\prime} \rightarrow M$. We can choose $\xi_{*} X_{\lambda}, C, D$ as unit normal vector fields to H^{\prime}. By using van der WaerdenBortolotti covariant derivation $\nabla^{5^{\prime}}$ along H^{\prime} we have

$$
\begin{aligned}
& \left\langle\nabla_{\dot{x}}^{\left.c_{X}^{\prime} C, \zeta_{*}^{\prime} Y\right\rangle_{M}=-\left\langle^{\prime} h^{(m-1)} X, Y\right\rangle_{H^{\prime}},}\right. \\
& \left\langle\nabla_{\dot{x}}^{\prime} D, \zeta_{*}^{\prime} Y\right\rangle_{M}=-\left\langle^{\prime} h^{(m)} X, Y\right\rangle_{H^{\prime}},
\end{aligned}
$$

and

$$
\left\langle\nabla_{X}^{v_{x}^{\prime}} \zeta_{*} X_{\lambda}, \zeta_{*}^{\prime} Y\right\rangle_{M}=-\left\langle^{\prime} h^{(\lambda)} X, Y\right\rangle_{H^{\prime}},
$$

where X and Y are arbitrary vector fields on H^{\prime} and ${ }^{\prime} h^{(\lambda),} h^{(m-1)}$ and ${ }^{\prime} h^{(m)}$ are the second fundamental tensors of H^{\prime} as a submanifold of M. Since we have chosen α and β as a local basis of H^{\prime}, we have

$$
\begin{equation*}
\|\alpha\|^{2} \operatorname{Tr}^{\prime} h^{(m-1)}=\left(\langle h \alpha, \alpha\rangle_{S}+\langle h \beta, \beta\rangle_{S}\right) /\|\alpha\|^{2} \tag{3.4}
\end{equation*}
$$

and

$$
\begin{equation*}
\|\alpha\|^{2} \operatorname{Tr}^{\prime} h^{(m)}=\left(\langle k \alpha, \alpha\rangle_{S}+\langle k \beta, \beta\rangle_{S}\right) /\|\alpha\|^{2} . \tag{3.5}
\end{equation*}
$$

On the other hand, we have

$$
\|\alpha\|^{2} \operatorname{Tr}^{\prime} h^{(\lambda)}=\varphi\left(B_{\lambda}-\bar{A}_{\lambda}\right)-f_{\lambda}^{\mu}\left(A_{\mu}+\bar{B}_{\mu}\right),
$$

from which we obtain

$$
\operatorname{Tr}^{\prime} h^{(\lambda)}=-f_{\lambda^{\mu}}{ }^{\mu}\left(A_{\mu}+\bar{B}_{\mu}\right),
$$

by virtue of (3.3). On the other hand, we have, by a straightforward computation,

$$
\left\langle X_{\mu}, \operatorname{div} A\right\rangle_{S}=A_{\mu}+\bar{B}_{\mu},
$$

where A is the tensor defined in $\S 2$. This proves
Proposition 3.2. A necessary condition that H^{\prime} is a minimal submanifold of M is

1) The second fundamental tensors h and k of S satisfy (3.4) and (3.5) respectively and
2) $\operatorname{div} A \in H_{p}^{\prime}$.

Conversely, if we assume 1) and 2) mentioned above and we assume further $\operatorname{grad} \varphi \in H_{p}^{\prime}$ and $\operatorname{dim} H_{p}^{\prime}=$ const., then the distribution $D^{\prime}: p \rightarrow H_{p}^{\prime}$ is completely integrable and the integral manifold H^{\prime} of the distribution D^{\prime} is a minimal submanifold of M.

We shall now discuss a sufficient condition under which the distributions $D: p \rightarrow H_{p}$ and $D^{\prime}: p \rightarrow H_{p}^{\prime}$ are both integrable. We assume that the following equations are valid for any local vector field X of the distribution D :

$$
\left\{\begin{array}{l}
(A h+h A) X=0 \tag{3.6}\\
(A k+k A) X=0
\end{array}\right.
$$

The equation (2.15) shows that (3.6) is one of sufficient conditions under which the distribution D is completely integrable. The next lemma is a result of a direct computation

Lemma 3.1. Under the condition (3.6), we have

$$
\begin{equation*}
A_{\mu}=B_{\mu}=\bar{A}_{\mu}=\bar{B}_{\mu}=0 \tag{3.7}
\end{equation*}
$$

and therefore $\operatorname{grad} \varphi$ and $\operatorname{div} A$ belong to H_{p}^{\prime}.
(3.7) proves

Proposition 3.3. If we assume (3.6), then the holomorphic subspace H_{p} of $T_{p}(S)$ is left invariant under the linear transformations induced from the second fundamental tensors h and k of S.

Proposition 3.4. The distributions D and D^{\prime} are both completely integrable, if we assume $\operatorname{dim} H_{p}=$ const. and the equations (3.6).

Lemma 3.2. Let S be a minimal submanifold of M. If the equations (3.6)
are valid for any $X \in H_{p}$, then we have

$$
\left\{\begin{array}{c}
A h+h A=0 \tag{3.8}\\
A k+k A=0
\end{array}\right.
$$

on $T_{p}(S)$.
Conversely, a submanifold S whose second fundamental tensors h and k satisfy the equations (3.8), then S is a minimal submanifold of M, if φ does not vanish.

Proof.
Straightforward computations show that

$$
\begin{aligned}
\langle(A h+h A) \alpha, \alpha\rangle_{S} & =\langle A h \alpha, \alpha\rangle_{S}-\varphi\langle h \beta, \alpha\rangle_{S} \\
& =\varphi\langle h a, \beta\rangle_{S}-\varphi\langle h \beta, \alpha\rangle_{S}=0 ; \\
\langle(A h+h A) \alpha, \beta\rangle_{S} & =\langle A h \alpha, \beta\rangle_{S}-\varphi\langle h \beta, \beta\rangle_{S} \\
& =-\varphi\langle h \alpha, \alpha\rangle_{S}-\varphi\langle h \beta, \beta\rangle_{S} \\
& =0, \quad \text { by }(2.27) ; \\
\langle(A h+h A) \beta, \alpha\rangle_{S} & =-\langle(A h+h A) \alpha, \beta\rangle_{S}=0 ;
\end{aligned}
$$

and

$$
\langle(A h+h A) \beta, \beta\rangle_{S}=-\varphi\langle h \beta, \alpha\rangle_{S}+\varphi\langle h \alpha, \beta\rangle_{S}=0 .
$$

We have, from (3.6),

$$
\langle(A h+h A) \alpha, X\rangle_{S}=\langle(A h+h A) \beta, X\rangle_{S}=0
$$

for any $X \in H_{p}$. These equations give

$$
\begin{equation*}
(A h+h A) \alpha=(A h+h A) \beta=0 . \tag{3.9}
\end{equation*}
$$

Similar computations show that

$$
\begin{equation*}
(A k+k A) \alpha=(A k+k A) \beta=0 . \tag{3.10}
\end{equation*}
$$

The equations (3.8) follow from (3.6), (3.9) and (3.10).
The converse is now obvious by a straightforward computation. q.e.d.
Corollary 3.3. Let S be a minimal submanifold of M. We assume that the equations (3.6) are valid and further the function φ is constant. Then \tilde{A} defined by (2.2) is harmonic form.

Proof. From the definition of \tilde{A} and the equation

$$
\begin{aligned}
\left(\nabla_{X} \tilde{A}\right)(Y, Z)= & -\tilde{h}(X, Y) \tilde{\alpha}(Z)+\tilde{h}(X, Z) \tilde{\alpha}(Y) \\
& -\tilde{k}(X, Y) \tilde{\beta}(Z)+\tilde{k}(X, Z) \tilde{\beta}(Y),
\end{aligned}
$$

it is obvious that \tilde{A} is skew-symmetric and closed. We can easily see that

$$
\langle\operatorname{div} A, \alpha\rangle_{S}=\langle h \alpha, \alpha\rangle_{S}+\langle k \beta, \alpha\rangle_{S}
$$

and

$$
\langle\operatorname{div} A, \beta\rangle_{S}=\langle h \alpha, \beta\rangle_{S}+\langle k \beta, \beta\rangle_{S} .
$$

On the other hand, we have

$$
\langle\operatorname{grad} \varphi, \alpha\rangle_{S}=\langle k \alpha, \alpha\rangle_{S}-\langle h \beta, \alpha\rangle_{S}
$$

and

$$
\langle\operatorname{grad} \varphi, \beta\rangle_{S}=\langle k \alpha, \beta\rangle_{S}-\langle h \beta, \beta\rangle_{S},
$$

from which we have

$$
\langle\operatorname{div} A, \alpha\rangle_{S}=\langle h \alpha, \alpha\rangle_{S}+\langle h \beta, \beta\rangle_{S}
$$

and
$\langle\operatorname{div} A, \beta\rangle_{S}=\langle k \alpha, \alpha\rangle_{S}+\langle k \beta, \beta\rangle_{S}$.
The right hand side of each equation above must be zero because of (2.27) and (2.28). Since $\operatorname{div} A$ belongs to H_{p}^{\prime} (Lemma 3.1), we have $\operatorname{div} A=0$ which implies, together with $d \tilde{A}=0$, that \tilde{A} is a harmonic form. q.e.d.

Summing up the results, we have
Theorem 3.1. Let S be a minimal submanifold of a Kählerian manifold M whose codimension is $2 .{ }^{4)}$ We assume that $\operatorname{dim} H_{p}=$ const. and the second fundamental tensors h and k of S satisfy the condition (3.6). Then S is locally decomposed into two submanifolds one of which is holomorphic in M and the other is anti-holomorphic in M both being minimal submanifolds of S and at the same time of M. The dimension of the anti-holomorphic submanifold equals to the codimension of S .

Bibliography

[1] Aко, M., Submanıfolds in Fubınıan manıfolds. Kōdaı Math. Sem. Rep. 19 (1967), 103-128.
[2] Yano, K., and S. Ishihara, Differential geometry of fibred spaces. Kōda1 Math. Sem. Rep. 19 (1967), 257-288.
[3] Yano, K., Differential geometry on complex and almost complex spaces. Pergamon Press (1965).

Department of Mathematics, Tokyo Institute of Technology.

[^2]
[^0]: Received June 19, 1967.

 1) We use here an identification of a differentiable manifold S with $\xi(S)$, where ξ is a differentiable immersion from S into M, whose differential $\xi_{*}: T_{p}(S) \rightarrow T_{\xi(p)}(M)$ is injective. Manifolds, mappings and geometric objects considered in this paper are all assumed to be of differentiability class C^{∞}.
[^1]: 2) Vectors X and Y on H_{p} are regarded as vectors on $T_{p}(S)$ by the identification map.
[^2]: 4) We have assumed, throughout this paper, that codimension of S is 2 , but we can also discuss in the same way the case in which the condimension of S is even and smaller than or equals to the half of the dimension of M.
